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Themain aim of this study is the identification of potassic, phyllic and propylitic alteration zones in the hypogene
zone of the Sungun Cu porphyry deposit (NW Iran) based ondrillcore data, utilizing sequential geostatistical sim-
ulation (SGS) and concentration–volume (C–V) fractal model. C–V log–log plots were generated for the results
obtained by 10 realizations and the average of those realizations (E-type) which was used for the determination
of Cu threshold values for the alteration zones. Based on correlation between geological models and the results
derived via SGS and C–V fractalmodeling by log ratiomatrix, the propylitic zone has Cu values b0.005% as a result
of simulation numbers (sims) 1, 5 and 9 with overall accuracy (OA) of 0.94. Additionally, the phyllic alteration
contents of Cu values between 0.25% and 0.63%with OA of 0.70 are delineated by E-type.Moreover, a correlation
between C–V fractal modeling of realizations and the potassic alteration zone derived via the geological model
reveals that this alteration zone has Cu values higher than 2.23% (sims 1, 5 and 9) with OA of 0.816. The results
of this research reveal that phyllic alteration due to having many existing geological samples with the grades
close to the average ore grade (0.44%) of the Sungun deposit has a proper overlapwith E-type; however, potassic
and propylitic alterations containing the highest and lowest ore grades have a strong overlapwith sims 1, 5 and9.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Different alteration patterns and their spatial variability have vital
roles in grade distribution within an ore deposit. In the other hand,
the grade variability would be affected by rock type and alteration
changes. For better understanding of these grade dependent processes,
it is very important to predict the spatial distribution of the gradewithin
the desired ore deposit (Asghari and Hezarkhani, 2008). Conventional
methods to distinguish alteration zones in hydrothermal deposits are
based on mineralogical, petrographical and geochemical investigations
including assemblages of minerals and oremineral recognition utilizing
thin sections, X-Ray Diffraction (XRD), Electron Probe Micro Analyzer
(EPMA), Scanning Electron Microscopy (SEM) and Portable Infrared
Mineral Analyzer (PIMA: e.g., Berger et al., 2008; Chouinard et al.,
2005; Cox and Singer, 1986; Hedenquist et al., 2000; Hoefs, 2009;
Lowell and Guilbert, 1970; Pirajno, 2009; Richards, 1995; Sillitoe, 1997).

Geostatistics has been used for spatial variability characterization
and prediction of grade over the last three decades. Ordinary kriging
(OK) is the most useful geostatistical estimation technique which is
also called the “best linear unbiased estimator” (Isaaks and Srivastava,
1989; Journel and Huijbregts, 1978). Themost important negative char-
acteristics of moving average estimators such as kriging are smoothing
effect and reducing the range of variation of the variables. Geostatistical
simulation is widely used to overcome this problem and avoiding the
smoothing effect of such estimation methods (Chilès and Delfiner,
2012).

Geostatistical stochastic simulations have the ability not only to esti-
mate the spatial distribution of the regionalized variable but also to as-
sess both local uncertainty and spatial uncertainty about the estimates
(Deutsch and Journel, 1998; Goovaerts, 1997). Conditional stochastic
simulation is designed initially to overcome the smoothing effect
of kriging estimator especially when mapping sharp or extreme
spatial discontinuities are to be found (Deutsch and Journel, 1998;
Leuangthong et al., 2004).

The simulation algorithms take into account both the spatial
variation of actual data at sampled locations and on the other hand,
the variation of estimates at unsampled locations (Delbari et al.,
2009). Itmeans that stochastic simulation reproduces the sample statis-
tics (histogram and semi-variogrammodel) and honors the sample data
at their original locations. Therefore a stochastic simulation map repre-
sents the spatial distribution of a more realistic attribute than a kriged
map (Asghari and Madani Esfahani, 2013; Rezaee et al., 2013).
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Many stochastic simulation algorithms have been proposed and
among them Sequential Gaussian Simulation (SGS) is widely used be-
cause it is fast and straightforward in reconstructing conditional cumu-
lative distribution function (CCDF: Chen et al., 2013; Geboy et al., 2013;
Maleki Tehrani et al., 2012; Manchuk and Deutsch, 2012a, 2012b).

In most interpolation algorithms such as OK, the aim is to provide
the “best” local estimation of the variableswithout consideration of spa-
tial conditions. The whole point of geostatistical simulation is to repro-
duce the variance of the input data, both in a univariate (histogram)
and spatial (variogram) sense. Consequently, simulations provide an
appropriate platform to study any problem relating to variability
(Goovaerts, 1996).

Kriging is used for the local set of data and conditional statistics as an
interpolation method which gives a simple numerical method in the
sense of local precision. Simulation provides several alternatives but
equally probable models all of which are the “best” reflection of the re-
ality in a certain global sense. The differences between the realizations
offer an opportunity for measuring the spatial uncertainty (Goovaerts,
1996; Ravenscroft, 1994).

The geostatistical simulation methods employ simple kriging at
a voxel to estimate the posterior mean and variance, with random
sampling of the posterior distribution to create a realization at the
corresponding voxels (Dimitrakopoulos and Luo, 2004; Ravenscroft,
1994).

Fractal/multifractal modeling, established originally by Mandelbrot
(1983), has been widely applied for separating the different geologi-
cal/mineralization processes. Variation of geochemical and mineraliza-
tion processes can be explained based on differences in fractal
dimensions obtained from analysis of relevant geochemical data (Afzal
et al., 2011, 2012; Cheng et al., 1994; Goncalves et al., 2001; Sim et al.,
1999; Wang et al., 2011; Yasrebi et al., 2013). Models of fractal/
multifractal analysis also serve to reveal the relationships of geological,
geophysical, geochemical and mineralogical settings with spatial infor-
mation derived via analysis of mineral deposit data (Afzal et al., 2011;
Carranza, 2009; Daneshvar Saein et al., 2012; Goncalves et al., 2001;
Gumiel et al., 2010). However, good knowledge of geological environ-
mental controls on mineralization (e.g., alteration zones) is important
in the identification and classification of geochemical populations
based on fractal/multifractal models (Afzal et al., 2011, 2013; Arias
et al., 2012; Carranza and Sadeghi, 2010; Cheng, 1999; Delavar et al.,
2012; Li et al., 2003; Sadeghi et al., 2012; Sim et al., 1999; Yasrebi
et al., 2013; Zuo, 2011; Zuo et al., 2009).

Fractal dimensions in geological andmineralization processes corre-
spond to variations in physical characteristics such as rock type, fluid
phase, alteration zones, vein density or orientation, and structural fea-
ture or dominant mineralogy (i.e., Afzal et al., 2011; Sim et al., 1999).
In recent years, fractal/multifractalmodeling has been utilized for delin-
eation of mineralized zones in different types of ore deposits such as
number–size (N–S: Mandelbrot, 1983), size–grade (S–G: Agterberg,
1995), concentration–volume (C–V: Afzal et al., 2011), power
spectrum–volume (P–V: Afzal et al., 2012) and concentration–number
(C–N: Hassanpour and Afzal, 2013).

Different geochemical processes can be defined based on variations
in fractal dimensions derived via analysis of relevant geochemical
data. Fractal dimensions in geological and geochemical processes corre-
spond to differences in physical characteristics such as lithology, vein
density or orientation, fluid phase, alteration phenomena, and structur-
al feature or dominant mineralogy (Afzal et al., 2011; Sim et al., 1999;
Yasrebi et al., 2013). Conventionalmodels based upon geological studies
and analysis of cores fromboreholeswith the purpose of delineating the
mineralized zones do not have a high efficiency in the ore deposits
especially in the porphyry deposits. The fractal/multifractal modeling
has a distinctive power to distinguish the natural populations like differ-
ent ore grades within a deposit (Yasrebi et al., 2013).

In this paper, Sequential Gaussian Simulation (SGS) and C–V
fractal modeling were utilized for delineating various alteration zones
(potassic, phyllic and propylitic) based on Cu values in the hypogene
zone of Sungun Cu porphyry deposit, NW Iran.

2. Geological setting

Main porphyry copper mineralization in Iran occurs in the Cenozoic
Sahand–Bazman orogenic belt (Fig. 1). The Sahand–Bazman belt was
formed by subduction of the Arabian plate beneath central Iran during
the Alpine orogeny. Subduction caused extensive alkaline and calc-
alkaline volcanic and plutonic igneous activities, including intrusion of
a porphyritic calc-alkaline stock at Sungun during Miocene times
(Berberian and King, 1981; Dargahi et al., 2010; Mehrpartou, 1993).

The Sungun porphyry copper deposit (PCD) is located about 100 km
NE of Tabriz, NW Iran (Fig. 1). The Sungun deposit is hosted by diorite/
granodiorite to monzonite/quartz–monzonite stocks (Hezarkhani,
2006; Mehrpartou, 1993). The porphyry stock II (which is studied in
this research) hosts the Sungun PCD and varies in composition from
quartz monzonite through granodiorite to granite. Four series of dikes
injected lately varying in composition from quartz monzodiorite to
granodiorite intersect the Sungun stocks (Calagari, 2004).

The NNW–SSE trending dykes dip steeply to the west and have
thickness from a few centimeters to several tens of meters (Fig. 1:
Asghari et al., 2009; Rashidinejad et al., 2008).

3. Alteration and mineralization

Different alterations and related mineralization in the Sungun PCD
have been studied by geological investigations (Asghari et al., 2009;
Hezarkhani, 2006; Mehrpartou, 1993). Hydrothermal alteration and
mineralization at Sungun are centered on the porphyry stock II. An
early hydrothermal alteration was dominantly potassic and propylitic,
and it was followed later by phyllic and argillic alterations (Asghari
et al., 2009; Hezarkhani and Williams-Jones, 1998).

3.1. Potassic alteration

The earliest alteration is represented by potassic mineral assem-
blages developed pervasively and as halos around veins in the deep
and central parts of the Sungun stock. Potassic alteration is character-
ized by the occurrence of K-feldspar and displays a close spatial associ-
ation with copper and molybdenum mineralization (Hezarkhani et al.,
1999; Mehrpartou, 1993).

3.2. Phyllic alteration

Phyllic alteration is characterized by the replacement of almost all
rock-forming silicates by sericite and quartz and overprints the earlier
formed potassic. Pyrite forms up to 5 vol.% of the rock and occurs in
veins and disseminations. Quartz veins are surrounded by weak sericitic
halos. Vein-hosted pyrite is partially replaced by chalcopyrite. Silicifica-
tion was synchronous with phyllic alteration and variably affected much
of the stock and most dikes (Asghari et al., 2009; Hezarkhani, 2006).

3.3. Propylitic

Propylitic alteration is characterized by the chloritization of primary
and secondary biotite, amphibole and groundmass materials in rocks
peripheral to the central potassic zone. Minor minerals associated
with propylitic alteration are albite, calcite, sericite, anhydrite
(gypsum), and pyrite. The propylitic type of alteration is restricted to
peripheral porphyry stocks and some dike series (Calagari, 2004).

3.4. Argillic

Within some areas, 80 m of the erosional surface of the entire
rock has been altered to an assemblage of clay minerals, hematite
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Fig. 2. Histogram of the raw (a) and normal score transformed (b) data.

Table 1
Basic statistics of Cu raw data (n = 19,605) and output grid for different realizations,
E-type and ordinary kriging.

Range (%) Min (%) Max (%) Mean (%) Var (%2) Skewness

Raw data 6.999875 0.000125 7 0.445 0.226 1.47
sim 1 5.5103 0.0002 5.5 0.47 0.245 1.354
sim 2 6.1 0 6.1 0.46 0.234 1.331
sim 3 6.7997 0.0003 6.8 0.47 0.237 1.237
sim 4 6.299 0.001 6.3 0.46 0.226 1.196
sim 5 6.5996 0.0004 6.6 0.45 0.22 1.232
sim 6 6.699 0.001 6.7 0.48 0.243 1.224
sim 7 5.2999 0.0001 5.3 0.46 0.246 1.475
sim 8 5.4998 0.0002 5.5 0.46 0.236 1.4
sim 9 4.4995 0.0005 4.5 0.48 0.243 1.277
sim 10 3.3995 0.0005 3.4 0.46 0.232 1.239
E-type 2.0775 0.0025 2.08 0.44 0.063 0569
Kriged 4.11 0 4.11 0.46 0.232 0.29
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and quartz but feldspar is altered to clay locally to a depth of about
400 m. A shallow level of alteration is interpreted to represent a su-
pergene blanket over the deposit and the deeper clay alteration of
feldspar may represent an advanced argillic stage of the hypogene al-
teration. Most samples taken from argillic alteration averaging 0.09%
Cu content demonstrate that this barren zone could be assumed as
waste from an exploitation point of view (Asghari et al., 2009).

3.5. Supergene enrichment

Two distinct supergene enrichment mineralized zones are recog-
nized at Sungun (1) oxidized and leached zone and (2) supergene sul-
fide zone. The thickness of the supergene zone is non-uniform and it
could be seen that the eastern part contains higher thickness and Cu
grade compared to the western part. This can be structurally controlled
by numerous NEE and NWW-trending faults. Meteoritic water leaches
the copper from the oxide zone and while passing the faults beneath
the water table, precipitates the copper in the form of native copper
and secondary sulfides. Supergene enrichment zone determined by
geological studies indicates the presence of chalcocite, chrysocolla,
azurite, malachite and digenite (Asghari et al., 2009; Parsolang report,
2006).

3.6. Hypogene zone

Hypogene copper mineralization was introduced during potassic al-
teration and to a more extent during phyllic alteration (Asghari and
Hezarkhani, 2008). During potassic alteration, the copper mineraliza-
tion was deposited as chalcopyrite and minor bornite; later hypogene
coppermineralization depositedmainly chalcopyrite. Alteration of feld-
spars and biotite (from potassically altered rocks) was accompanied by
an increase in sulfide content outward from the central part of the stock.
The maximum Cu grade is associated with biotite, orthoclase, and
sericite (potassic zone) while the pyrite content is highest (3–10 vol.%
of the rock) in the marginal quartz–sericite (phyllic) zone (Hezarkhani
and Williams-Jones, 1998).

4. Methodology

4.1. Sequential Gaussian Simulation (SGS)

Sequential simulation is a stochastic modeling algorithm that ob-
tains multiple realizations based on the same input data (Geboy et al.,
2013; Journel, 1993). This data could be either continuous or
Fig. 1. Geological map of the Sungun PCD and its location in the Sahand–Bazman belt which sh
outline of the mineralized zone (modified from Asghari et al., 2009 and Hezarkhani, 2006), dy
having the highest density of drill holes was selected for this study).
categorical. Regarding thedata type, sequential indicator simulation, Se-
quential Gaussian Simulation (SGS: Isaaks and Srivastava, 1989; Qu
et al., 2013) or direct sequential simulation will be used.

The most straightforward algorithm for generating realizations of a
multivariate Gaussian field is provided by the sequential principle
(Leuangthong et al., 2004; Manchuk and Deutsch, 2012a, 2012b). SGS
demands standard Gaussian data with zero mean and unit variance, so
for SGS, data are transformed to be Gaussian through a quantile trans-
formation (Chilès and Delfiner, 2012). Each variable is simulated se-
quentially according to its normal CCDF through a simple kriging
ows the field relationships among the various subtypes of Sungun intrusive rocks and the
ke series DK1a and DK1b&c (upper right) and drilling grid of the area (the red rectangle
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estimation system. The conditioning data consist of all original data and
all previously simulated values found within a neighborhood of the lo-
cation being simulated (Leuangthong et al., 2004; Manchuk and
Deutsch, 2012a, 2012b).

The conditional simulation of a continuous variable z(u) in a Gauss-
ian space proceeds as follows (Zanon and Leuangthong, 2004):

1 define a stationary domain.

2 draw the univariate Cumulative Distribution Function (CDF) of the
domain after having done the declustering if the data are not in a reg-
ular grid.

3 transform the z data into y (a standard normal) using the CDF Fz(z).
4 Draw a random path which meets all nodes of the grid in each reali-

zation. At each node (u):

a. define a search ellipsoid to find adjacent data and previously sim-
ulated values,

b. use SK with the normal score variogram model to determine the
mean and variance of the CCDF of the RF Y(u) at location u.

c. performMonte Carlo simulation to obtain a single value from the
distribution (Zanon and Leuangthong, 2004).

5 add the simulated value to the data set
6 proceed to the next node, and loop until all nodes are simulated
7 backtransform the simulated normal values into the original unit

(Deutsch and Journel, 1998).

Regarding a transformation to Gaussian and then backtransform to
an original unit, statistical fluctuations are inherent in simulation but
the fluctuations should be reasonable and unbiased in the mean and
variance (Zanon and Leuangthong, 2004).

The following checks should be performed after having all nodes
simulated: reproduction of (1) the data values at data locations, (2)
the original histogram, (3) the original summary statistics, and (4) the
input covariance model (Zanon and Leuangthong, 2004).
Fig. 3. Experimental semi-variograms and proper fittedmodel of the raw (a) and normal score t
semi-variograms of the raw (c) and normal score transformed (d) data for major and minor an
4.2. Concentration–volume fractal model

The C–V fractalmodel, whichwas proposed by Afzal et al. (2011) for
delineation of mineralized zones and barren host rocks in porphyry-Cu
deposits, can be expressed as:

V ρ≤υð Þ∝ρ−a1
; V ρ≥υð Þ∝ρ–a2

where V(ρ≤ υ) and V (ρ≥ υ) represent the two volumes with concen-
tration values less than or equal to and greater than or equal to the con-
tour value ρ; υ represents the threshold value of a geological zone (or
volume); and a1 and a2 are the characteristic exponents. Threshold
values in this model show boundaries between various mineralized
(or alteration) zones of various mineral deposits. In this paper, V(ρ ≤
υ) and V(ρ ≥ υ) which are the volumes enclosed by a contour level ρ
in a 3D model, the borehole data of ore concentrations were calculated
by using SGS method.

5. Simulation of copper grade based on SGS

5.1. Descriptive statistics and spatial autocorrelation analysis

Descriptive statistics and the histogram of copper grades from
19,605 samples in the hypogene zone of the Sungun PCD are presented
in Table 1 and Fig. 2, respectivelywhich show the distribution of Cu data
is not normal with the Cu mean value of 0.445%.

The Cu data have been transformed by using a normal score trans-
formation and the statistics of transformed data (i.e. the mean value
close to 0 and the variance of about 1) check the correctness of the
transformation. The display of the histogram of new Gaussian variable
also checks that the distribution is symmetric withminimum andmax-
imumvalues of−3.88 and 3.88 respectively (Fig. 2). Geostatistical stud-
ies and visualizations were donewith SGeMS and Datamine studios. An
experimental semi-variogram and a spherical model fitted to the raw
and normal transformed data are presented in Fig. 3.
ransformed (b) data in the hypogene zone of the Sungun PCD and experimental directional
d vertical directions.

image of Fig.�3


Fig. 4. Horizontal plan of four randomly selected realizations of the spatial distribution of Cu within the hypogene zone through applying SGS.
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Anisotropy has also been investigated and modeled based on calcu-
lating the experimental semi-variograms of Cu and normalized value
among horizontal directionswith 30° angular increments and±15° an-
gular tolerance and one vertical direction. The results show a mild an-
isotropy in the azimuth of 150 (major axis) for normal values, as
depicted in Fig. 4.

The isotropic semi-variogram of raw data follows a spherical struc-
ture with a nugget effect of 0.038 (%)2 which reaches to a sill of 0.22
(%)2 at a range of 64.7 m, as shown in Fig. 3-a. The experimental semi-
variogram of the normal scores (Fig. 3-b) follows again a spherical
model with a nugget effect of 0.138 (%)2 with a range of spatial correla-
tion about 71 m, which is similar to the one obtained for the raw data.
That means the intrinsic spatial character of the Cu data does not vary
with the normal transformation of data. The sill of the semi-variogram
for the transformed data reaches to unity, as it should be to fulfill the
second-order stationary assumption.

5.2. Conditional simulation

Based on SGS modeling, ten realizations of Cu spatial distributions
are generated on a 25 × 25 × 25 (m3) grid within the hypogene zone.
Fig. 5. CDF of all realizations reproduces the sample Cu histogram. CDF of kriging and E-type
Simulation is performed using the simple kriging estimator, and the
semi-variogrammodel of Cu normal scores. Horizontal plan of four ran-
domly selected realizations consisting of simulation numbers (sims 2, 5,
7 and 10) is displayed in Fig. 5. Each realization represents a realistic
spatial distribution of Cu without a smoothing effect.

Four randomly selected realizations are checked to examine the
sample statistics reproduction. The CDFs of all realizations of Cu distri-
bution and also E-type and kriged map are displayed, as depicted in
Fig. 6. Comparing these frequencies with the sample cumulative fre-
quency (solid red line in the same shape) reveals that the realizations
reproduce the sample histogram, reasonably well (Fig. 6). The repro-
duction of the Cu raw data semi-variogram model by selected realiza-
tions is also proper.

Some discrepancies between different realizations and sample
models called ergodic fluctuations are acceptable which may have dif-
ferent reasons such as the algorithm used for the simulation, the semi-
variogram model parameters and the amount of conditioning data to
be utilized for the simulation (Goovaerts, 1997).

In the case of SGS algorithm, the histogram and semi-variogram
models reproduced over a number of realizations should be, on average,
equal to the sample statistics (Figs. 6 and 7: Emery and Peláez, 2012).
could not reproduce the sample data especially for high values as depicted in the right.
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Fig. 6. Experimental semi-variogram of the 10 realizations compared to the sample data (green line). According to voxel size of 25 × 25 × 25 m the experimental semi-variogram of re-
alizations could not find pairs for increments below 25 m.

Fig. 7. Log–log plots of different realizations of SGS and E-type.
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Table 2
Cu threshold valueswere recognized using C–V fractal model for different realizations and
E-type.

Realization no. First (%) Second (%) Third (%) Fourth (%)

sim 1 0.005 0.79 2.23 3.54
sim 2 0.007 0.79 1.99 3.54
sim 3 0.01 0.7 2.23 –

sim 4 0.01 0.7 2.23 –

sim 5 0.005 0.79 2.23 3.54
sim 6 0.007 0.79 1.99 3.54
sim 7 0.01 0.7 2.23 –

sim 8 0.003 0.7 2.5 –

sim 9 0.005 0.79 2.23 3.54
sim 10 0.003 0.7 2.5 –

E-type 0.25 0.63 1.25 –
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Each realization well preserves the range of variation of the mea-
sured Cu data compared to OK map which is illustrated in Table 2.
This reveals the smoothing effect, a typical property of kriging. This is
also evident from the kriging variance, which is much smaller than the
actual variance. OK does not reflect the true variability especially for
high values (Fig. 6), and hence is not appropriate for the underlying
Fig. 8. Different Cu populations based on C–V multifractal modeling in di
outlook to this study. Summary statistics of E-type estimate map are
however similar to those for krigedmap. On the other hand, results ob-
tained by E-type have good correlations with estimation values derived
via ordinary kriging.

6. C–V fractal modeling

Based on the results obtained from SGS, volumes corresponding to
different Cu values were calculated to derive C–V fractal modeling.
Threshold values of Cu are identified in the C–V log–log plots (Fig. 8),
which indicate a power–law relationship between copper contents
and volumes occupied in different realizations (Table 3). Based on the
log–log plots, threshold values of Cu are similar in sims 3, 4 and 7
with three thresholds in 0.01%, 0.7% and 2.23% of Cu values. The log–
log plots of sims 1, 5 and 9 show four threshold values which equal to
0.005%, 0.79%, 2.23% and 3.54%. However, log–log plots of sims 2 and 6
indicate four threshold values for Cu which are 0.007%, 0.79%, 1.99%
and 3.54%. Additionally, three threshold values were defined in sims 8
and 10 in 0.003%, 0.7% and 2.5%. Moreover, the log–log plot for E-type
illustrated three Cu threshold values in 0.25%, 0.63% and 1.25%, as
depicted in Fig. 8 and Table 3.
fferent sim and E-type in the hypogene zone of the Sungun deposit.
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Fig. 8 (continued).
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Based on the C–Vmodeling, 3Dmodels of hypogene zonewere gen-
erated in different realizations (Fig. 9). Some voxels with Cu high grade
(N2.23% or N3.54%) are located in the upper parts of the hypogene zone
and can be classified in the supergene enrichment zone. The propylitic
alteration zone is a barren or weakly mineralized zone in the porphyry
deposits (Berger et al., 2008; Lowell and Guilbert, 1970). According to
the C–V fractal modeling on the results of SGS results, the Cu values of
the alteration zone can be lower than 0.01% (sims 3, 4 and 7), 0.003%
(sims 8 and 10), 0.005% (sims 1, 5 and 9), 0.007% (sims 2 and 6) and
0.25% (E-type).

Based on the Lowell and Guilbert (1970) model, potassic alteration
zone occurs in the central part of the Cu porphyry deposits and hosts
of high grade Cumineralization. Based on C–V fractalmodeling, potassic
alteration has Cuvalues higher than 2.23% and 3.54% in different realiza-
tions and also Cu values higher than 1.26% can indicate potassic alter-
ation zone due to E-type data (Table 3).

7. Comparison of fractal and alteration models of the deposit

Results of C–V modeling of the different realizations and E-type are
correlated with the 3D alteration zone models of the hypogene zone
of Sungun deposit consisting of potassic, phyllic and propylitic zones.
These were generated by utilizing RockWorks™ v. 15 software and geo-
logical drillcore data (Fig. 10).
Carranza (2011) has illustrated an analysis for calculation of spatial
correlations between two binary especially mathematical and geologi-
cal models. An intersection operation between results derived via C–V
fractal model and different alteration zones in the geological model
(Table 3)was performed to obtain the numbers of voxels corresponding
to each of the four classes of overlap zones as shown in Table 3. Utilizing
the obtained numbers of voxels, Type I error (T1E), Type II error (T2E),
and overall accuracy (OA) of the fractal model were estimated with re-
spect to different alteration zones due to geological data (Carranza,
2011).

Based on C–V fractal modeling in different simulations (sims),
propylitic alteration zone was correlated with Cu values lower than
0.01%, 0.003%, 0.005%, 0.007% and 0.25% (Table 3). Comparison between
the alteration zone obtained from 3D geological modeling and the Cu
thresholds from the C–V fractal modeling reveals that the propylitic
zone is overlapped with the Cu values lower than 0.005% (sims 1, 5
and 9) more than the other results because of the fact that OA in the
threshold (0.94) is higher than the others, as shown in Table 3. Howev-
er, theOA between the alteration zone and C–V fractalmodeling obtain-
ed by E-type data has a low value (0.7). Overall accuracies of the phyllic
alteration zonewith respect to the results of the fractal modeling of sim
are between 0.36 and 0.59, but which indicate that the phyllic zone
gives better results to recognize Cu values between 0.25 and 0.63%
due to C–V modeling on E-type data in the deposit (Table 4).
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Table 3
Matrix for comparing performance of fractal modeling results with geological model. A, B,
C, and D represent numbers of voxels in overlaps between classes in the binary geological
model and the binary results of fractal models (Carranza, 2011). OA, T1E and T2Ewith re-
spect to propylitic alteration zone resulted from geological model and first threshold
values of Cu obtained through C–V fractal modeling of different realizations and E-type
in the hypogene zone.

Geological model

Inside zone Outside zone

Fractal model Inside zone True positive (A) False positive (B)

Outside zone False negative (C) True negative (D)

Type I error =
C / (A + C)

Type II error =
B / (B + D)

Overall accuracy =
(A + D) / (A + B + C + D)

Propylitic alteration of geological model

Inside zones Outside zones

C–V fractal model
of sims 1, 5 and
9 (Cu b 0.005%)

Inside zones A 8 B 148
Outside zones C 8 D 3558

T1E 0.9069 T2E 0.03993
OA 0.9404

C–V fractal model
of sims 3, 4 and
7 (Cu b 0.01%)

Inside zones A 25 B 333
Outside zones C 86 D 3348

T1E 0.7747 T2E 0.0904
OA 0.8895

C–V fractal model
of sims 2 and 6
(Cu b 0.007%)

Inside zones A 13 B 220
Outside zones C 98 D 3461

T1E 0.8828 T2E 0.0597
OA 0.9161

C–V fractal model
of sims 8 and 10
(Cu b 0.003%)

Inside zones A 14 B 263
Outside zones C 97 D 3418

T1E 0.8738 T2E 0.0714
OA 0.9050

C–V fractal model
of E-type
(Cu b 0.25%)

Inside zones A 39 B 842
Outside zones C 72 D 2839

T1E 0.6486 T2E 0.2287
OA 0.7589

Fig. 9. Alteration zones in the hypogene zone of the Sungun deposit based on geological
model: a) phyllic; b) potassic and c) propylitic.
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A comparison between C–V fractal modeling of sim and the potassic
alteration zone in the 3D geological model indicates that high value of
OA (0.816) exists between Cu values higher than 2.23% (sims 1, 5 and
9) and potassic alteration zone, as shown in Table 5. The correlation
shows that the results obtained by sims 1, 5 and 9 are proper for the sep-
aration of potassic and propylitic alterations, but threshold values ob-
tained from C–V fractal modeling based on the E-type data are more
proper than the other realizations.

Moreover, correlation between geological data and results obtained
by C–V fractalmodel represents a cross-section (Fig. 10). There is spatial
coincidence between alteration zones defined by the C–V and SGS
modeling and the zones defined by modeling of geological drillcore
data. The propylitic alteration derived via C–V and SGSmodeling occurs
inmarginal parts of the areawhich has good correlationwith geological
data in the southern part of the section. However, potassic alteration
obtained by SGS and C–V modeling is situated in the central part of a
cross-section which confirmed the geological data (Fig. 10).

8. Conclusion

Conventional geological modeling based on drillcore data is funda-
mentally essential for the determination of ore zone spatial structures,
but ore grades are not observed in themethods. The ore grade variations
in an ore deposit are obvious and salient features. Given the problems as
mentioned above, using a series of mathematical analyses such as
geostatistical simulation and fractal modeling seems to be inevitable.
In many cases, drillcore logging in the geological study deals with the
lack of proper diagnosis of geological phenomenon to identify alteration
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Fig. 10. Representative cross-sections of alteration zones: (a) based on 3D modeling of drillcore geological data; (b) C–V modeling of sims 1, 5, and 9 (Cu b 0.005%: propylitic); (c) C–V
modeling of E-type (0.25 b Cu b 0.63%: phyllic) and (d) C–V modeling of sims 1, 5, and 9 (Cu N 2.23%: potassic).

Table 4
OA, T1E and T2Ewith respect to phyllic alteration zone resulted fromgeologicalmodel and
threshold values of Cu obtained through C–V fractal modeling of different realizations and
E-type in the hypogene zone.

Phyllic alteration of geological
model

Inside zones Outside zones

C–V fractal model
of E-type
(0.25% b Cu b 0.63%)

Inside zones A 895 B 279
Outside zones C 843 D 1775

T1E 0.4850 T2E 0.1358
OA 0.7041

C–V fractal model
of E-type
(0.63% b Cu b 1.26%)

Inside zones A 287 B 106
Outside zones C 1451 D 1948

T1E 0.8348 T2E 0.0516
OA 0.5893

C–V fractal model of
sims 1, 5 and 9
(0.005% b Cu b 0.79%)

Inside zones A 1918 B 598
Outside zones C 925 D 351

T1E 0.3253 T2E 0.6301
OA 0.5983

C–V fractal model of
sims 1, 5 and 9
(0.79% b Cu b 2.23%)

Inside zones A 652 B 207
Outside zones C 2191 D 742

T1E 0.7706 T2E 0.2181
OA 0.3676

C–V fractal model of
sims 1, 5 and 9
(2.23% b Cu b 3.54%)

Inside zones A 8 B 2
Outside zones C 2835 D 947

T1E 0.9971 T2E 0.0021
OA 0.2518

C–V fractal model
of sims 3, 4 and 7
(0.01% b Cu b 0.7%)

Inside zones A 1874 B 873
Outside zones C 969 D 76

T1E 0.3408 T2E 0.9199
OA 0.5142
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zones due to a series of established modeling based on mathematical
analyses such as geostatistical simulation and fractal modeling. The
Gaussian simulations honor the covariance models of the data point
and that is why they are appropriate for modeling of processes with ex-
treme large continuity. The SGS is useful in generating relatively various
Table 5
OA, T1E and T2E with respect to potassic alteration zone resulted from geological model
and threshold values of Cu obtained through C–V fractal modeling of different
realizations and E-type in the hypogene zone.

Potassic alteration of geological
model

Inside zones Outside zones

C–V fractal model
of E-type
(1.26% b Cu)

Inside zones A 3 B 14
Outside zones C 697 D 3078

T1E 0.9957 T2E 0.0045
OA 0.8125

C–V fractal model
of sims 1, 5 and 9
(2.23% b Cu)

Inside zones A 4 B 1
Outside zones C 696 D 3091

T1E 0.9942 T2E 0.0003
OA 0.8162

C–V fractal model
of sims 1, 5 and 9
(3.54% b Cu)

Inside zones A 1 B 1
Outside zones C 699 D 3091

T1E 0.9985 T2E 0.0003
OA 0.8154

C–V fractal model
of sims 1, 5 and 9
(0.79% b Cu b 2.23%)

Inside zones A 159 B 570
Outside zones C 541 D 2522

T1E 0.7728 T2E 0.1843
OA 0.7070

C–V fractal model
of E-type
(0.63% b Cu b 1.26%)

Inside zones A 189 B 652
Outside zones C 511 D 2440

T1E 0.73 T2E 0.2108
OA 0.6933
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realizations in the ore deposits, where computational efficiency and ef-
fective implementation are important.

In this paper, the SGS and C–V fractal models were utilized to delin-
eate different alteration zones in the hypogene zone of Sungun Cu por-
phyry deposit, NW Iran. Investigation of the deposit indicates that the
results derived via geostatistical simulations can be used for the separa-
tion of alteration zones by fractalmodeling. Furthermore, the three real-
izations (sims 1, 5 and 9) show the proper results for delineation of
potassic and propylitic alteration zones. Moreover, C–V modeling on
E-type data is suitable for phyllic alteration.On the other hand, C–V frac-
tal modeling based on E-type data is proper for moderate Cu values.

Correlation between results and alteration zones obtained by geo-
logical model of the hypogene zone reveals that propylitic alteration
has Cu values lower than 0.005% and potassic alteration zone correlated
with Cu values higher than 2.23%. There is a good relationship between
phyllic alteration zone and Cu values between 0.25% and 0.63% derived
by E-type data. Moreover, the voxels with high values of Cu (N3.54%)
which exist in upper levels of the hypogene zone can be classified in su-
pergene enrichment zone of the deposit. Furthermore, the obtained re-
sults strongly support the Lowell and Guilbert (1970) model for
alteration zones of porphyry copper deposits.
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