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The spatial distribution of cobalt-rich crust thicknesses on seamounts is partly controlled by water depth
and slope gradients. Conventional distance–direction-based variogram have not effectively expressed the
spatial self-correlation or anisotropy of the thicknesses of cobalt-rich crusts. To estimate resources in
cobalt-rich crusts on seamounts using geostatistics, we constructed a new variogram model to adapt
to the spatial distribution of the thicknesses of the cobalt-rich crusts. In this model, we defined the data
related to cobalt-rich crusts on seamounts as three-dimensional surface random variables, presented an
experimental variogram process based on the distance–gradient or distance–‘‘relative water depth,” and
provided a theoretical variogram model that follows this process. This method was demonstrated by the
spatial estimation of the thicknesses of cobalt-rich crusts on a seamount, and the results indicated that
the new variogram model reflects the spatial self-correlation of the thicknesses of cobalt-rich crusts well.
Substituted into the Kriging equation, the new variogram model successfully estimated the spatial
thickness distribution of these cobalt-rich crusts.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Krige (1951) pioneered geostatistics, and later, Gel’fand and
Jakubski (1961) defined a generalized random process that estab-
lished a mathematical basis for geostatistics. Following the devel-
opment and popularization of computers, David (1977) and
Journel and Huijbregts (1978) extended the application of geo-
statistics to calculating mineral reserves. Since then, the geostatis-
tical approach (Kriging for short) has become a widely used and
effective method for mineral resource estimations and reserve
calculations.

The essence of Kriging lies in the assignment of a weight coeffi-
cient to interpolations based on the self-correlation and geometric
anisotropy of spatial variables. A variogram is a tool that expresses
this self-correlation and the geometric anisotropy of spatial vari-
ables and provides a prior covariance matrix to execute the Kriging
equation for spatial interpolation (Luenberger, 1969; Journel,
1989; Olea, 1991). Therefore, seeking suitable variogram model
to provide prior covariance matrix reasonably is the key of Kriging
interpolating for some kind space data.

In fact, variograms are so important to Kriging that several
authors have discussed different methods for variogram
experimentation and fitting from a range of perspectives (David,
1977; Journel and Huijbregts, 1978; Cressie and Hawkins, 1980;
Omre, 1984; Armstrong, 1984; Journel, 1987, 1988; Isaaks and
Srivastava, 1988, 1989; Cressie, 1993; Deutsch and Journel,
1998). One general point in these discussions is that a variogram
is a function of the distance and direction or of only the distance,
i.e., when defining an azimuth-based variogram. This is why Krig-
ing is referred to as spatial statistics. The exact method of experi-
menting with or fitting a variogram depends on the distribution
of the spatial data. However, in general, the spatial data distribu-
tion assumes that the spatial variation is a function of the distance
and direction; therefore, nearly all variograms structured so far are
defined by distance–direction or using other orientations-related
method, such as polar coordinates (Iwashita et al., 2005).

Because the evaluation of cobalt-rich crusts on seamounts
requires spatial interpolation, the Kriging method needs to deal
with a type of spatial data that has not previously drawn attention.
We tried to apply conventional Kriging to the evaluation of
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Fig. 1. Location of the Magellan Seamounts and the ME guyot.

Fig. 2. Topography of the ME guyot with several survey stations indicated for
cobalt-rich crusts (the red arrows indicate that these point pairs form head-to-end-
point searching pairs). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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cobalt-rich crust resources on seamounts; however, the variogram
could not suitably describe the self-correlation of the cobalt-rich
crusts. This may be the reason why there are no reports of mineral
resource estimations or reserve calculations based on Kriging for
seamounts. Spatial data zonation is generally thought to account
for the spatial geometric anisotropy of variograms (Isaaks and
Srivastava, 1989; Goovaerts, 2012). Mineral resources on land,
which are subjected to strata or linear structures such as faults,
are usually zonal in distribution. Their variograms are spatially
anisotropic and are a function of the azimuthal direction. On
seamount surfaces, the spatial distribution of mineral resources
is different and is subjected to water depth and slope gradients
around the seamount, and consequently, their anisotropy appears
to have a circular or radial distribution. Therefore, the application
of an azimuth-based variogram algorithm to seamount surface
data is irrational. In this study, we proposed a new variogram
model for the unique spatial data of a seamount surface, through
which Kriging can be successfully applied to estimate the spatial
thickness distribution of cobalt-rich crusts on a seamount surface.

These data are referred to here as three-dimensional (3D) sur-
face random variables, and they will be discussed in more detail
in the next section.

2. Conventional variograms are invalid for cobalt-rich crust
deposits

2.1. Distribution features of cobalt-rich crusts on seamounts

A seamount is a submarine volcanogenic conical or flat-topped
(guyot) mountain rising hundreds to thousands of meters above
the seafloor or even above the sea level as islands. Cobalt-rich
crusts occur on the sediment-free surfaces of seamount slopes
and the summit and have attracted economic interest owing to
the potential for manganese, cobalt, nickel, rare earth elements,
tellurium, and platinum resources (Hein et al., 1999; Hein, 2000).
Therefore, explorations and eventual resource evaluations are
being conducted.

Cobalt-rich crusts occur on seamounts at water depths between
400 and 7000 m; however, the most promising cobalt-rich crusts,
as determined from exploration, are at water depths less than
2500 m. Crusts shallower than 2500 m are thick and show high
grades of cobalt, nickel, and other metals relative to those at dee-
per water depths (Usui and Someya, 1997; Hein, 2000; Zhang
et al., 2008). The survey stations in this study for cobalt-rich crust
exploration are located within the 1500–4000 m interval.

Since the 1990s, the Magellan Seamounts located in the western
part of the Pacific (as shown in Fig. 1) have been investigated as
promising objects for cobalt-rich crust deposits by geologists from
the China Ocean Mineral Resources R&D Association (COMRA). The
main purpose of this paper is to present a Kriging method to esti-
mate the distribution of cobalt-rich crusts on a guyot. Here, we
chose the ME guyot as an experimental field to test our method;
its location is shown in Fig. 1. The bathymetric data for the guyot
were obtained by a Simrad EM120 multibeam echo sounder, and
thickness data of the cobalt-rich crusts were derived from geolog-
ical sampling (submarine drilling and dredging).

The area shallower than 1500 m on the ME guyot is the flat
summit, which is covered by sediments, and no exposed cobalt-
rich crusts are found there. The area between 1500 and 4000 m
is the slope of the seamount, which is covered by cobalt-rich
crusts. The crust survey stations are located on the slopes, where
the gradient varies from 5� to 40�. During exploration, the param-
eters used for the resource estimates were obtained via sampling
(primarily submarine drilling) at these stations, and the data
obtained included thickness, abundance (weight of the wet crust
per unit area) of the seabed, and element concentrations of the
cobalt-rich crusts. The crust thickness, a critical parameter for
resource estimates, was selected as the experimental data. Studies
have demonstrated that the crust distribution is generally sub-
jected to rock outcrop distributions and slope gradients, rather
than to linear structures oriented in a certain direction, which usu-
ally control the distribution of ore bodies on land. In other words,
we cannot use a distance–direction-defined variogram to express
the spatial self-correlation and anisotropy of cobalt-rich crusts on
seamount surfaces.

2.2. The inapplicability of conventional variograms

We first tested the viability of a conventional variogram theory
to estimate the thickness of the cobalt-rich crusts using the
distance–direction-based pairs search principle (Deutsch and
Journel, 1998).

As shown in Fig. 2, the stations on the cobalt-rich crusts are dis-
tributed along a closed slope annuli. We assumed that E–W is 0�,
NE–SW is 45�, S–N is 90�, and NW–SE is 135�. According to the
pairs search principle of conventional variogram algorithms, at
points A or D, the 0� pairs fall on the contour line, and the 90� pairs



Fig. 3. The distance–direction-based experimental variogram.

Fig. 4. A random variable Z in the 3D system.
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are in the maximum gradient direction. Conversely, at points B or
C, the 0� pairs are in the maximum gradient direction, whereas the
90� pairs fall on the contour line. At point E, the relative azimuth of
the pairs on the contour line is 30� (or 210�). This suggests that,
given that the spatial data distribution of the seamount surface is
subjected to water depth and slope gradients, the distance–
direction-based pairs search principle is inconsistent with the
spatial data distribution. That is, an experimental variogram using
distance–direction-based pairs search does not reflect the self-
correlation and anisotropy of the spatial data on the seamount
surface. This observation is also confirmed by the variogram calcu-
lated on the basis of distance–direction.

Fig. 3 shows the scatter points of the experimental variograms
in the 0�, 45�, 90�, and 135� directions calculated with the
GAVM3.FOR program of the GSLIB package using the calculation
algorithm for experimental variograms described by Deutsch and
Journel (1998). The sill values of these variograms vary greatly
from one direction to another, ranging from 0.7 in the 45� direction
to 1.4 in the 90� direction. In each direction, the variation is inde-
pendent of the distance, which means that it does not vary with
distance. The resulting variogram does not reflect the self-
correlation of the spatial data. Having shown that the distance–
direction-based pairs search is not valid, we considered a search
based on distance alone. However, if direction is not included,
we must assume that the mineral resources on the seamount
slopes are spatially isotropic, which is not consistent with the
exploration data. This further indicates that Kriging with
conventional variograms is not effective in estimating mineral
resources on seamounts and could explain why Kriging has not
previously been effectively applied to estimate mineral resources
on seamounts.

On the basis of the spatial distribution features of cobalt-rich
crust resources on seamount surfaces, we propose the designation
of a generalized 3D surface variable and provide a new distance–
gradient-based variogram experimentation and fitting algorithm
to apply Kriging in estimating mineral resources on seamounts.
Fig. 5. A random variable Z on the 3D surface.
3. 3D surface random variables

In general, Z is used to represent a random variable and a func-
tion of the coordinates. Expressed as Z(x, y, v), it is a vector function
in a typical 3D coordinate system, as shown in Fig. 4. For example,
this random variable can represent the salinity in a 3D ocean
domain u because the determined salinity exists at any point in
the defined domain u. Such a typically defined domain or random
field of 3D variables has not only a length and width but also a
thickness. In other words, they can be continuously evaluated in
the x, y, and v directions. If only the sea surface salinity data are
included, this can be expressed by Z(x, y). If the former is called a
3D random variable, then the latter can be called a 2D random
variable. These two types of spatial data are the 3D and 2D spatial
variables dealt with by the GSLIB package.

If cobalt-rich crust parameters on a seamount slope surface are
taken to be random variables, are they 3D or 2D random variables?
When estimating space variables, some studies treat the water
depth as the vertical coordinate and decide that it is a 3D random
variable (Soleimani et al., 2008; Bonté et al., 2010), whereas other
studies ignore the water depth and treat it as a 2D random variable
defined by geographic coordinates (Nwankwoala et al., 2012). In
our opinion, it is technically neither a 3D nor a 2D random variable
but rather a 3D surface random variable that can be expressed as Z
(x, y, dp). In variogram experimentation, Z(x, y, dp) represents the
thickness data of cobalt-rich crusts on a slope at the geographic
position (x, y) and the water depth dp, as shown in Fig. 5.

In addition to the general characteristics of an ordinary random
variable, a 3D surface random variable in this study has the follow-
ing characteristics.

(1) The defined domain u is a curved surface of a 3D space
(Fig. 5).

Zðx; y; dpÞ 2 ½u : ðxmin 6 x 6 xmax; ymin 6 y 6 ymax;dpmindp 6 dpmaxÞ�

(2) When (x, y) is determined, dp is a unique value that coin-
cides with (x, y).

(3) The expected random variable Z(x, y, dp) does not vary with
position; its spatial variation is decided by both distance and
relative water depth, Ddp, or gradient, g, but is independent
of direction.
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Because the 3D surface random variable in this study is neither
a 3D nor a 2D random variable, conventional variogram experi-
mentation and fitting algorithms are not applicable when
calculating its variogram.

4. Distance–gradient-based variogram

4.1. Experimental variogram

Owing to the assumption of the stationarity of a random vari-
able in GSLIB, we assume that (a) the expectation of a 3D surface
random variable does not vary with the exact position and (b)
the variance of the random variable exists and does not depend
on direction but rather on the spatial distance and relative water
depth (or gradient).

A variogram is conventionally defined as half of the arithmetic
mean of the variance of data pairs defined by the distance–
direction vector h (Fig. 6a), which can be expressed by Eq. (1).
Correspondingly, the variogram of a 3D surface random variable
is defined as half the arithmetic mean of the variance of data pairs
defined by the distance–gradient, which can be expressed by
Eq. (2). These types of data pairs are shown in Fig. 6b. If the rela-
tionship between these data pairs is described by a right-angle tri-
angle and the distance ds is determined, one more parameter,
either the water depth dp or gradient g, is sufficient to define a cer-
tain right-angle triangle, and eventually, the spatial relationship
between the data pairs can be determined. Because dp and g are
equivalent in our definition, we chose to experiment with g in this
study and fit the variogram based on the distance–gradient (ds–g).

rðhÞ ¼ 1
2NðhÞ �

XNðhÞ
i¼1;...;n;j¼1;...;n

½zðxi; yi;v iÞ � zðxj; yj;v jÞ�2 ð1Þ

rðds; gÞ ¼ 1
2Nðds; gÞ �

XNðds;gÞ
i¼1;...n;j¼1;...;n

½zðxi; yi; dpiÞ � zðxj; yj;dpjÞ�2 ð2Þ

Assume that there are n data points, zðxi; yi; dpiÞ; i ¼ 1; . . . ;n.
When the head point zðxh; yh; dphÞ is determined, the end point
zðxt; yt; dptÞ is searched at a certain distance and in a certain gradi-
ent following the steps below.

4.1.1. Calculating the distance and gradient of data pairs

Spatial distance : ds=ht ¼ squrt ðxh � xtÞ2 þ ðyh � ytÞ2 þ ðdph � dptÞ2
h i

Horizontal distance : dsht ¼ squrt ðxh � xtÞ2 þ ðyh � ytÞ2
h i

ð3Þ

Because the horizontal distance is involved in the calculation of
the gradient, the horizontal distance is used in this study as a
distance-measuring parameter instead of the spatial distance.
Therefore, in this paper, distance hereafter refers to horizontal
distances.
Fig. 6. Data pairs in an experimental semi-variogram.
The gradient is defined as

ght ¼
arctan dph�dpt

dsht

h i
� 180:0

p ;dsht–0:0

0:0 ;dsht ¼ 0:0

(
ð4Þ
4.1.2. Statistical distribution and grouping of gradients

Given that there are n experimental points, there are a total of n2
2

gradient data. The maximum gradient is gmax, and the minimum is
gmin. Gradients are divided into three equal-frequency groups: the
high-gradient group (gradient 3), middle-gradient group (gradient
2), and low-gradient group (gradient 1). The boundary gradient
between the high- and middle-gradient groups is gbig , and that
between the low- and middle-gradient groups is gsmall. Three gradi-
ent groups of data pairs submit to following formula, and as illus-
trated in Fig. 7

gradient 3 : gbig 6 g 6 gmax

gradient 2 : gsmall 6 g 6 gbig

gradient 1 : gmin 6 g 6 gsmall

8><
>: ð5Þ
4.1.3. Search distance
The distance search follows the principle described by Deutsch

and Journel (1998). Pairs within a specific lag distance are searched
according to the lag distance and the lag tolerance. The eventual
statistical lag distance is the mean of each group.

4.1.4. Calculating the experimental variogram
For a certain distance ds and gradient g, N(ds, dp) pairs are

obtained, and the variogram is calculated from Eq. (2). The corre-
sponding distance ds and gradient g are the mean distance and
mean gradient of the group. Consequently, the distance-
variogram data of the three gradient groups can be derived.

4.1.5. Experimental variogram diagrams
Fig. 8 shows the distance–gradient-based variogram diagram of

the thickness of the cobalt-rich crusts on the ME guyot. First,
distance-variation scatter diagrams are produced (Fig. 8). Then,
the variogram is preliminarily fitted with artificial curves. Finally,
the mean square deviation c, nugget c0, and range a are estimated
according to the variogram curve, where gradient g is the mean
gradient.

The variogram shown in Fig. 8 is grouped according to gradient
instead of direction. The mean gradients of the three groups are
Fig. 7. Formulae for pairs look for one another based on the distance and gradient.



Fig. 8. Distance–gradient-based experimental variogram.
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1.6�, 5.8�, and 16.1�, respectively, and the corresponding ranges
are 7.5, 5.5, and 4.5 km, respectively. The sill is close to 1.0, and
the nugget c0 is 0.0 for all three groups. Comparisons with the
distance–direction-based experimental variogram (Fig. 3) indicate
that the distance–gradient-based variogram algorithm is more
suitable for mineral resource data on the slopes of seamounts.
Fig. 9. The three experimental points (g, a) and the gradient–range fitted function.
4.2. Theoretical variogram

4.2.1. Range–gradient function
Only when a range is fitted to a continuous gradient function

can it support the fitting of any theoretical variogram and be
applied to Kriging. Gendzwill and Stauffer (1981) and Deutsch
and Journel (1998) attempted to fit the anisotropy of ranges with
spheroidal functions in polar coordinates. However, we attempt
to fit the gradient–range function with the Cartesian coordinate
system and plot the three groups of gradients and ranges
(1.6, 7.5), (5.8, 5.5), and (16.1, 4.5) of the experimental variogram
into the gradient–range Cartesian coordinate system (Fig. 9), in
which the range is virtually inversely proportional to the gradient.

The inverse relationship between the range and gradient
indicates that it is reasonable to use a reciprocal function a ¼ 1

g.

The extended reciprocal function shown in Eq. (6) was used in this
study to fit the range–gradient function.

a ¼ a0 þ p
g þ 1

ð6Þ

where a is a range function with gradient g as an independent self-
variable and a0 and p are the undetermined constants. When gradi-
ent g = 0, the range is a0 + p, and when the gradient is very large, the
range is close to a0. The two undetermined constants a0 and p in Eq.
(6) can be solved when two data points on the curve are known.
Now, we substitute data from the gradient 3 and gradient 1 groups
ðg3; a3Þ; ðg1; a1Þ, respectively, into Eq. (7) to derive the undetermined

constants a0 and P :
p ¼ a1�a3

1
g1þ1� 1

g3þ1

a0 ¼ a1 � p
g1þ1

8<
: ð7Þ

and then substitute Eq. (7) into Eq. (6) to derive the fitted range–
gradient function.

To test the fitness of fitting using this function, we can substi-
tute data from the gradient 2 group, ðg2; a2Þ, into Eqs. (6) and (7)
to derive the theoretical range of this group, a�2, and then compare
the relative error between a�

2 and a2 to see how well the range–
gradient function is fitted. We could also put this group of data
ðg2; a2Þ into the Cartesian coordinate system in Eq. (6) as shown
in Fig. 9 to test whether ðg2; a2Þ falls onto the simulated range–
gradient curve and, therefore, how well the range–gradient
function is fitted.

For the thickness data of cobalt-rich crusts on the experimental
seamount, we substituted data from the gradient 3 and gradient 1
groups, (1.6, 7.5) and (16.1, 4.5), respectively, into Eq. (6) and got
a0 = 4.0 and p = 9.2. The fitted range–gradient function is therefore

aðgÞ ¼ 4:0þ 9:2
g þ 1

ð8Þ

The curve of Eq. (8) is shown in Fig. 9. Then, using the range–
gradient data of the gradient 2 group (5.5, 5.8) as the inspection
point for the function fitting, we substituted gradient 5.8 into
Eq. (8) and derived the theoretical range of 5.4, which is only 0.1
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lower than the experimental range with a relative error of 1.8%.
When we plot (5.5, 5.8) into the range–gradient Cartesian coordi-
nate system, this point falls very close to the theoretical curve. This
testing result indicates that this is a satisfactory fitting function.

4.2.2. Theoretical variogram fitting
The range–gradient extended reciprocal function obtained by

fitting was substituted into the theoretical variogram model,
which, as proposed by Deutsch and Journel (1998), can be a spher-
ical model, an exponential model, or a Gauss model. For this
demonstration, we used the spherical model function.

rðds; gÞ ¼ c � Sph
ds
a

� �
¼ c � 1:5� ds

a � 0:5� ds
a

� �3h i
; if ds 6 a

c ; if ds > a

(

ð9Þ
We substituted Eq. (6) into Eq. (9) and derived the theoretical

distance–gradient variogram as shown in Eq. (10).

rðds; gÞ ¼ c � Sph
ds
a

� �
¼ c � 1:5� ds

a0þ p
gþ1

� 0:5� ds
a0þ p

gþ1

� �3
" #

; if ds 6 a0 þ p
gþ1

c ; if ds > a0 þ p
gþ1

8>><
>>:

ð10Þ

Eq. (10) does not include the nugget effect. a0 and p are undeter-
mined constants derived by fitting the range of the experimental
variogram. If the nugget effect is included, then Eq. (10) is trans-
formed into Eq. (11):

rðds; gÞ ¼ c0 þ ðc � c0Þ � Sph
ds
a

� �
ð11Þ

It may also be transformed into a covariogram:

covðds; gÞ ¼ ðc � c0Þ � 1� Sph
ds
a

� �� �
ð12Þ

In our example, a0 = 4.0, p = 9.2, and c is the sill value or vari-
ance contribution. The calculated experimental variogram of the
seamount test data in our study is 1.0. The fitted variogram in
Eq. (10) is shown in Fig. 10.

The most prominent features of this theoretical variogram are
that it is subjected to the gradient rather than the direction, as
are conventional generalized variables, and that the variogram is
a function of the distance and gradient.

4.2.3. Concerning positive definiteness
It is time-consuming and difficult to test the positive definite-

ness of a particular variogram model (Armstrong and Jabin,
1981), even though a method for testing variograms for positive
Fig. 10. Variogram modeling for different gradients.
definiteness was given by Armstrong and Diamond (1984). This
is one of the reasons why we adopted conventional and reliable
spherical functions to fit the variogram or covariogram. After all,
spherical functions, Eqs. (11) or (12), were used ultimately in the
Kriging equations and insured that the variograms had positive
definiteness, as in other applications.

4.3. Procedure

4.3.1. Test for data stationarity
The stationarity parameter of random variables is tested using a

normal distribution or lognormal distribution hypothesis method.
If the data in the study area are confirmed to have a normal distri-
bution, then they are regarded as approximate random stationary
generalized variables and can be processed with experimental var-
iogram calculations and Kriging estimations.

4.3.2. Gradient statistics
Eq. (4) was used to calculate the relative topographic gradient

between the regional grid nodes in the area to be estimated by
Kriging, as well as the gradient between the station pairs, to extract
the maximum gradient, minimum gradient, mean gradient, and
standard error of the gradient required for gradient grouping.
Water depth data were generally high-accuracy water depth data
acquired by a multibeam sonar sounding system.

4.3.3. Gradient grouping of the experimental variogram
On the basis of Eq. (5) and with reference to the statistical infor-

mation in the topographic gradients, the stations were grouped
according to the three gradient groups.

The low-gradient group (gradient 1) represents the search ori-
entation of the approximate contour. The middle-gradient group
(gradient 2) represents the search orientation of the transitional
gradient between the fathom line and the maximum gradient.
The high-gradient group (gradient 3) represents the search orien-
tation of the approximate topographic gradient. The ranges and
gradients of the gradient 1 and gradient 3 groups were involved
in the fitting of the range–gradient function, and those of the gra-
dient 2 group were used as test data for the fitting effect to verify
the validity of the fitting of the range–gradient function.

4.3.4. Pilot calculation of the experimental variogram
The experimental variograms of each of the three gradient

groups were calculated using the method described in Section 4.1
by adjusting the parameters, lag distance, lag tolerance, gradient,
and gradient range multiple times.

4.3.5. Gradient–range function fitting
Using the method described in Section 4.2, the gradient–range

function was fitted with the experimental gradient and range data
of the gradient 1 and gradient 3 groups. Then, the resulting gradi-
ent–range function was tested with the experimental range and
gradient data from the gradient 2 group. If the result is not satisfac-
tory, the extended reciprocal function, Eq. (6), can be adjusted by
replacing (g + 1) with (g + 1)n, where n can be 1/3, 1/2, 1, 2 or 3.
In our experiment, n = 1. Note that there may be other fitting func-
tions that could provide a better fitting that has not yet been
determined.

4.3.6. Variogram fitting
This is a process that substitutes the gradient–range function

into a spherical model function, an exponential model function,
or any other model function as appropriate, as described in detail
in Section 4.2.
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4.3.7. Testing the variogram fitting effect
The fitting effect of a variogram includes the fitness between

the fitting curve and the test points and the Kriging effect. If the
effect is not satisfied, then return to 4.3.3.
5. The FORTRAN program

5.1. The experimental variogram program

Using the method described in Section 4.1, the variogram pro-
gram GAMV.for in the GSLIB package and its GAMV.INC were mod-
ified. The resulting program and its notes are shown in the
program’s source code. To distinguish it from the original, we
renamed the modified program GAMV-3dsurface.for, as detailed
in Appendix 1. To respect the contribution of the original program,
the modified program was only used for the distance–gradient-
based calculation of the experimental variograms.
5.2. Fitting of the variograms and generation of the covariance matrix

Using the method described in Section 4.2, KB2D.for in the
GSLIB package and its KB2D.INC were modified by rewriting the
subprogram of the covariance matrix and adding an extracted
function module of the water depth. The resulting program and
its notes are shown in the program’s source code. To distinguish
it from the original, we renamed the modified program
kb-3dsurface.for, as detailed in Appendix 2. To respect the contri-
bution of the original program, the modified program was only
used for the distance–gradient-based Kriging calculation of the
variograms.
5.3. Runtime program environment

The computer system environment for the program modifica-
tion and runtime were the Windows 7 system and the Visual
Fortran 6.0 compiler, respectively.
Fig. 11. Statistical histogram of the thickness of the crust on a seamount.
6. Estimating the distribution of cobalt-rich crust thicknesses
on the ME guyot

6.1. Data preparation

6.1.1. Coordinate transformation
The data (lonx, laty) represent the longitude and latitude, which

are transformed into the plane coordinates (x, y). First, the origin of
the coordinate system was selected, which can be the minimum
longitude and latitude of the study area (lat0, lon0). Then, it was
approximately transformed using the following formula:

x ¼ ðlonx� lon0Þ � 1:852� 60:0� cosðlatyÞ
y ¼ ðlaty� lat0Þ � 1:852� 60:0

�

For a more accurate transformation of the coordinates, please
refer to literature related to coordinate transformations (Dutch,
2005).
Fig. 12. Distribution thicknesses of the cobalt-rich crusts estimated using Kriging
with the distance–gradient-based variogram.
6.1.2. Information point data
The information point data are the spatial data to be processed.

For the purpose of our study, the experimental data are the thick-
ness data of the cobalt-rich crusts on the surface of the seamount,
which are saved in a text file called Seamounts.TXT. This file uses
the same format as cluster.dat in the GSLIB package, the x-axis in
km is in column 1, the y-axis in km is in column 2, the water depth
in m is in column 3, and the crust thickness in mm is in column 4.
6.1.3. Data stationarity test
The stationarity of the data is tested in the conventional way. If

the data show a normal distribution, they are considered to be
approximately stationary and can be processed with variogram
experimentation and fitting. If they do not, they may be partially
smoothed as appropriate, or a proper minimum and maximum dis-
tinguished value interval may be specified to remove the outliers.
This feature is performed by the variable limits in line 6 of the
parameter file.

Fig. 11 shows a histogram of the experimental data. As tested by
the normal distribution hypothesis method, the histogram shows a
normal distribution, and the experimental data are therefore con-
sidered to be of a weakly stationary random variable.
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6.1.4. Determining the effective water depth interval
The distribution of cobalt-rich crust resources on seamounts

primarily depends on the stratified structure of the seawater and
the hydro-chemical characteristics. These cobalt-rich crusts are
generally found on seamount flanks and summits at 800–4000 m
water depth; however, this can vary between seamounts. The min-
imumwater depth is generally the platform depth of a guyot or the
minimumwater depth of a conical seamount; the maximumwater
depth is the baseline for the surrounding abyssal sediment plain.
However, the likely maximum water depth for mining a guyot will
be approximately 2500 m, and rugged conical seamounts will not
be mined (Hein et al., 2009). The effective water depth interval is
defined by the maximum water depth dpmax (or dpmax) and the
minimum water depth dpmin (or dpmin) and is determined by
modifying line 7 of gavm.par and line 6 of Kb-3Dsurface.par.
Fig. 13. Scatter plots with the surveying data and its estimated values of the crust thickne
the crust thickness were estimated using three different methods. The point interpolat
minimum number of data points was 3. Average error =

P
abs(surveying data � estimat
6.1.5. Water depth data
The data we processed are those relating to seamount mineral

resources. Variable Z(x, y, dp) is a function of the geographic
coordinate (x, y) and the water depth dp. Water depth data are
indispensable; they appear not only at the existing data points
but also at any position over the entire estimated area.

The water depth data used here were acquired by a multibeam
sonar sounding system and are 100 m � 100 m grid data. The data
are saved in the text file ME.DAT. This data file appears in line 7 of
the parameter file Kb-3Dsurface.par.

For the purpose of Kriging estimation, a geographic coordinate
can be taken anywhere; however, not all points provide water
depth data. In such cases, we can use interpolation to generate
the water depth data at any point from the ME.DAT file data. In
our study, a simple interpolation function was used to derive the
sses in the x and y coordinates, respectively. The 48 locations with surveying data of
ion search radius was 10 km, the maximum number of data points was 9, and the
ed value)/48. Relative Error = 100 * Average error/mean of 48 surveying data (%).
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water depth data. This simple function, get_depth(x,y), is included
in the file 3DSurface.for.

6.2. Estimated value of the cobalt-rich crust thicknesses

The Kriging estimation was performed on a 3 � 3 block in units
of 4472 m � 4472 m square with a horizontal area of 20 km2,
equivalent to the minimum grid unit area required by the Regula-
tions on Prospecting and Exploration for Cobalt-rich Crusts issued
by the International Seabed Authority. With the estimation results,
the resource area was mapped according to the agreement of the
International Seabed Authority. The thickness values of the
cobalt-rich crusts for the 108 grid cells (4472 m � 4472 m) esti-
mated by the modified Kriging method in this paper are shown
in Fig. 12.

6.3. Performance evaluation

Quantitatively evaluating how well the interpolation actually
predicts known values using subsets of the surveying data could
demonstrate that the distance–gradient-based variogram and
Kriging have improved the interpolation method for estimating
cobalt-rich crust thicknesses on seamounts. The forecasting effects
for the method in this paper, the average method, and the inverse
distance weighting (Lu and Wong, 2008) method were used for
interpolations. These three methods were set using the same inter-
polation parameters, i.e., the same search radius and the same
point number of data points. The value of a point that was esti-
mated is not used in the calculation; however, several neighboring
known data points participate in the calculation as information
points. Therefore, each of the 48 locations (subsets of the surveying
data) has two sets of values for the cobalt-rich crust thickness: a
set of known data obtained by surveying and a set of forecasted
values estimated by the spatial interpolation method.The two sets
of values were projected into the 2D coordinate system, and three
scatter plots of the known data and the estimated values were
generated corresponding to the three interpolation methods, as
shown in Fig. 13a–c, respectively. The average error and relative
error, the correlation coefficient between the two sets of values,
and the maximum and minimum values are marked in the figure.
The forecasting effects of three methods are obviously different. Of
the three, the distance–gradient-based variogram Kriging (here
referred to as the Kriging) has the smallest average and relative
errors and the largest correlation coefficient. In all three methods,
the maximums and minimums of the estimated values approached
the means; this reflects the smoothing effect of interpolations. The
smoothing effect of the Kriging method was smaller than that of
the other methods. In this case, the Kriging method is obviously
superior.

Surveying samples are expensive, and location data on sea-
mounts are sparse; therefore, the interpolation method used is
particularly important. A good interpolation effect indicates the
considerable prospects of applying this method.
7. Conclusions

The distribution of mineral resources on seamount slopes is
subjected to water depth and gradients and does not display
spatial zonation like land deposits, which are subjected to linear
structures. The conventional distance–direction-based variogram
algorithm is not valid for mineral resource valuation of cobalt-
rich crusts on seamounts. However, the distance–gradient-based
variogram algorithm presented here was demonstrated to be
effective and could derive better results than the average method
or the inverse-distance weighting method.
Note that many guyots, including those under exploration con-
tracts, are not capped by sediment, and cobalt-rich crusts do occur
on their summits. Because the summits of guyots are not really flat
but consist of stepped terraces, furrows, and low-relief ridges
among other topographic features, the procedures developed here
will be applicable to these guyots as well. In addition, other values
can be estimated using this technique, for example, cobalt concen-
trations can substitute for crust thickness in these calculations.

Improvements in this variogram algorithm might result in the
application of Kriging to mineral resource evaluations or reserve
estimations for cobalt-rich crusts on seamounts. The ranges and
corresponding different slope gradients could provide references
for the design of sampling sites when surveying the seamounts;
in addition, they suggest that the spacing of the sampling sites
should be smaller than the ranges.
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