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The aim of this study is to delineate the different mineralized zones consisting of supergene enrichment
hypogene and oxidation zones in Takht-e-Gonbad porphyry Cu deposit (SE Iran), subsurface data and using
the staged factor analysis (SFA) and concentration–volume (C–V) fractal modeling. Results obtained by SFA re-
veal that Cu andMowere situated in a factor as F1–5which wasmodeled by C–V fractal modeling for separation
of themineralized zones. The supergene enrichment zone obtained by the SFA and C–V fractal modeling contains
1.16% for Cu and 241 ppm forMo.Moreover, the hypogene zone derived via the SFA and C–V fractalmodeling has
Cu andMomean values of 0.65% and 109 ppm. These mineralized zones were correlated with geological models
utilizing logratio matrix which indicate that the obtained zones based on the SFA and C–V fractal model are
consistent with the geological models. The results derived via logratio matrix reveal overlapping between
geological and mathematical models. As a result, combination of the C–V fractal modeling and SFA can be used
to delineate mineralized zones based on multivariate data.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Since 1904, porphyry copper deposits have represented the main
resource/reserve of copper all around the world. This type of deposits
is the most important with respect to high tonnage of ore values for
Cu,Mo, Au and Sn. One of the essential studies on the porphyry deposits
is identifyingmineralized zones particularly supergene enrichment and
hypogene zones (Robb, 2005; Berger et al., 2008; Pirajno, 2009).
Conventional geological methods for detection and recognition of
supergene enrichment and hypogene zones in the porphyry deposits
are based on mineralographical and petrographical studies (e.g., Lowell
and Guilbert, 1970; Cox and Singer, 1986; Berger et al., 2008). However,
statistical analysis and mathematical methods have been utilized to dis-
tinguish mineralized zones since the 1950s (e.g., David, 1970; Davis,
2002). The main aim of statistical analysis, particularly factor analysis,
is to extract a few ‘factors’ to raise the ability of illustrating multivariate
data (Treiblmaier and Filzmoser, 2010; Yousefi et al., 2012, 2014). Staged
factor analysis is one of multivariate statistical techniques which can re-
duce variables (elements) and define paragenetic elements in different
factors (Yousefi et al., 2014).
neering, Faculty of Engineering,
n.
(M.E. Tehrani).
Fractal/multifractal modeling has been widely used in the mineral
exploration and economic geology specifically for the identification of
geochemical anomalies and mineralized zones (e.g., Cheng et al.,
1994; Agterberg, 1995; Li et al., 2003; Zuo et al., 2009; Afzal et al.,
2011; Hassanpour and Afzal, 2013; Rahmati et al., 2014). Several fractal
models have been developed and proposed in geochemical exploration
to separate geochemical populations, e.g., concentration–area (C–A:
Cheng et al., 1994), concentration–distance (C–D: Li et al., 2003), num-
ber–size (N–S: Mandelbrot, 1983) and its 3D form by Sadeghi et al.
(2012), simulated size–number (SS–N: Sadeghi et al., 2015) and con-
centration–volume (C–V: Afzal et al., 2011) based on surface and sub-
surface data. In this paper, the staged factor analysis is used for
reducing factor and defining paragenesis factor for Cu and Mo and uti-
lized the C–V multifractal model for separating various mineralized
zones in Takht-e-Gonbad porphyry deposit, SE Iran, and the results
are correlated with the geological modeling.

2. Methodology

2.1. Staged factor analysis

Multivariate statisticalmethods such as factor analysis supposes that
data have normal (symmetric) distribution; however, geochemical ex-
ploration data never demonstrate a normal distribution (Reimann and
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Filzmoser, 2000; Yousefi et al., 2012; Yousefi and Carranza, 2015a). The
major purpose of the factor analysis is to realize a few and common fac-
tors from multivariate data (Treiblmaier and Filzmoser, 2010; Yousefi
et al., 2012; Yousefi and Carranza, 2015b). The accuracy of the factor
valuemeasurements changes with element concentration; these values
are less accurate at very low and high concentrations (Reimann and
Filzmoser, 2000). The geochemical data distribution are not symmetric
and most of geochemical data are compositional data (Filzmoser et al.,
2009; Yousefi et al., 2012; Yousefi and Carranza, 2015c) which means
that they system in which individual variable are not independent of
each other (Carranza, 2011). Therefore, normalization operation must
be applied to these data. In this paper, the natural logarithm (Ln) was
used for transforming values of multivariate geochemical data in a clas-
sical factor analysis by SPSS v. 23 software. After transformation of geo-
chemical data, standard techniques such as classical estimation of
correlation matrix were used to find the relation between all the vari-
ables. More over principal component analysis (PCA) is utilized to ex-
tract principal components for identifying hidden multivariate data
structures and decreasing the number of variables (Filzmoser et al.,
2009; Yousefi et al., 2012; Gholami et al., 2012). The staged factor anal-
ysis consists of two main phases as follows:

Thefirst phase is for extraction of ‘clean’ factors and the second phase
is for extraction of a significant multi-element zonation signature of the
mineral deposit-type sought to calculate reliable loadings and factor
scores. On the other hand, elements are not situated in any factors should
be rejected for generating clean factors. Each of the main phases of the
staged factor analysismay comprise sub-phases depending on geochem-
ical data and the mineral deposit-type sought (Yousefi et al., 2014).

In this paper,five stages of factor analysiswere carried out to achieve
main multi-element anomalous geochemical data of Takht-e-Gonbad
deposit. These elements are Cu, Mo and Ag and the final stage was
named F1–5. This Stage was used in the C–V fractal modeling for
identifying zones.

2.2. Concentration–volume (C–V) fractal modeling

Afzal et al. (2011) proposed the C–V fractal model for delineation of
mineralized zones and barren host rocks in different ore deposits,
especially in porphyry Cu deposits, this model can be expressed as:

V ρ≤νð Þ∞ ρ−a1;V ρNνð Þ∞ ρ−a2 ð1Þ

where V (ρ ≤ ν) and V (ρ N ν) indicate volumes (V) with concentration
values (ρ) smaller and greater than contour values (ν), respectively, a1
and a2 are characteristic exponents.

Differentmineralized zones in the ore deposits (Cu porphyry deposit
in this scenario) have fractal properties and are defined by power law
relationships between their ore element concentrations and volumetric
extensions. Represented breakpoints in C–V log–log plots of concentra-
tion values versus volumes separate geochemical populations by
threshold values. Breakpoints in the log–log plots outlined various
populations of geochemical concentration values representing different
lithological and mineralogical zonation.

3. Geological setting of the study area

3.1. Regional geology

The Takht-e-Gonbadporphyry Cu deposit is situated about 70 kmNE
of the Sirjan city, SE Iran. Most of the Cu porphyry deposits of Iran
occurred in the Cenozoic Urumieh–Dokhtar magmatic belt which is
one of the subdivisions of the Zagros orogenies (Alavi, 1994; Dargahi
et al., 2010; Asadi et al., 2014). These are particularly revealed in the
SE arc segment which is referred to Kerman Cenozoic magmatic arc
(KCMA) with 450 km length and 60–80 km width (Fig. 1: Shafiei
et al., 2009; Asadi et al., 2014). The KCMA is situated on the western
boundary of the Central Iranian block with calc-alkaline intrusive
rocks (stocks) association (Asadi et al., 2014).

The Takht-e-Gonbad deposit is located on the center and south of
KCMA as (Fig. 1).The initial exploration was started in the 1970s by
Yugoslavian geologists and the result was impregnation tuffs as host
rocks (Geological Survey of Iran, 1973). Based on the geological map
of Takht-e-Gonbad deposit, Eocene volcanic–pyroclastic rocks and
Neogene sediments such as carbonate units are the main rocks in the
deposit (Fig. 1). Phyllic, argillic, propylitic, silicic and carbonate
alteration zones were resulted in the Miocene granodiorite intrude to
Eocene volcanic–pyroclastic rocks. Phyllic alteration is the main
alteration type and is accompanied by hypogene zone in the Takht-e-
Gonbad deposit. The region surrounding the deposit is tectonically
active and most of the faults occurring in this deposit are affected by
Nain–Baft fault (Hosseini, 2012: Fig. 1).

3.2. Mineralization and alteration

Mineralization in the KCMA occurred in quartz stockworks, veins
and as spread sulfides in both the host stock and surrounding the
older volcanic and pyroclastic rocks (e.g., Shafiei et al., 2009; Asadi
et al., 2014). At Takht-e-Gonbad deposit, oxide, hypogene and imma-
ture supergene zones have been developed. The supergene enriched
zone is distinguishedmainly by chalcocite and covellite. This zone varies
in thickness from 10 to 50 m (Hosseini et al., 2011; Hosseini, 2012).

Hypogene ore at Takht-e-Gonbad consists of pyrite, chalcopyrite and
minor magnetite and molybdenite. The hypogene ore of economic
grade has been traced for about 150 m below the oxide ore (Hosseini,
2012: Table 1). One of the important features of the deposit area is the
N–S fracturing system which appears as late barren dykes and breccia
pipes (Taghipour et al., 2008; Hosseini et al., 2011; Asadi et al., 2014).
Hydrothermal alteration at Takht-e-Gonbad was distinguished by an
extensive phyllic assemblage and irregular zones of propylitic and
calc-silicate assemblages. Copper mineralization in the deposit is
associated mainly with phyllic alteration zone. Maximum Cu grade is
higher than 5%, however, it is rare, based on the logging and analysis
of the drill cores.

4. Discussion

In this study, 39 drilled boreholes data including collar coordinates,
azimuth, orientation (dip), lithology, alteration and mineralogy were
used to create the 3D geological modeling, and also, the zonation,
alteration, lithology and mineralization models were generated by
RockWorks™ v.15 software package (Fig. 2). Based on the geological
modeling, phyllic alteration zone, the granodiorite rocks and hypogene
zone are expanded in the area and chalcopyrite is themajor ore element
in the deposit. From the drilled boreholes, 2830 lithogeochemical
samples were collected and analyzed by ICP-AES for Cu, Mo, Ag, Cd,
Co, Cr, Fe, Mo, Ni, Sb, Mn and Zn. Distribution of Cu and Mo were not
normal. Therefore, natural logarithm transformer was applied to trans-
form data distribution to symmetric the F-1–5 in the geostatistical and
fractal modeling. The experimental semi-variogram for F1–5 data in
the Takht-e-Gonbad deposit is demonstrate a range, nugget effect and
spatial variance of 81 m, 0.418 and 0.536 %, respectively built up by
Datamine Studio software (Fig. 3).

4.1. Application of staged factor analysis

In factor analysis, a threshold value for minimum loading criterion
for elemental variables should be selected between the ranges of 0.3
to 0.6 in order to reduce the errors of the calculation of the scores
(Fabrigar et al., 1999; Davis, 2002; Filzmoser et al., 2009). Consequently,
the absolute value of 0.5 will be a medium loading value (Treiblmaier
and filzmoser, 2010; Yousefi et al., 2012, 2014). In this study, 0.6was se-
lected for the minimum loading criterion. The classical principal factor



Fig. 1. a) Cenozoic Urumieh–Dokhtarmagmatic belt of Iran and distribution size of Iranian porphyry Cu deposits and landscapeswithMoho depth and crustal thickness (km) in the KCMA
(Asadi et al., 2014). b) Geological map of Takht-e-Gonbad deposit (Hosseini, 2012).
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analysis for extracting the common factors was applied within varimax
method (Kaiser, 1958). Thismethod used for rotated factorswith eigen-
valuesmore than 1 for interpretation, utilized staged factor analysis and
achieved stages to extract clean factor (common and more existing
elements) of the Takht-e-Gonbad deposit (Table 2). In the first stage
Table 1
Petrographical, mineralogical and alteration particulars of the Takht-e-Gonbad porphyry
deposit.

Rock types Ore minerals Alteration

Major: Major: Phyllic (major)
Granodiorite Chalcopyrite Calc-silicate

Minor: Minor: Propylitic
Quartz monzonite Bornite, Pyrite
Tonalite Argillic (supergene)
of factor analysis, several elements are not in contact with any factor
with due attention to select threshold value for loading were excluded
from the data set which are noise elements or geochemical noise that
are not in any groups (factors). After excluding noise elements, the
second stage of factor analysis was executed on the remaining data to
build new factors. If there are some elements not associated with any
factors, those are excluded from the data set. Additionally, third stage
was executed because all noise elements were rejected and clean factor
were generated (Yousefi et al., 2014).

In the first stage of factor analysis, five factors were separated
(Table 2). Factor 2 represents Ag, Cu and Mo association which is the
main factor based on the main ore elements. After five stages of factor
analysis, factor 5–1 is the clean factor and perform in componentmatrix
because only one component was extracted and the solution could not
be rotated. The other factors were rotated and shown in rotated



Fig. 2. a) Alteration, mineralization, lithology and fence lithology 3D models, b) zonation models and c) borehole location of Takht-e-Gonbad deposit.
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Fig. 3. The experimental semi-variogram for F1–5 data in the studied deposit.

Table 2
Rotated factor matrix for five stages of staged factor analysis.
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Fig. 5. Log–log plot of volume versus F1–5 values in Takht-e-Gonbad deposit.
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component matrix (Fig. 4).The component plots in the rotated space
denote elements that exist in each stage of factor analysis and in the
residual and major elements placed near each other are similar in the
fourth and fifth stages. As a result, Cu, Mo and Ag are similar and are
paragenesis elements in factor 5–1.

4.2. Application of C–V fractal modeling

Results obtained by SFA revealed that Cu and Mo are situated in a
factor as F1–5. Therefore, F1–5 was selected for fractal modeling. The
distribution of F1–5 is near to normal with mean value of 0.048. Based
on the geometrical properties and grid of the borehole dimensions,
the Takht-e-Gonbad deposit was modeled by 10 × 10 × 10 m voxels
(David, 1970). F1–5 values were estimated using ordinary kriging
(OK) based on the variographyparameters, as depicted in Fig. 3. Thresh-
old values of F1–5 were determined in the C–V log–log plot as
breakpoints (Fig. 5), which reveals a power–law relationship between
F1–5 concentrations and volumes occupied. Breakpoints represent
threshold values on the log–log plot. Four breakpoints exist in the C–V
log–log plot (Table 3). Supergene enrichment and hypogene zones are
Fig. 4. Component plots in rotated spa
considered with F1–5 values N1.26 and 0.63–1.26, respectively. The
range for oxidation and leached zones are 0.32–0.63 and 0.16–0.32,
based on the C–V fractal modeling.
ce by five stages of factor analysis.



Table 3
Ranges of F1–5 values for mineralized zones in Takht-e-Gonbad
deposit defined from the C–V fractal model.

Zones Range F1–5

Barren host rock b0.16
Leached 0.16–0.32
Oxide 0.32–0.63
Hypogene 0.63–1.26
Supergene N1.26

Fig. 6. Different mineralized zones based on C–V fractal modeling and staged factor analys
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5. Correlation between results obtained from C–V fractal modeling,
staged factor analysis and geological characteristics

Results of C–V model were correlated with the 3D geological zona-
tion model of the deposit (Fig. 3). The results generated by the fractal
model were controlled by mineralogical investigations, XRD and SEM.
Oxide, hypogene and enrichment supergene mineralized zones were
characterized by C–V modeling (Fig. 6). Carranza (2011) provided a
method for calculation of overlap correlations between two binary
is (F1–5) consisting of: a) oxidation b) hypogene and c) supergene enrichment zones.



Table 7
Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively), resulted from
geological model and supergene zonation mineralized zone obtained through C–V fractal
modeling of F1–5 data.

Geological model (zonation)

Inside zone Outside zone

C–V fractal model
of Supergene zone

Inside zone 7 (A) 10 (B)
Outside zone 3322(C) 15059 (D)

Type I error 0.99789726 Type II error
0.0006636

Overall accuracy
0.81889335

Table 8
The means of Cu and Mo concentration in each zone identified by log–log plot of F1–5.

Range F1–5 Average of Cu (%) Average of Mo (ppm)

0.15–0.31 0.38 69
0.31–0.63 0.53 68
0.63–1.25 0.65 109
N1.25 1.16 241

Table 4
Matrix for comparing performance of fractal modeling results with geological model. A, B,
C, and D represent numbers of voxels in overlaps between classes in the binary geological
model and the binary results of the fractal models (Carranza, 2011).

Geological model

Inside zone Outside zone

Fractal Model Inside zone True positive (A) False positive (B)
Outside zone False negative (C) True negative (D)

Type I error C / (A + C) Type II error
B / (B + D)

Overall accuracy
(A + D)/(A + B+ C+ D)
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models by a logratio matrix. An intersection operation between results
of the fractalmodel and different zones in the geologicalmodelwas per-
formed to obtain numbers of voxels corresponding to each of the four
classes of overlapped zones (Table 4). Type I error (T1E), Type II error
(T2E), and overall accuracy (OA) of the fractal model were estimated
with respect to the zonation model, based on the fractal and geological
block models (Nazarpour et al., 2014).

Correlation between the results obtained by the C–V fractal model
and the zonation model derived via geological model show that the su-
pergene enrichment zone has more OA (0.81) comparedwith the other
zones. Additionally, overall accuracies of the oxidation and hypogene
mineralized zones are 0.79 and 0.80, respectively, as depicted in
Tables 5 to 7.

The means of Cu and Mo values in each resulted supergene enrich-
ment zone identified by log–log plot of F1–5 are 1.16% for Cu and
241 ppm for Mo (Table 8). The hypogene mineralized zone derived
via staged factor analysis and C–V fractal modeling has Cu and Mo
mean values of 0.65% and 109 ppm (Table 8).
6. Conclusions

Results obtained by combination of the C–V fractal modeling and
SFA show that the hybrid method is properly utilized for determination
of different mineralized zones based on the relationship between the
factor values (F1–5 including Cu, Mo and Ag in this scenario) enclosed
Table 5
Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively), resulted from
geological model and oxide zonation mineralized zone obtained through C–V fractal
modeling of F1–5 data.

Geological model (zonation)

Inside zone Outside zone

C–V fractal model
of Oxide zone

Inside zone 82 (A) 447 (B)
Outside zone 3247(C) 14622 (D)

Type I error
0.975368

Type II error
0.029664

Overall accuracy
0.799217

Table 6
Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively), resulted from
geological model and hypogene zonation mineralized zone obtained through C–V fractal
modeling of F1–5 data.

Geological model (zonation)

Inside zone Outside zone

C–V fractal model
of Hypogene zone

Inside zone 6 (A) 285 (B)
Outside zone 3323(C) 14784 (D)

Type I error
0.998198

Type II error
.018913

Overall accuracy
0.803892
volumes. Moreover, this method is applicable in the Takht-e-Gonbad
Cu–Moporphyry deposit based onmulti-elemental data. The supergene
enrichment zone contains F1–5 ≥1.26, Cu ≥1.16% and Mo ≥241 ppm.
Moreover, different mineralized zones can be recognized via the C–V
fractal modeling and SFA. The hybrid method utilizes the relationship
between the factor values which includes paragenesis ore elemental
concentrations and enclosing volumes for example the values of F1–5
in this scenario (Cu, Mo and Ag) associated with various zones, and sat-
isfies power–law relationships. This method can be applicable to results
of factor analysis in differentmulti-elemental porphyry deposits such as
Cu–Mo or Cu–Au for which the spatial patterns of concentration values
satisfy a multifractal model.

The supergene enrichment, hypogene and oxidation zones delineat-
ed via the SFA andC–V fractalmodelwere correlatedwith geological zo-
nation models due to the application of logratio matrix. Based on the
OAs, the overlapping between the results obtained by the SFA and C–
V fractal modeling with geological data are higher than 80% which re-
veals that the hybrid method is proper for outlining of mineralized
zones in the porphyry deposits.
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