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A B S T R A C T

Acid dissolution capability plays a considerable role in controlling the propagation of an acid-dissolution front
in the carbonate rocks that are saturated by pore fluids. This capability can be represented by a dimensionless
number, known as the acid dissolution capability number, by which we mean the quotient of the volume of an
acid-dissolved carbonate rock divided by that of the acid itself. This paper aims primarily to investigate why and
how the acid dissolution capacity can affect the behaviors of the acid-dissolution front propagation in the
carbonate rocks that are saturated by pore fluids. If the acid dissolution capacity number is a nonzero finite
number, as in a general case, then the computational simulation method needs to be employed to get numerical
solutions for the acid-dissolution system. The relevant computational simulation results have demonstrated
that: (1) with an increase in the value of the Zhao number (namely another dimensionless number), which is
used to denote the dynamic characteristics of an acid-dissolution system, the acid-dissolution front becomes
more unstable in the corresponding supercritical acid-dissolution system. (2) When the acid dissolution
capacity number is small enough, the propagating speed of a planar acid-dissolution front in the corresponding
subcritical acid-dissolution system is linearly dependent on the acid dissolution capacity number, indicating
that the smaller the acid dissolution capacity, the slower the propagating speed of a planar acid-dissolution front
in the corresponding subcritical acid-dissolution system. (3) With a decrease in the acid dissolution capacity
number, the acid-dissolution front can exhibit more unstable behavior in the corresponding supercritical acid-
dissolution system.

1. Introduction

Acid dissolution capability plays a considerable role in controlling
the propagation of an acid-dissolution front in the carbonate rocks that
are saturated by pore fluids. This phenomenon is closely associated not
only with developing innovative techniques for efficiently extracting
oil/gas resources in carbonate rocks within the deep Earth (Sherwood,
1987; Hinch and Bhatt, 1990; Fredd and Fogler, 1998; Golfier et al.,
2002; Panga et al., 2005; Kalia and Balakotaiah, 2007, 2009; Cohen
et al., 2008), but also with understanding the dominating dynamic
mechanisms for controlling the formation of large ore deposits within
the Earth's upper crust (Chadam et al., 1986, 1988; Ormond and
Ortoleva, 2000; Ortoleva et al., 1987; Chen and Liu, 2002, 2004; Zhao
et al., 2008; Chen et al., 2009). Since acid dissolution can create the
porosity of a carbonate rock, it may lead to a significant variation in the
channels of the carbonate rock. As a result, the flow patterns of pore
fluids in the carbonate rock can change dramatically. This means that
the propagation of an acid-dissolution front depends on both the

chemical dissolution reaction process and the physical processes
associated with the flow of pore fluids. Generally, the evolution of an
acid-dissolution front is controlled by a dynamic interaction among the
following three processes, namely mass diffusion, advection (caused by
the flow of pore fluids) and acid dissolution reaction processes, which
take place simultaneously in the carbonate rocks that are saturated by
pore fluids. This dynamic interaction can be reflected by the Zhao
number (i.e. a dimensionless number), which is used to denote the
dynamic characteristics of an acid-dissolution system (Lai et al., 2016;
Zhao et al., 2009). Because the studies of acid-dissolution front
propagation problems have considerable scientific significance and
potential application background, extensive research has been con-
ducted in this particular field (Sherwood, 1987; Hinch and Bhatt, 1990;
Fredd and Fogler, 1998; Golfier et al., 2002; Panga et al., 2005; Kalia
and Balakotaiah, 2007, 2009; Cohen et al., 2008; Lai et al., 2016; Zhao
et al., 2009, 2013a, 2013b).

The existing research outcomes on the propagation of an acid-
dissolution front in the carbonate rocks (that are saturated by pore
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fluids) have demonstrated that: (1) the acid-dissolution front can have
one of the following three states: stable, critical and unstable, which are
in correspondence to subcritical, critical and supercritical acid-dissolu-
tion systems respectively; (2) only in a subcritical (or even critical)
acid-dissolution system, the (planar) acid-dissolution front does not
change its shape during propagation, so that a moving coordinate
system, in which the subcritical acid-dissolution system can be viewed
as being in a steady-state, is usable in the related theoretical analysis;
(3) when an acid-dissolution system is in a supercritical state, it is
currently impossible to describe the shape evolution of an acid-
dissolution front with time in a purely mathematical manner, so that
computational simulation methods should be employed for simulating
the shape evolution of an acid-dissolution front with time. This means
that in order to consider more general cases of an acid-dissolution front
propagating problem, the mixed approach consisting of both the finite
difference and finite element methods needs to be used as a research
tool in this study (Lai et al., 2016; Zhao et al., 2009, 2013a, 2013b).

In order to effectively and efficiently solve acid-dissolution front
propagating problems in the carbonate rocks that are saturated by pore
fluids, it is necessary to transform the related mathematical governing
equations from a dimensional form into a dimensionless one. In the
process of conducting this mathematical transformation, the scaling
parameters should be carefully chosen to avoid any mathematical
indefinite problem of zero-over-zero type. Consequently, different
values (including zero) of the acid dissolution capacity number can
be considered for investigating the effects of acid dissolution capacity
on the propagation of an acid-dissolution front in the carbonate rocks,
which are saturated by pore fluids. Since this issue has not been
addressed up to date, it becomes the main purpose of carrying out this
study. The outcome of this study will answer the following realistic
question: why and how can acid dissolution capacity affect the
propagation of an acid-dissolution front in the carbonate rocks (that
are saturated by pore fluids) in the case of the acid-dissolution system
under consideration is in a supercritical state?

2. Mathematical governing equations and related analysis

From the previous studies (Zhao et al., 2013a, 2013b), the
mathematical governing equations for describing the propagation
problem of an acid-dissolution front in carbonate rocks, which are
saturated by pore fluids, can be written as follows:
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where p is used to denote the pore-fluid pressure; u→ is used to denote
the Darcy velocity vector associated with the acid-dissolution system;C
is used to denote the acid concentration (that has a unit of moles per
pore-fluid volume); ϕ is used to denote the carbonate rock porosity; μ is
used to denote the pore-fluid dynamic viscosity; K ϕ( ) is used to denote
the carbonate rock permeability; D is used to denote the acid
diffusivity/dispersivity; χ is used to denote the carbonate rock stoichio-
metric coefficient; k is used to denote the rate constant with a unit of
m/s; s is used to denote the reactive surface area per unit volume of the
dissolvable mineral; Cin is used to denote the injected acid concentra-
tion (i.e. moles per pore-fluid volume) at the entrance of the acid-

dissolution system; ρs is used to denote the carbonate rock molar
density (with a unit of moles per volume); γa is used to denote the acid
dissolution capacity number, which is defined as the ratio of the volume
of an acid-dissolved carbonate rock to that of the acid itself.

For the purpose of considering the carbonate rock permeability
change resulted from a variation in the corresponding carbonate rock
porosity, it is very common to employ the Carman-Kozeny law
(Scheidegger, 1974; Nield and Bejan, 1992) for calculating the
carbonate rock permeability, K, for a given carbonate rock porosity, ϕ.
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where ϕ0 is used to denote the initial reference porosity of the
carbonate rock; K0 is used to denote the corresponding initial reference
permeability of the carbonate rock.

To identify the leading terms in the above-mentioned mathematical
governing equations, it is necessary to transform Eqs. (1)–(4) from a
dimensional form into a dimensionless one. This requires the use of
both the time scale and the length scale, which should reflect or
represent the primary dimensions of the physical problem under
consideration. However, since real acid-dissolution systems are typi-
cally unbounded, this means that the geometrical length (i.e. the
geometrical dimension) of them is infinite, which is certainly unsui-
table to be used as the length scale. In this situation, it is necessary to
examine the definition of the Peclet number, which is used to express
the relative dominating process between the mass advection and
diffusion processes, and the definition of the Damkuhler number,
which is used to express the relative dominating process between the
mass advection and chemical reaction processes.
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where Pe is the Peclet number of the acid-dissolution system; Da is the
Damkuhler number of the acid-dissolution system; s0 is used to denote
the reference reactive surface area per unit volume of dissolvable
minerals; vfluid is used to denote the injected pore-fluid velocity at the
entrance of the acid-dissolution system; D0 is used to denote the acid
effective diffusivity/dispersivity; Lc is used to denote the characteristic
length of the acid-dissolution system. Note that Lc is usually chosen as
the pore size for pore scale models (Golfier et al., 2002), and as the
sample size for the Darcy scale models (Kalia and Balakotaiah, 2007,
2009).

Eq. (7) clearly indicates that since either the Peclet number or the
Damkuhler number cannot represent three main processes (i.e. the
mass advection, diffusion and chemical reaction processes), which take
place simultaneously in an acid-dissolution system, it is desirable to
define a new dimensionless parameter as follows:
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Eq. (8) indicates that the use of this new dimensionless number has
the following two main advantages: (1) it is independent of the
characteristic length of an acid-dissolution system, so that any finite
numbers except zero can be used as the length scale, from the
mathematical point of view; and (2) it can be used to represent the
dynamic interaction among the mass advection, diffusion and chemical
reaction processes, which take place simultaneously in an acid-dis-
solution system, so that it represents the characteristics of an acid-
dissolution system in a much better way than either the Peclet number
or the Damkuhler number does. Therefore, instead of either the Peclet
number or the Damkuhler number, the new dimensionless parameter,
H, which is equivalent to the Zhao number (as demonstrated later), is
used in this investigation. Based on the above-mentioned recognition,
the specific time and length scales (that are used in this study) are as
follows:
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where t* and L* are used to denote the time and “length” scales
respectively; γa

ref is used to denote the reference acid dissolution
capability number, which can be defined as:
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where Cref is used to denote the non-zero reference acid concentration.

It should be pointed out that since L* is a “length” scale, rather than
the characteristic length (i.e. Lc) of the acid-dissolution system, it
cannot be used in the definition of both the Damkuhler number and the
Peclet number of the acid-dissolution system. This means that in
general cases, L* is not equal to Lc. However, in a special case, where
the Damkuhler number of the acid-dissolution system is equal to unity,
then L* is equal to Lc. Thus, the physical meaning of L* can be
explained as follows: if L* is taken as the characteristic length (i.e. Lc)
of an original acid-dissolution system (expressed in the original
coordinate system), then the Damkuhler number of the transformed
acid-dissolution system could be equal to unity in the transformed
coordinate system.

Comparison of Eq. (5) with Eq. (10) leads to the following
mathematical relationships:
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By using the proposed time and “length” scales, the dimensionless
governing equations for describing the acid dissolution problem in the
carbonate rocks (that are saturated by pore fluids) can be derived and
expressed as follows:
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The related dimensionless quantities in these equations are defined
below:
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Note that the main advantage of using the unchanged time and
length scales in this study is that the mathematical indefinite problem
of zero-over-zero type can be avoided when the real acid dissolution
capacity number approaches zero in an acid-dissolution system.

If the propagation problem of the acid-dissolution front under
consideration has a rectangular computational domain, as shown in
Fig. 1, then we can have the following corresponding boundary
conditions:
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where p0 is used to denote the dimensionless pore-fluid pressure, which
may be assigned at the exit of the acid-dissolution system.

The initial conditions for the propagation problem of the acid-
dissolution front under consideration are: ϕ x y ϕ( , , 0) = 0 expect at
x = 0, where ϕ y t ϕ(0, , ) = f ; and C x y( , , 0) = 0 expect at x = 0,
where C y t(0, , ) = 1.

When the acid-dissolution system is stable (or even neutral), a
planar acid-dissolution front in the acid-dissolution system under
consideration can propagate in an infinite domain without changing
its shape (Zhao et al., 2013a, 2013b). In this case, the propagating
speed of the planar acid-dissolution front can be determined by
considering the mass balance of the injected acid within the acid-
dissolution system.

χ v C v ϕ C v ϕ ϕ ρ( − ) = ( − )fluid in front f in front f s0 (22)

where vfront is used to denote the propagating speed of the planar acid-
dissolution front; other quantities have the same meanings as those
mentioned previously.

It should be pointed out that when a planar acid-dissolution front
propagates forwardly, it must consume some acid to fill the final pore
space (i.e. ϕf ) of the carbonate rock. Thus, the acid consumed to
dissolve the dissolvable mineral space (i.e. ϕ ϕ−f 0) of the carbonate
rock should be equal to the difference between the injected acid (i.e.
v Cfluid in) and the acid consumed to fill the final pore space of the
carbonate rock (i.e. v ϕ Cfront f in).

According to Eq. (22), the propagating speed of a planar acid-
dissolution front in the acid-dissolution system is expressed as follows:
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Eq. (23) clearly indicates that when the acid dissolution capacity
number is small enough, the propagating speed of a planar acid-
dissolution front in the corresponding acid-dissolution system is
approximately equal to the product of the acid dissolution capacity
number and the injected pore-fluid velocity at the entrance of the
corresponding acid-dissolution system. In this scenario, the propagat-
ing speed of a planar acid-dissolution front in the corresponding

Fig. 1. Geometry and boundary conditions of the acid-dissolution front propagation
problem in a fluid-saturated carbonate rock.
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subcritical acid-dissolution system is linearly dependent on the acid
dissolution capacity number, indicating that the smaller the acid
dissolution capacity, the slower the propagating speed of a planar
acid-dissolution front in the corresponding subcritical acid-dissolution
system.

3. Numerical simulation results

When the acid dissolution capability number is a nonzero finite
number, Eqs. (12)–(14) are the dimensionless mathematical governing
equations that need to be solved. Since it is very difficult, if not
impossible to solve them in a pure mathematical manner, it is desirable
to solve them numerically. For this purpose, a mixing approach
consisting of the finite difference and finite element method is
proposed in this paper, because it was used successfully in previous
studies (Zhao et al., 2009, 2013b). In the proposed mixing approach,
the finite element method can be chosen for discretizing the computa-
tional space, but the finite difference method can be chosen for
discretizing the computational time.

For the propagation problem of an acid-dissolution front in the
acid-dissolution system, as shown in Fig. 1, it is assumed that the
corresponding computational domain has a dimensionless width of 100
(i.e. L = 100y ) and a dimensionless length of 200 (i.e. L = 200x ). We use
the following parameters in the forthcoming computational simulation
of this problem. The carbonate rock initial porosity (i.e. ϕ0) before the
acid is injected into the acid-dissolution system and the carbonate rock
final porosity (i.e. ϕf ) when the dissolvable minerals in the carbonate
rock under consideration are completely dissolved are 0.1 and 0.2. If

the ratio of χ
ρs
is assumed to be 0.001 m Kmole/3 and the reference acid

concentration is equal to 0.1 Kmole m/ 3, then the reference acid
dissolution capacity number (i.e. γa

ref ) can be determined (from Eq.
(10)) as 0.001. Except for the left boundary of the considered acid-
dissolution system, the carbonate rock initial porosity is equal to 0.1,
whereas the initial dimensionless acid concentration is zero in the
considered acid-dissolution system. The carbonate rock final porosity is
applied on the left boundary of the acid-dissolution system, so that it
can serve as a boundary condition for the considered acid-dissolution
system. For the purpose of considering the effect of different acid
dissolution capacity number on the numerical simulation results, the
dimensionless acid concentration, which can be viewed as a variable,
needs to be applied on the left boundary of the considered acid-
dissolution system. When the two dimensionless acid concentrations
(that are used in this study) are equal to 1.0 and 100 respectively, the
corresponding acid dissolution capacity numbers are equal to 0.001
and 0.1, which can be determined from Eq. (11). Since the dimension-
less horizontal velocity (i.e. vfluid) of the injected pore fluid on the left
boundary of the considered acid-dissolution system is equal to unity,
the corresponding dimensionless pressure gradient of the pore fluid
along this direction should be equal to −1.0. To adequately simulate the
propagation of an acid-dissolution front in the considered acid-
dissolution system, it is simulated by 50000 four-node rectangular
elements with 52026 nodal points in total. Furthermore, three different
values of H (in Eqs. (8) and (13)), namely 0.2, 1.0 and 4.0, are used to
consider the corresponding effects on the numerical simulation results.

Figs. 2 and 3 show the numerical simulation results for the
propagation of an acid-dissolution front in the carbonate rock (that is

Fig. 2. Simulation results of the acid-dissolution front propagation problem in the fluid-saturated carbonate rock (γ = 0.1a ).
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saturated by pore fluids) for γ = 0.1a and γ = 0.001a respectively. In these
figures, cases 1, 2 and 3 are in correspondence to H = 4.0, H = 1.0 and
H = 0.2. To simulate the acid-dissolution front appropriately, two
different dimensionless time step-lengths, namely 0.1 and 10, are used
in the case of γ = 0.1a and γ = 0.001a respectively. It can be seen that
with a decrease in the value of H, the acid-dissolution front becomes
more unstable, so that it evolves from a simple geometrical shape into a
complicated geometrical one. With γ = 0.1a taken as an example, the
acid-dissolution front has a planar shape when H = 4.0 at t = 1.5, while
it has a much more complicated shape when H = 0.2. Since H is a
dimensionless comprehensive parameter (that is used for denoting the
dynamic characteristics of an acid-dissolution system), it can be
expressed by using the Zhao number (that is usually marked by Zh)
of the same acid-dissolution system (Zhao et al., 2013a, 2013b).
Through the comparison of their definitions, it can be found that
Zh =

H
1 . This indicates that with an increase in the value of the Zhao

number, the considered acid-dissolution front becomes more unstable.
Since this conclusion is consistent with the previous one, it can be
concluded that the proposed mixing approach consisting of the finite
difference and finite element method can produce useful numerical
simulation results for dealing with the propagation problem of an acid-
dissolution front in the carbonate rocks, which are saturated by pore
fluids.

Note that with a decrease in the value of the acid dissolution
capacity number, the propagation of an acid-dissolution front in the
considered acid-dissolution system becomes much slower. For exam-
ple, when the acid-dissolution front passes three quarters of the
computational domain, the dimensionless time taken is equal to 1.5
when γ = 0.1a , while the dimensionless time taken is equal to 150 when

γ = 0.001a . However, due to the specific velocity scale (i.e. Eq. (15)) used
for this study, the simulated propagating speed of the acid-dissolution
front in the computational model is much faster than the correspond-
ing real propagating speed. This means that if two different velocity
(speed) scales are used for the pore-fluid velocity and propagating
speed of an acid-dissolution front, then caution should be taken in
explaining the numerical simulation results. The velocity scale for
injected pore-fluid flow in the considered acid-dissolution system is the
pore-fluid velocity (i.e. vfluid) at the entrance of the acid-dissolution
system, while the velocity (speed) scale for the propagating speed of an
acid-dissolution front in the considered acid dissolution system is γ va fluid
during the process of deriving the dimensionless mathematical govern-
ing equations (that are expressed in Eqs. (12)–(14)) in this study.
When the acid dissolution capacity number approaches zero, it is
possible to find the relationship between the real and model dimen-
sionless propagating speeds of an acid-dissolution front as follows:

v
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γ
v

γ

γ
v

C
C

v= = =front
m a

a
ref front

a

a
ref fluid

in

ref
fluid

(24)

where v front
m is used to denote the model dimensionless propagating

speed of an acid-dissolution front in the computational model; vfront is
used to denote the real dimensionless propagating speed of the acid-
dissolution front; vfluid is used to denote the real dimensionless velocity
of the injected pore-fluid flow in the acid-dissolution system. The same
meanings have been used for other quantities, as mentioned pre-
viously.

Since the value of vfluid is equal to unity, the theoretically predicted
values for model dimensionless propagating speed of an acid-dissolu-
tion front within the computational model are equal to 100 and 1.0 in

Fig. 3. Simulation results of the acid-dissolution front propagation problem in the fluid-saturated carbonate rock (γ = 0.001a ).

C. Zhao et al. Computers & Geosciences 102 (2017) 109–115

113



the case of γ = 0.1a and γ = 0.001a respectively. These values can be
directly obtained from Eq. (24). On the other hand, the numerically
simulated values for model dimensionless propagating speed of the
acid-dissolution front within the computational model are also about
100 and 1.0 in the case of γ = 0.1a and γ = 0.001a respectively. These
values can be directly obtained from the computational simulation
results (that are clearly displayed in Figs. 2 and 3). This further
indicates that the suggested mixing approach consisting of the finite
difference and finite element method can produce useful numerical
simulation results for solving the propagation problem of an acid-
dissolution front in the carbonate rocks, which are saturated by pore
fluids.

As shown in Fig. 4, it can be also observed that when H = 0.2, the
irregular shape of an acid-dissolution front grows slightly faster in the
case of γ = 0.001a than it does in the case of γ = 0.1a . This indicates that
with a decrease in the acid dissolution capacity number, the acid-
dissolution front can exhibit more unstable behavior in the correspond-
ing supercritical acid-dissolution system.

4. Conclusions

In order to investigate why and how acid dissolution capability
affect the propagation of an acid-dissolution front in the carbonate
rocks (that are saturated by pore fluids), the related mathematical
governing equations have been transformed from a dimensional form
into a dimensionless form. In the process of carrying out this
mathematical transformation, the corresponding scaling parameters
are carefully chosen to avoid any mathematical indefinite of zero-over-
zero type. This makes it possible to consider different values (including
zero) of the acid dissolution capacity number in the related computa-
tional models, which can be safely employed for examining the effects
of acid dissolution capacity on the propagation of an acid-dissolution
front in the carbonate rocks, which are saturated by pore fluids.

The relevant computational simulation results have demonstrated
the following: (1) with an increase in the value of the Zhao number, an
acid-dissolution front can exhibit more unstable behavior in the
corresponding supercritical acid-dissolution system. (2) When the acid
dissolution capacity number is small enough, the propagating speed of
a planar acid-dissolution front in a subcritical acid-dissolution system
can be linearly dependent on the acid dissolution capacity number,

indicating that the smaller the acid dissolution capacity, the slower the
propagating speed of a planar acid-dissolution front in the correspond-
ing subcritical acid-dissolution system. (3) With a decrease in the acid
dissolution capacity number, the acid-dissolution front can also exhibit
more unstable behavior in the corresponding supercritical acid-dis-
solution system.
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