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a b s t r a c t

Numerical models are widely used for coordinate transformations. However, in most numerical models,
polynomials are generated to approximate “true” geographic coordinates or plane coordinates, and one
polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As
there is a transformation rule between geographic coordinates and plane coordinates, how accurate and
efficient is the calculation of the coordinate transformation if we construct polynomials to approximate
the transformation rule instead of “true” coordinates? In addition, is it preferable to compare models
using such polynomials with traditional numerical models with even higher exponents? Focusing on
cylindrical projection, this paper reports on a grid-based rapid numerical transformation model – a linear
rule approximation model (LRA-model) that constructs linear polynomials to approximate the trans-
formation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical pro-
jection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84
UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-
model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both
forward and inverse transformations; and can be applied to the transformation of a large amount of data
with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in
terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the
widely used hyperbolic transformation model.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Generally, the geographic coordinate system and the plane
coordinate system are two basic coordinate systems in spatial data
storage and expression. Geoscience data obtained by global posi-
tioning systems (GPS), which is the most popular surveying
technique used in the determination of geodetic networks, are
expressed with reference to geographic coordinates. In contrast,
spatial data applied in various industries (e.g., transportation, land
resource management) across many countries are referenced to
plane coordinate systems. Therefore, in many data integration
applications, the original spatial data that users obtain are not
unified in the same coordinate system and a projection transfor-
mation between geographic coordinates and plane coordinates is
ijing 100083, China.
necessary (Zhongming et al., 2013).
On the premise of not involving a coordinate reference datum

transformation, a projection transformation can be performed by
two styles of models: analytical models and numerical models.
Analytical models implement a forward transformation and an
inverse transformation according to a complex nonlinear func-
tional relation between the specific geographic coordinate system
and the plane coordinate system (Zhizhuo, 1990) and have ad-
vantages in terms of accuracy compared to numerical models.
However, the analytical model is not applicable in all circum-
stances, e.g., when reference ellipsoid parameters are unknown or
the analytic projection equations do not exist (Ipbuker, 2002).
Although many approaches to improving execution efficiency have
been proposed, such as using a trigonometric series and Clenshaw
summation (Engsager, 2007), skipping the calculation of the con-
vergence and scale (Karney, 2011), and applying differential op-
erator theory (Liucheng, 2013) or complex-variable functions
(Bowring, 1990), analytical models remain inapplicable in certain
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cases that require high calculation efficiency, e.g., spatial data in-
tegration, where a substantial amount of geographic coordinate
system-based spatial data must be quickly projected to the plane
coordinate system for calculation or display purposes. Numerical
transformation models, which use control points to construct a
polynomial approximation of theoretical coordinates, exhibit var-
ious advantages, such as high efficiency and wide versatility,
without specifically referencing ellipsoid parameters, and they
have been widely used in the aforementioned situations (Yang and
Snyder, 2000). Several universal polynomials are applied in nu-
merical models: binary quadratic equations, binary cubic equa-
tions, biquadratic interpolation equations, etc. As shown experi-
mentally, the form and degree of the polynomial, together with
the distribution and quantity of control points and the transfor-
mation area, influence the accuracy and stability of the projection
transformation (Yang and Snyder, 2000). On this basis, construct-
ing an appropriate numerical algorithm according to the char-
acteristics of the calculation area or the actual requirements of
accuracy and efficiency and thereby realizing an excellent en-
gineering application become an important problem to be solved.
SUN Weixin et al. demonstrate that a quadratic orthomorphic
polynomial is more appropriate than a binary cubic polynomial
and a biquadratic interpolation polynomial for the inverse trans-
formation of a Gauss projection by comparing their calculation
precision and stability (Weixin et al., 2013). The experiment also
shows that the least square method is more accurate than the
direct solution method in terms of solving for these aforemen-
tioned polynomials. Hardy proposes a global multi-quadratic
transformation model and provides a detailed overview of its
applications in geodesy, geophysics, surveying, mapping, photo-
grammetry, remote sensing, signal processing, geography, digital
terrain models and hydrology (Hardy, 1990). Nevertheless, the
accuracy of these numerical models is sensitive to the distribution
and quantity of control points. Cromley proposes a hyperbolic
transformation consisting of two shortened, second-order poly-
nomials and reduces the error uncertainty induced by control
points through the use of a graticule to split the transformation
area (Cromley, 1991). In this approach, each quadrangle of the
graticule is handled as an independent unit, and its four vertexes
are used as control points to solve for the polynomial coefficients.
On this basis, Ozaki et al. improve the solution efficiency of the
hyperbolic function for inverse coordinate transformations using
each variable separately in the approximation process (Ozaki et al.,
2005). Qi et al. apply Cromley's model on a raster map projection
transformation and prove that this model not only satisfies the
precision demand but also greatly improves transformation speed
(Qi et al., 2002). Bildirici compares Cromley's model with Hardy's
model for inverse transformations and concludes that the former
model delivers more accurate results (Bildirici, 2003). Xie proposes
a MULTI-RANK model in which the parametric solution of a first-
order hyperbolic polynomial is amended by cubic and quadratic
polynomials (Xie, 2011). Junhua et al. provide a bi-directional
iteration algorithm for inverse transformations based on an ana-
lysis of the transformation rule between geographic coordinates
and plane coordinates (Junhua et al., 2004). On that basis, a variety
of strategies using computing clusters or GPU have been devel-
oped to accelerate the projection of large geospatial data sets
(Behzad, 2012; Finn, 2012). Jenny gives a recent glimpse at some of
these studies and demonstrates high-performance projection of
raster data in web browsers based on WebGL (Web Graphics Li-
brary) (Jenny, 2015). However, in most numerical models, poly-
nomials are used to fit the approximate numerical relationship
between geographic coordinates and their corresponding plane
coordinates in a local region, without considering the “transfor-
mation rule” (or geometric characteristic) of coordinate transfor-
mation. As there is a transformation rule between geographic
coordinates and plane coordinates, how accurate and efficient is
the calculation if we construct polynomials to approximate the
transformation rule instead of “true” coordinates?

This paper reports on a grid-based rapid numerical transfor-
mation model – a linear rule approximation model (LRA-model)
for cylindrical projection transformation, which forms linear
polynomials to approximate the transformation rule and uses a
graticule to alleviate error propagation. Our experiments on a
cylindrical projection transformation between the WGS 84 Geo-
graphic Coordinate System (EPSG 4326) and the WGS 84 UTM
ZONE 50N Plane Coordinate System (EPSG 32650) with simulated
data demonstrate that the LRA-model is comparatively simple and
stable for any point in space, although it does not exclude sys-
tematic errors due to imperfections in defining the reference el-
lipsoid. Furthermore, the LRA-model is appropriate for both for-
ward and inverse transformations simultaneously because the
inverse equations can be easily derived, and the computational
costs and errors can be reduced compared to the hyperbolic
model.

The remainder of the article is organized as follows: Section 2
provides the details of the LRA-model, including its principles,
polynomials and application process. Section 3 reports on related
experiments using the LRA-model on both forward and inverse
transformations between the WGS 84 Geographic Coordinate
System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Co-
ordinate System (EPSG 32650) with simulated data in three zones
with different latitudes. In addition, this section provides a de-
tailed comparison between the LRA-model and the hyperbolic
model in terms of accuracy, efficiency and stability. Finally, Section
4 discusses and concludes this study. The accuracy and stability of
the LRA-model on azimuthal or conic projections will be tested in
future research.
2. Linear rule approximation model

2.1. Methodology and model development

The earth can be approximated as a rotational ellipsoid, and on
this basis, we can treat “circles” of longitude as a set of ellipses that
share the same semi-major axis, semi-minor axis and symmetry
axis while treating “circles” of latitude as concentric “circles” with
different radii. Lines of latitude and longitude on the ellipsoid
surface are continuous and inerratic curves, and their corre-
sponding projection coordinates are continuous, finite and single
valued in the cartographic region; otherwise the map projection is
meaningless. “Circles” of longitude and “circles” of latitude are
very large, even at high latitudes, and they can be approximated as
straight lines in a small local region. In addition, this trend remains
if we project these two types of “circles” onto a plane map.
Moreover, the international map subdivision of basic scale topo-
graphic maps generally uses partial lines of latitude and longitude
as borders. On one side of the meridian in the Northern Hemi-
sphere, any two arbitrary latitude lines can split longitude lines
into “innumerable” line segments, with the slope of the line seg-
ments relative to the meridian increasing as the distance from the
meridian increases. Similarly, latitude lines can be split bay any
two arbitrary longitude lines, with the slope of the line segment
relative to the equator increasing as the distance from the equator
increases. The slopes of latitude line segments (relative to the
equator) and of longitude line segments (relative to meridian) vary
in the same manner. Therefore, there is an approximate linear
relation between geographic coordinates and plane coordinates
using the premise that the transformation region is sufficiently
small.

Fig. 1 presents the principle of the projection transformation



Fig. 1. Principle of projection transformation based on the Universal Transverse Mercator (UTM) projection.
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base on the Universal Transverse Mercator (UTM) projection. X
and Y represent the axis of the Plane Coordinates System; the X-
axis points to the east and overlaps with the equator, and the Y-
axis points to the north and overlaps with the central meridian.
Projection distortion is symmetrical about the equator and central
meridian with respect to the partial lines of latitude and longitude
and intensifies with increasing distance to the central meridian or
the equator. As shown in Fig. 1, zone “zG” is a small projection
transformation region enclosed by a line of latitude and longitude
on the ellipsoid surface. ∆l and ∆b are the longitudinal extent and
latitudinal extent of zone “zG”; therefore, the four vertexes of the
geographic coordinates of “zG” can be expressed as O ( )b , lo o ,
B ( +∆ )lb , lo o , C ( +∆ +∆ )b lb , lo o and D ( +∆ )bb , lo o , where “b” re-
presents latitude and “l” represents longitude. Zone “zP”, an ap-
proximately rectangular region, is the corresponding projection of
“zG” on a plane map (“zG” and “zP” are not on the same level). For
a representative point in zone “zG”, the change in latitude is the
main factor for the change in the y coordinate, and the x co-
ordinate mainly responds to a change in longitude during the
projection transformation process. In spite of being influenced by
both latitude and longitude, the variation characteristics of the y
coordinate and x coordinate are mainly controlled by the latitude
and longitude, respectively. With the continuous decreasing of ∆l
and ∆b, the segmental arcs OB and OD asymptotically approach a
straight line, and each edge of both zone “zG” and zone “zP” is
nearly parallel to its opposite side. In this case, set point O as the
original point, and for any point M(b , lm m) in zone “zG”, the rela-
tion between the increment of latitude ( −b bm o) and longitude
( −l lm o) corresponding to the geographic coordinate of point
O( )b , lo o and the increment of the x/y coordinate to the plane co-
ordinate of point O( x , yo o) tends to be constantly linear. On this
basis, we have constructed simple polynomials to approximate
this linear relation for the forward transformation, as shown in Eq.
(1).
⎪
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⎩
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According to Eq. (1), (x, y) and (b, l) represent the plane co-
ordinates and geographic coordinates of the point being trans-
formed, respectively, while ( x , yo o) and ( ( )b , lo o are the plane co-
ordinates and geographic coordinates of the original point O, re-
spectively. ∂L, ∂B, θB and θL represent undetermined transformation
coefficients, where ∂L and θB are primary coefficients that play an
important role in constructing the proportional relation between
the two different aforementioned coordinate systems. ∂B and θL are
auxiliary coefficients: ∂B is set to smooth the fluctuation of the y
coordinate caused by the curling of the latitude line with in-
creasing longitude, and θL is set to adjust the variation in the x
coordinate caused by the convergence of the longitude line with
increasing latitude. ∂L and θB are much larger than ∂B and θL. In a
coordinate transformation region such as zone “zG”, because of
the geographic coordinates of the original point O, the longitudinal
extent (∆l) and latitudinal extent (∆b) are known, and the equa-
tions for ∂L, ∂B, θB and θL can be easily derived, as shown in Eq. (2).
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The plane coordinates of O( xo, yo), B( xb, yb) and D( xd, yd) are
previously calculated according to the traditional analytical model
for projection transformations. These undetermined transforma-
tion coefficients can be calculated by substituting the plane co-
ordinates of point O, B and D into Eq. (2), which also illustrates
that the LRA-model cannot be more accurate than the traditional
analytical model. Furthermore, Eq. (3) can be easily derived from



S.-j. Ye et al. / Computers & Geosciences 89 (2016) 44–56 47
Eq. (1) for the inverse transformation.
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Any point in zone “zG” (or zone “zP”) is appropriate in the LRA-
model for projection transformations. We stress that both the four
undetermined transformation coefficients and the coordinates of
the original point O vary with location and with the spatial span of
the coordinate transformation region. In other words, each co-
ordinate transformation region corresponds to a set of coefficients,
which can be calculated according to the location and spatial span
of the region. In addition, the spatial span, including longitudinal
extent (∆l) and latitudinal extent (∆b), is one of the most critical
factors in the transformation error. If the original point O is de-
termined, the transformation error decreases as ∆l and ∆b de-
crease, following a complicated functional relation. Furthermore,
error fluctuations among different locations of the transformation
region cannot be described as a simple linear distribution. It is
important to note that, although Eqs. (1) and (3) are similar to
affine transformation in the expression format, they are deduced
based on our assumption that the increment of geographic co-
ordinates has an approximate linear relationship with the incre-
ment of plane coordinates both lengthwise and crosswise and can
address some problems that affine transformation cannot, e.g.,
identifying where homonymy points should be deployed.

2.2. Grid-based model implementation

The LRA-model has the advantages of high computational ef-
ficiency, ease of use and simple form because projection trans-
formations are performed using linear polynomials. However,
because these polynomials are only suitable for a small transfor-
mation region, how can they be applied to larger areas with the
condition of maintaining a stable error? To solve this problem, we
have referenced grid generation theory, alleviated error propaga-
tion and maintained a stable error using equally spaced lines that
Fig. 2. Details of grid generation
split the entire transformation region into a set of small “rec-
tangle” grids distributed in the form of rows and columns. Fig. 2
presents details of the generation of the “rectangle” grids for for-
ward transformations. In this model, each grid is addressed as an
independent unit. The latitude and longitude of the four vertexes,
together with their relevant plane coordinates, are known for each
grid.

The LRA-model is visually described in Fig. 3. First, the entire
transformation region has been divided into a set of grids by
equally spaced lines, whose interval distance is determined by the
accuracy demands of the specific application. Then, for each grid,
the vertex with the minimum latitude and longitude is set as the
original point, and the plane coordinates of the vertices are de-
termined using the traditional analytical model. On this basis, the
original point of each grid, and the longitudinal and latitudinal
extent, is used to compute transformation coefficients and con-
struct linear transformation polynomials. Then, all coefficients are
imported to a relational database table, whose structure is shown
in Table 1. Finally, for any point to be transformed in the region,
the grid that contains it is sought. The point is then transformed
using the coefficients of the unit that contains it.

In this situation, the efficiency of seeking the grid container and
extracting coefficients significantly impacts the computational
efficiency of the LRA-model. A grid encoding method has been
used to reduce the time spent on database interaction. As shown
in Fig. 2, each grid is encoded in the form of “row number_column
number”. Thus, the grid in the southwest corner of the entire
transformation region is assigned an initial encoding grid with
code “0_0”. Then, the row number and column number con-
tinuously increase by one in the y direction and x direction, re-
spectively. Therefore, the code of the grid that contains the point
to be transformed can be directly calculated according to Eq. (4).
We use a simulated point M in the region as an example, where ′bm
and ′lm represent the latitude and longitude of M, respectively,
while the geographical coordinates for the original point of the
initial encoding grid are expressed as ′bo and ′lo. ∆ ′l represents the
for forward transformation.



Fig. 3. LRA-model process.

Table 1
Structure of data table for storing transformation coefficients.

Grid
Code

Original
Point Lati-
tude (bo)

Original Point
Longitude (lo)

Original
Point X
( xo)

Original
Point Y
( yo)

∂L ∂B θL θB

0_0
… … … … … … … … …
M_N
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longitudinal extent, and ∆ ′b represents the latitudinal extent. “[ ]”
is used to round down the result to the nearest integer. NB and NL

represent the row number and column number, respectively, and
the code of the grid that the point M belongs to is “ _N NB L”. It is
important to note that, in our experiments, ′bm, ′lm, ′bo, ′lo, ∆ ′b and ∆ ′l
can appropriately be measured in minutes (′). For instance,
“120°20′”(longitude) is expressed as “7220′”.
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Supported by this grid generation and encoding strategy, the
LRA-model can be applied to a large area for both forward and
inverse transformations on the premise of maintaining stable er-
rors. In addition, for practical applications, the transformation er-
ror can be limited to meet the specific accuracy requirements by
adjusting the interval distance of the equally spaced lines.
3. Experiments and analysis

3.1. Experimental environment and data

Our experiments are all performed using a transformation be-
tween the WGS 84 Geographic Coordinate System (EPSG 4326)
and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG
32650) in three zones with different latitudes. Because the dis-
tortion of the UTM projection is symmetrical around the equator
and central meridian, we deploy all of the three zones on the same
side of these two symmetry axes. Fig. 4(1) presents the experi-
mental transformation zones in the geographic coordinate system
for forward transformations. The horizontal axis indicates the
longitude, and the vertical axis indicates the latitude. Zone “zG1”,
“zG2” and “zG3” share the same longitudinal extent (3°) and la-
titudinal extent (3°), and the geographic coordinates of their
southwest corner are (114°, 24°), (114°, 34°) and (114°, 44°), re-
spectively. To analyze the error distribution, 3,240,000 simulated
points have been evenly deployed in each zone for the forward
transformation experiment. The distance between adjacent points
is 0.1’. Fig. 4(2) presents the experimental transformation zones in
the plane coordinate system for the inverse transformation. Zones
“zP1”, “zP2” and “zP3” share the same length (300 km) and width
(220 km), and there are 6,600,000 simulated points evenly dis-
tributed in each zone at an interval of 0.1 km.

Using the same computer language (C#), a traditional analysis
model based on a truncated series (TS-model) has been im-
plemented to transform the simulated points, and the transfor-
mation results are considered as “truth values” for the error cal-
culation. All the experiments have been performed on a single
thread in the same software and hardware environment, as shown
in Table 2.

3.2. LRA-model validation

First, during our forward transformation process (Fig. 4(1)),
grids with the same size have been generated in zones “zG1”,
“zG2” and “zG3”. Both the longitudinal extent and latitudinal ex-
tent have been set to 0.5′. Because the number of points and grids
are the same in each zone, we have tested the time elapsed in the
LRA-model by transforming 3,240,000 points only in zone “zG1”. A
traditional analytical model (Karney, 2011) based on a truncated
series (TS-model) was implemented in.NET for comparison. For a



Fig. 4. (1) Experimental transformation zones for forward transformation, (2) Experimental transformation zones for inverse transformation.

Table 2
Software and hardware environment for the experiments.

Parameter name Parameter values

central processing unit Intel Core i7-4900MQ @2.8 GHz (4 cores)
internal storage 16 GB (SUMSUNG DDR3L 1600 MHz)
video memory 4 GB (NVIDIA GeForce GTX 780 M)
operating system Windows 7 SP1�64
development platform Microsoft Visual Studio 2012
programming language C#
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point with latitude b, longitude l and corresponding UTM plane
coordinates x and y, the transformation formula for the TS-model
is shown in Eq. (5). Eo¼500 km and No¼0 km in the Northern
Hemisphere. The scale on the central meridian ko¼0.9996.

α αA, ,1 2… can be solved using Eqs. (8) and (9). 2πA is the cir-
cumference of a meridian; a represents the equatorial radius
( =a 6378. 137km) and n represents third flattening ( = −n f

f2
, with

inverse flattening of =298. 257223563
f
1 ). The first eccentricity is

represented by =
−

e f
f2
. Because the ellipsoidal parameters are

known, α α … n eA a, , , , ,1 2 can be treated as constants in the ex-
periment. The solutions for η′ and ξ′ are shown in Eq. (6), where τ ́
can be figured out using Eq. (7).
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Fig. 5. Coordinates transformation process of the LRA-model and the TS-model.

Fig. 6. Computational time of the LRA-model compared to the TS-model.

Table 3
Maximum error and RMSE of the LRA-model implemented in zones with different
latitudes (for forward transformations).

zone MaxEDa MaxEXb MaxEYc RMSEd

zG1 0.4735802 0.4231424 0.2387306 0.1014944
zG2 0.5142580 0.4087437 0.3386037 0.0943728
zG3 0.5769861 0.3830936 0.4639421 0.1021926

a Maximum distance error (unit: meter).
b Maximum absolute error in the X direction (unit: meter).
c Maximum absolute error in the Y direction (unit: meter).
d RMSE for distance (unit: meter).
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The experiment process is shown in Fig. 5. For the TS-model,
longitude and latitude for each point can be obtained and trans-
formed one by one by computing common parameters such as



Table 4
Maximum error and RMSE of the LRA-model implemented in zones with different latitudes (for inverse transformations).

Zone Model MLONEa RMSELONb MLATEc RMSELATd

zP1 LRA-model 2.7139009E-04 6.6824057E-05 6.4260925E-05 1.6770557E-05
zP2 LRA-model 2.9903019E-04 6.8300955E-05 1.1839086E-04 3.0919979E-05
zP3 LRA-model 3.1504516E-04 7.1717205E-05 1.2816153E-04 3.3546185E-05

a Maximum longitude error (unit: minute (′)).
b RMSE for longitudes (unit: minute (′)).
c Maximum latitude error (unit: minute (′)).
d RMSE for latitudes (unit: minute (′)).

Fig. 7. Grid-based maximum distance error distribution in different zones (forward transformation).
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Fig. 8. Grid-based RMSE distribution in different zones (forward transformation).
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α α …A, ,1 2 . In contrast, for the LRA-model, transformation coeffi-
cients of each grid have been read to memory, and each point has
been assigned to the grid to which it belongs before batch trans-
formation. All the points are then transformed by grid order. In
this manner, points belonging to the same grid can be transformed
with uniform coefficients, and time spent on querying coefficients
can be reduced. To exhibit the performance difference, the number
of points has been expanded to 16,200,000, 32,400,000,
81,000,000, 162,000,000, 243,000,000, and 324,000,000 by re-
plicating all the simulated points (3,240,000) 5 times, 10 times, 25
times, 50 times, 75 times and 100 times. The test results are shown
in Fig. 6.
Then, the coordinate transformation has been performed on

each point of the three zones, and the maximum error (unit:
meter) and RMSE of each zone has been recorded to illustrate
whether the LRA-model is applicable in regions with different
latitudes, as shown in Table 3.

Similar strategies have been used to validate the applicability of
the LRA-model for inverse transformations (Fig. 4(2)). 1*1 km
grids have been generated in zones “zP1”, “zP2” and “zP3”. For
each zone, the LRA-model has been used to transform 6,600,000
simulated points from the plane coordinate system to the



Table 5
Variation characteristics of computation time and maximum error with changing
grid size.

Zone grid size TCa MaxEDb MaxEXc MaxEYd

zG1 0.5′ 2.0741186 0.4735802 0.4231424 0.2387307
1′ 0.8500011 0.6225080 0.5899268 0.2657897
2′ 0.5600008 1.3083931 1.2959844 0.3643282
3′ 0.5000007 2.4431605 2.4384060 0.5338135
4′ 0.4100006 4.1773930 4.1598720 0.7868930
5′ 0.3700002 6.2640316 6.2534498 1.0722386
6′ 0.3080169 8.9787608 8.9625323 1.5101576
9′ 0.3020176 19.8785998 19.8515265 3.0491954
10′ 0.3360187 24.4576273 24.4188515 3.7770157

a Time elapsed (unit: second).
b Maximum distance error (unit: meter).
c Maximum absolute error in the X direction (unit: meter).
d Maximum absolute error in the Y direction (unit: meter).

Table 6
Differences in computation time, maximum error and RMSE between the LRA-
model and the HT-model for forward transformations.

Zone Model TCa MaxEDb MaxEXc MaxEYd RMSEe

zG1 LRA-
model

2.0741186 0.4735802 0.4231424 0.2387306 0.1014944

HT-
model

2.1700027 1.1226630 1.1224094 0.1195130 0.2224501

zG2 LRA-
model

– 0.5142580 0.4087437 0.3386037 0.0943728

HT-
model

– 1.9022587 1.9022587 0.1656884 0.2962586

zG3 LRA-
model

– 0.5769861 0.3830936 0.4639421 0.1021926

HT-
model

– 1.9935788 1.9860823 0.2135783 0.3620850

a Time elapsed (unit: second).
b Maximum distance error (unit: meter).
c Maximum absolute error in the X direction (unit: meter).
d Maximum absolute error in the Y direction (unit: meter).
e RMSE for distance (unit: meter).
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geographic coordinate system. Table 4 expresses the maximum
error (unit: minute) and RMSE of each zone.

As shown in Tables 3 and 4, the LRA-model is stable, con-
vergent and easy to implement and also exhibits significantly
higher coordinate transformation efficiency compared to tradi-
tional analytical models. In the forward transformation process
between the WGS 84 Geographic Coordinate System and the WGS
84 UTM ZONE 50N Plane Coordinate System, the error can be
limited to less than 0.5769862 m across the area at a latitude of
less than 47° (Northern Hemisphere) and a longitude between
114° and 120° (Eastern Hemisphere) based on grids with an in-
terval distance of 0.5′. The maximum distance error increases with
Table 7
Differences in computation time, maximum error and RMSE between the LRA-model an

Zone Model TCa MLONEb

zP1 LRA-model 1.430002 2.7139009E-04
HT-model 1.7900025 2.4553880E-04

zP2 LRA-model – 2.9903019E-04
HT-model – 2.4487138E-04

zP3 LRA-model – 3.1504516E-04
HT-model – 2.5907988E-04

a Time elapsed (unit: second).
b Maximum longitude error (unit: minute(′)).
c RMSE for longitudes (unit: minute(′)).
d Maximum latitude error (unit: minute(′)).
e RMSE for latitudes (unit: minute(′)).
increasing latitude, and this change is mainly caused by the error
in the Y direction because the maximum absolute error in the X
direction tends to decrease, and there is no obvious relation be-
tween the RMSE and the latitude of zones. According to the results
of the inverse transformation experiments in a rectangular region
with an x coordinate between 280,000 and 500,000 (meters) and a
y coordinate between 2,650,000 and 5,150,000 (meters), the
longitude error can be limited to less than 0.00034504517′, and
the latitude error can be limited to less than 0.00012816154′. As
the transformation zone is located farther north, the better
MLONE, MLATE, RMSELON and RMSELAT can be calculated; the
MLATE and RMSELAT are smaller but change more dramatically
compared to MLONE and RMSELON.

Furthermore, to observe the error distribution regularities, we
have referenced the theory of the regionalized variable, where
treated points belong to the same grid as a whole, and computed
their maximum error and RMSE. On this basis, the error dis-
tribution of each zone has been displayed in the form of a two-
dimensional image. Using the forward transformation as an ex-
ample, Fig. 7 presents the maximum error of each grid in zones
“zG1”, “zG2” and “zG3”, and Fig. 8 presents their RMSE distribu-
tion. The domain of values for classification is defined according to
the number of points that belong to it to make the number of
points in each domain of values approximately equal. From the
perspective of grids, the variation in the maximum error is weakly
influenced by the distance from the grid to the equator or central
meridian but is distributed based on a special periodic rule. Fur-
thermore, grids located in the same column have a similar max-
imum error, and this characteristic weakens with increasing lati-
tude. The distribution of the RMSE is clearly influenced by latitude
in areas with low latitudes and tends to be smooth with increasing
latitude.

Adjusting the longitudinal and latitudinal extent of the grid will
affect the accuracy and efficiency of the coordinate transformation.
In theory, for transforming a certain number of points, the calcu-
lation error will increase as the grid size increases, while the
computation time will decrease because the data table records
number decreases, thereby increasing the speed of database in-
teraction. We have studied the variation characteristics of the
computation time and error with varying grid size. Using a for-
ward transformation in zone “zG1” as an example, grid systems
with different interval distances of 0.5′, 1′, 2′, 3′, 4′, 5′, 6′, 9′ and 10′
have been used. Table 5 presents the computation times and the
corresponding maximum errors for transforming 3,240,000 points
using different grid systems. There is an inverse relation between
computation time and grid size, but this relation is weak and fades
as the grid size increases. As the grid size increases, MaxED,
MaxEX, MaxEY all continuously increase, and their corresponding
curves are similar to the curves of exponential functions; namely,
the variations become increasingly higher in magnitude. On the
d the HT-model for inverse transformations.

RMSELONc MLATEd RMSELATe

6.6824057E-05 6.4260925E-05 1.6770557E-05
6.6447702E-05 8.5798205E-05 2.2236854E-05
6.8300955E-05 1.1839086E-04 3.0919979E-05
6.6359297E-05 1.2425255E-04 3.3307111E-05
7.1717205E-05 1.2816153E-04 3.3546185E-05
6.6548633E-05 1.5154557E-04 3.9780336E-05



Fig. 9. Number of points within different distance error ranges (forward transformation in “zG1”).
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premise of keeping the transformation zone unchanged, MaxEX is
shown to be more sensitive to changes in grid size; the variation of
MaxEX is very similar to that of MaxED, while the variation in
MaxEY is smaller and smoother.
3.3. Comparison of models

According to the above experiments, we observe that the LRA-
model exhibits high accuracy and speed for both forward and in-
verse transformations. However, is it preferable to other widely
used numerical models for coordinate transformations, or what is
the advantage of the LRA-model compared to other numerical
models?

In this study, the hyperbolic transformation model (HT-model)
proposed by Cromley (1991) has been selected as a representative
traditional numerical model because it can be directly solved by
four vertices of a “rectangle” grid, and thereby, the error un-
certainty induced by control points can be reduced. The HT-model
has been widely used for both vector data (Bildirici, 2003; Ozaki
et al., 2005) and raster data (Qi et al., 2002); in addition, and most
importantly, it is one of the most commonly used models that set
up polynomials to approximate “true” geographic coordinates or
plane coordinates in a local area.

⎧⎨⎩
= + + +
= + + + ( )

x a b a l a bl a

y a b a l a bl a 10
1 2 3 4

5 6 7 8

The implementation process of the HT-model is similar to the
LRA-model: using equally spaced lines, the entire transformation
region is split into a set of small “rectangle” grids distributed in the
form of rows and columns, each grid is addressed as an in-
dependent unit, and the plane coordinates and geographical co-
ordinates of the four vertices are known for each grid. Two shor-
tened, second-order polynomials are used as forward transfor-
mation equations, as shown in Eq. (10). Using four control points,
the system (Eq. (10)) can be directly solved, i.e., eight coefficients
can be determined. The solution is shown in matrix form in Eq.
(11).
⎡
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T
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Because the inverse equations of Eq. (10) are excessively com-
plicated, we have set up Eq. (12) for the inverse transformation.

⎧⎨⎩
= + + +
= + + + ( )

b a x a y a xy a

l a x a y a xy a 12

1 2 3 4

5 6 7 8

To compare the differences in speed, accuracy and stability
between the LRA-model and the HT-model, the HT-model has
been applied as a substitute for the LRA-model in both forward
and inverse transformations, with the experimental region (Fig. 4),
longitudinal/latitudinal extent of each grid (0.5′) and simulated
point distribution kept the same as those in the LRA-model vali-
dation experiments. Based on the forward transformation result,
Table 6 presents the differences in computation time, maximum
error and RMSE between these two models in three zones with
different latitudes. The computation time, maximum error and
RMSE differences found using the inverse transformation are
shown in Table 7. Furthermore, cumulative percentage histograms
have been used to present the distribution of the point number in
different error ranges, as shown in Fig. 9 and Fig. 10.

As shown in Table 6, the LRA-model exhibits higher computa-
tion speed and stability compared to the HT-model for forward
transformations between the WGS 84 Geographic Coordinate
System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Co-
ordinate System (EPSG 32650). In each zone, both MaxED and
MaxEX can be limited to a significantly smaller range by the LRA-
model. Although the HT-model exhibits a higher accuracy in the Y



Fig. 10. (1) Number of points within different longitude error ranges (inverse transformation in “zP1”), (2) number of points within different latitude error ranges (inverse
transformation in “zP1”).
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direction (MaxEY), the LRA-model is more homogeneous and
more preferable. As shown in Fig. 9, 98.44% of points have a dis-
tance error of less than 0.4 m using the LRA-model, while the ratio
is only 65.03% for the HT-model.

However, the circumstances change with inverse transforma-
tions, as shown in Table 7. First, the LRA-model exhibited a higher
computation speed compared to the other model. Second, the
choice of model depends on the importance of longitude/latitude
error in practical applications because the LRA-model exhibits
higher accuracy and stability on latitude transformations, while
the HT-model is more preferable for longitude transformations.
Third, both of these models have larger errors on longitude
transformations. Finally, as shown in Fig. 10, the longitude error
distributions of these two models are similar, but the LRA-model is
obviously advantageous for the latitude error distribution; e.g.,
98.82% of points have a latitude error of less than 6E-05 with the
LRA-model, while the corresponding percentage with the HT-
model is 78.82%.
4. Conclusion

This paper reports on a grid-based rapid numerical transfor-
mation model – a linear rule approximation model (LRA-model)
for cylindrical projection transformation, which constructs linear
polynomials to approximate the coordinate transformation and
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uses a graticule to alleviate error propagation. Our experiments
with simulated data demonstrate that the LRA-model, even
though it cannot exclude systematic errors due to imperfections in
defining the reference ellipsoid, exhibits high efficiency, high ac-
curacy, and high stability and is simple and easy to use for both
forward and inverse transformations. The LRA-model is appro-
priate for any area with mid or low latitudes, and the transfor-
mation error can be limited to meet the specific accuracy re-
quirements by adjusting the interval distance of the graticule.
Despite its lower exponent, the LRA-model exhibits advantages in
calculation efficiency, accuracy and stability for coordinate trans-
formations compared to the HT-model.

Our study does not involve azimuthal/conic projections or co-
ordinate reference datum transformations. Therefore, further work
will mainly focus on the applicability of the LRA-model to co-
ordinate transformations with azimuthal / conic projections or
changing reference datum and relevant uncertainties. All experi-
ments are based on transformations between the WGS 84 Geo-
graphic Coordinate System (EPSG 4326) and the WGS 84 UTM
ZONE 50N Plane Coordinate System (EPSG 32650), and we will test
the accuracy and stability of the LRA-model using a map projec-
tion on a larger scale. Finally, because different coordinate trans-
formation models exhibit advantages and weakness in terms of
accuracy, the accuracy of the LRA-model can be improved by
adopting the strong points of other models.
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