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a b s t r a c t

Spectral induced polarisation (SIP) measurements capture the low-frequency electrical properties of soils
and rocks and provide a non-invasive means to access lithological, hydrogeological, and geochemical
properties of the subsurface. The Debye decomposition (DD) approach is now increasingly being used to
analyse SIP signatures in terms of relaxation time distributions due to its flexibility regarding the shape
of the spectra. Imaging and time-lapse (monitoring) SIP measurements, capturing SIP variations in space
and time, respectively, are now more and more conducted and lead to a drastic increase in the number of
spectra considered, which prompts the need for robust and reliable DD tools to extract quantitative
parameters from such data. We here present an implementation of the DD method for the analysis of a
series of SIP data sets which are expected to only smoothly change in terms of spectral behaviour, such as
encountered in many time-lapse applications where measurement geometry does not change. The
routine is based on a non-linear least-squares inversion scheme with smoothness constraints on the
spectral variation and in addition from one spectrum of the series to the next to deal with the inherent
ill-posedness and non-uniqueness of the problem. By means of synthetic examples with typical SIP
characteristics we elucidate the influence of the number and range of considered relaxation times on the
inversion results. The source code of the presented routines is provided under an open source licence as a
basis for further applications and developments.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Spectral induced polarisation (SIP) data consist of frequency
dependent (typically 1 mHz–10 kHz) electrical impedances or ad-
mittances. These complex-valued data can either be represented
in terms of real and imaginary parts, or as magnitude and phase
values. Using the geometrical location of the electrodes, complex
resistivities or complex conductivities can be inferred. These
properties reflect electrical conduction and polarisation processes,
for instance electrochemical polarisation at the interface between
the pore fluid and minerals in soils and rocks or between different
cells in living tissue, as of interest in geophysics and biophysics. SIP
data are usually analysed and related to petro-, hydro-, or bio-
geophysical properties by means of empirical or mechanistic
models (see, e.g., Slater, 2007; Kemna et al., 2012; Bücker and
Hördt, 2013). While significant effort has been put into the de-
velopment of mechanistic models over the last years (e.g., Revil
and Florsch, 2010; Revil et al., 2012), most studies still address the
formulation of parameter relationships using empirical models
(e.g., Weller et al., 2013).
r Ltd. This is an open access articl
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Two types of empirical model approaches can be distinguished:
the first type describes SIP data using one or a few polarisation
peaks (i.e., local maxima) in the absolute phase spectrum (or
imaginary conductivity spectrum) with corresponding, distinct
relaxation times. This includes the Debye model (Debye, 1929;
Böttcher and Bordewijk, 1978) and the class of Cole–Cole-type
models (Cole and Cole, 1941; Pelton et al., 1978, see Dias, 2000 for
an overview). In general these models are overdetermined, con-
taining far fewer model parameters than data points available.
This, however, limits the flexibility regarding different shapes of
the spectra and imposes strong data influence on fitting quality
and robustness (Morgan and Lesmes, 1994).

The second approach describes the SIP response using a linear
superposition of a large number of elementary Debye polarisation
terms following a given distribution of relaxation times. The latter
is commonly discretised in regular intervals. Thus, only the re-
lative weights of the Debye contributions at discrete relaxation
times are determined when fitting the observed polarisation re-
sponse. This procedure of determining a relaxation time dis-
tribution (RTD) instead of a fixed number of relaxation times is
referred to as Debye decomposition (DD). Contrary to the first type
of models, the DD represents a strongly underdetermined inverse
problem which requires some sort of regularisation to achieve a
stable solution. A wide range of shapes of SIP spectra can be fitted
using the DD approach, and more importantly, the approach does
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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not require a certain number of polarisation peaks in the SIP data.
However, representative (average or integral) parameters may be
extracted from the RTD, also referred to as integrating parameters
(Nordsiek and Weller, 2008) or characteristic integral parameters
(Zisser et al., 2010b) in the literature.

The concept of the superposition of multiple polarisation terms
goes back to Schweidler (1907), with the first proposition of a
continuous RTD by Wagner (1913). One of the first published
discrete decomposition procedures inverted the imaginary part of
the complex permittivity (Uhlmann and Hakim, 1971), while later
studies used the real part to fit permittivity spectra (Morgan and
Lesmes, 1994; Lesmes and Morgan, 2001). It is noted here that
because of the so-called Kramers–Kronig relationships (e.g., Mac-
donald, 1952) it is theoretically sufficient to only fit the real or
imaginary part of the permittivity spectrum to infer the complete
complex permittivity response (because both real and imaginary
parts are related as a consequence of causality). Different im-
plementations of the DD for time-domain data have been pub-
lished (Tong et al., 2004; Tarasov and Titov, 2007), and likewise
formulations for frequency-domain resistance and resistivity in-
stead of permittivity or conductivity have been presented (Nord-
siek and Weller, 2008; Zisser et al., 2010b; Florsch et al., 2012;
Keery et al., 2012). Keery et al. (2012) investigated uncertainties of
the inferred DD parameters using a Markov-chain Monte Carlo
method. Recently, Florsch et al. (2014) proposed a decomposition
approach based on relaxation models other than the Debye model,
such as the Cole–Cole model or Warburg model. In an accom-
panying work, Revil et al. (2014) promote the use of the Warburg
model, arguing that the elementary response in a rock is less
dispersive than a Debye response. Following the same reasoning,
already Tarasov et al. (2003) used a decomposition based on a
Cole–Cole model in accordance with the response of a theoretical
model for the polarisation of a single pore (Titov et al., 2002).

Based on numerous previous works on the linkage of SIP para-
meters with textural and hydraulic characteristics (for an overview see
Kemna et al., 2012 and references therein), more recently also re-
lationships of DD parameters to various petrophysical parameters have
been established, such as to slag mass and grain size of slag–sand
mixtures (Nordsiek andWeller, 2008), permeability of sandstones (e.g.,
Weller et al., 2010a), water saturation of sand–clay mixtures (Breede
et al., 2012), specific surface area per unit pore volume of sandstones
and sand–iron/clay mixtures (e.g., Weller et al., 2010b), and to changes
in water salinity of sandstones (e.g., Weller et al., 2011). Attwa and
Günther (2013) found correlations between DD relaxation time and
hydraulic conductivity for samples taken from a Quaternary aquifer.
One of the few published applications to field-imaging results in-
vestigated the relationship between DD-derived integral parameters
and BTEX (benzene, toluene, ethylbenzene, and xylenes) contamina-
tion (Flores Orozco et al., 2012).

Despite the growing number of studies incorporating time-
lapse SIP data (e.g., Breede et al., 2012; Flores Orozco et al., 2013)
for monitoring purposes, we are not aware of any DD approaches
incorporating time-lapse data sets in a single inversion problem,
for instance to apply regularisation with respect to temporal
changes. In this work we present an open source implementation
of a DD for complex resistance/resistivity SIP time-lapse (mon-
itoring) data which is capable of imposing smoothness constraints
with respect to spectral variations as well as changes over time.
The inversion methodology is developed in detail, and integral
parameters commonly extracted from DD results are briefly re-
viewed. Important aspects of the DD routine are examined, such as
the choice of sampling (discretisation) of the relaxation time axis
and the influence of regularisation strategies on the DD result. The
source code (in the Python programming language) and corre-
sponding documentation is available under an open source
licence.
2. Methods

This section provides a detailed description of the DD metho-
dology. Starting with the general formulation of the decomposi-
tion, the inversion algorithm is developed, including important
implementation aspects, in particular the extension to invert time-
lapse SIP data sets.

2.1. Debye decomposition

Fuoss and Kirkwood (1941) formulated the frequency response
of the complex permittivity ϵ̂ using a continuous relaxation time
distribution, g τ( ), which describes the Debye contribution at dif-
ferent relaxation times τ:

g
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,
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with ϵ0 and ϵ∞ being the asymptotic permittivities at low and high
frequencies, respectively, τ the relaxation time, ω the angular
frequency, and j 1= − the imaginary unit.

The Debye model follows from Eq. (1) for g 0τ δ τ τ( ) = ( − ), where
δ denotes the Dirac delta function. In this case, τ0 is inversely re-
lated to the frequency position (ωpeak) of the polarisation peak (in
terms of imaginary part ϵ″) by 1/ peak0τ ω= .

The discrete case can now be formulated either by expressing
g τ( ) by a weighted sum of δ functions, or by discretising the
continuous integral in Eq. (1). The discrete (and fixed) τi values
must sample at least the relaxation time range implicitly defined
by the frequency range spanned by the data (i.e., according to the
inverse correlation 1/ peak0τ ω= ) to facilitate an adequate approx-
imation of the continuous case. SIP responses are now solely de-
scribed by the weighting factors at the chosen relaxation times,
representing a discrete RTD.

The analogon to the continuous formulation in Eq. (1) in terms
of complex resistivity ρ ω^( ) is given by
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with ρ0 being the direct-current (DC) resistivity, Nτ the number of
relaxation times, mk the weighting factors, the so-called charge-
abilities, corresponding to the relaxation times τk. This formulation
is based on the resistivity formulation of the Cole–Cole model by
Pelton et al. (1978):
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where cc0,ρ is the DC resistivity, mcc is the Cole–Cole chargeability,
τcc is the Cole–Cole time constant (which has the meaning of an
effective relaxation time), and ccc is the frequency exponent, de-
scribing the strength of the frequency dependence (dispersion)
(Fig. 1). Eq. (4) simplifies to the Debye model in terms of resistivity
for c 1cc = . It should be noted that the discrete form of Eqs. (1) and
(3) are not fully equivalent to each other (Florsch et al., 2012;
Tarasov and Titov, 2013), and care must be taken when comparing
results obtained with the different formulations.

In this work, Eq. (4) is used to generate synthetic SIP data. Al-
though in the literature the Debye decomposition has been mostly
performed using the resistivity formulation (Eq. (3)), results in this
work are presented in terms of complex conductivity, 1/σ ω ρ ω^( ) = ^( ),
which is commonly used as the basis for petrophysical



Fig. 1. Exemplary Cole–Cole model responses ( m100 m, 0.1, 0.04 s0ρ τ= Ω = = ) for different c values. (a) Real part of conductivity (σ′), (b) imaginary part of conductivity
(σ″).
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interpretations (e.g., Revil and Florsch, 2010).

2.2. Integral parameters

From the RTD, different integral parameters can be derived,
which provide information about the overall polarisation proper-
ties and relaxation time scales of the medium. We here consider
the following parameters, which have been used in previous
works:

� The total chargeability m mtot k
N

k1= ∑ =
τ (Nordsiek and Weller,

2008) is the analogon to the Cole–Cole chargeability mcc.
However, mtot only accounts for polarisations within the con-
sidered frequency range of the DD, whereas mcc also contains
contributions from outside this range. Thus, not fully covered
polarisation peaks imply an underestimation of the total char-
geability mtot of the system.

� The normalised total chargeability m m /n tot tot, 0ρ= (Weller et al.,
2010a) represents an extension of the normalised chargeability
concept (e.g., Slater and Lesmes, 2002) to the total chargeability
as derived from a DD. The normalised chargeability, m m/n 0ρ= ,
is commonly considered as a more appropriate measure of the
strength of polarisation. In Appendix A we show for an
individual Debye response according to Eq. (3) that the imagin-
ary component of the complex conductivity, σ″, which repre-
sents a direct measure of polarisation according to established
petrophysical models (e.g., Revil and Florsch, 2010), indeed
directly scales with mn. For not too strong polarisations, i.e.,
m 1⪡ , one obtains

m
1

.
5n 2σ ω ωτ

ωτ
″( ) ≈

+ ( ) ( )

Hence it is physically plausible to consider the normalised total
chargeability derived from the DD in Eq. (3) as a direct measure
of the overall polarisation of the medium.

� The cumulative relaxation time τx denotes the relaxation time at
which a certain percentage x of the total chargeability is
reached (Nordsiek and Weller, 2008; Zisser et al., 2010b).
Commonly used is τ50, the median relaxation time of a given
RTD.

� The mean logarithmic relaxation time τmean denotes the charge-
ability-weighted logarithmic mean value of the relaxation times
(Nordsiek and Weller, 2008): m mexp log /mean k
N

k k k
N

k1 1τ τ= ( ∑ ( ) ∑ )= =
τ τ .

� As a generalisation of the maximum relaxation time τmax (e.g.,
Attwa and Günther, 2013), we here introduce the relaxation
time l peak,τ , which refers to the lth local maximum of the RTD,
with numbering beginning at low frequencies (i.e., high τ
values). This parameter is useful if multiple dominant relaxation
phenomena are to be analysed in a given SIP spectrum. These
polarisation peaks result in multiple peaks in the RTD, which
cannot be tracked using integrative parameters such as τmean or
τ50.

� The non-uniformity parameter U /60 10τ τ=τ is a measure of the
width of the RTD (Nordsiek and Weller, 2008).

For a complete list of implemented integral parameters, we
refer to the source code documentation.

2.3. Inverse approach

The inversion is implemented using a Tikhonov regularisation
scheme (e.g., Zhdanov, 2002; Menke, 2012) which minimises an
objective function, Ψ, comprising data misfit, Ψy, and a model
objective function, Ψx, balanced by a real-valued regularisation
parameter, 0freqλ > :

6y freq xΨ Ψ λ Ψ= + ( )

W y f xwith 7y L

2

2
Ψ = ( − ( )) ( )

Rxand , 8x L

2

2
Ψ = ( )

where x is the model parameter vector, y is the data vector, and
f x( ) is the forward model response. We use individual data
weighting factors which are stored in the diagonal matrix W . This
corresponds to the assumption of uncorrelated data with Gaussian
statistics, with the standard deviations of the data given by the
inverse values of the diagonal entries of W . The regularisation
term Ψx is chosen to force smooth solutions via a roughness ma-
trix R, which evaluates either the first- or the second-derivative
variation in the components of x.

The inversion underlying the DD is formulated as a real-valued
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problem with real and (negative) imaginary components of the
measured complex resistivity, obs iρ ω′ ( ) and obs iρ ω− ″ ( ) (note that al-
ways 0ρ′ > , and 0ρ− ″ > if polarisation is present), respectively,
representing the data at the measurement frequencies ωi. The
model parameters are given by the DC resistivity ρ0 and the log-
transformed chargeabilities mk at the considered relaxation times
τk. Our choice of using log-transformed chargeabilities in the
parameterisation implies that relative changes in chargeability are
equally weighted in the inversion, so that changes in the very low
chargeability range still have importance in the inversion. More-
over, the log transform guarantees positive chargeability values.
Ghorbani et al. (2007) suggest an alternative parameterisation of
chargeability based on the logit function, which they argue is a
mathematically more reasonable parameterisation also in the
range towards the theoretical maximum value of chargeability
(i.e., 1). However, since we are here not considering the total
chargeability (like for instance represented by the Cole–Cole
chargeability mcc) but the chargeability contributions at the dif-
ferent relaxation times τk, the values of mk are typically very small
(i.e., 1⪡ ) and we therefore consider the log transform being used
here adequate as well. Thus, the model parameter vector x, the
data vector y (comprising one complex resistivity spectrum), and
the forward model response f x( ) are expressed as
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with Nτ being the chosen number of relaxation times, Nf the
number of given frequencies, Nx the number of model parameters
in x N N1x( = + )τ , and Ny the number of data points in y N N2y f( = ).
The forward model response ji i iρ ω ρ ω ρ ω^( ) = ′( ) + ″( ) is calculated
according to Eq. (3).

The root-mean-square value of the misfit between data and
model response for the imaginary parts (i.e., the second half of y
and f x( )), RMSIm, is used for assessing the quality of the inversion
process:
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2.3.1. Jacobian
The Jacobian (or sensitivity matrix) corresponding to f x( ) is

defined as the N Nx y× matrix
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with the corresponding derivatives given in Eqs. (B.3)–(B.6) in
Appendix B.

A cumulated sensitivity (or coverage), SIm k, , can be computed for
each chargeability mk:

S
mlog
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This cumulated sensitivity value is a measure of the overall change
of the imaginary parts of the predicted data in response to changes
of an individual chargeability value mk, or in other words, how
well the parameter mk is covered by these data. Correspondingly,
large values of SIm k, indicate chargeabilities with a high influence
on the response ρ″.

2.3.2. Model update
Minimisation of Ψ leads to an iterative Gauß-Newton like

scheme, in which a model update xqΔ is computed for each
iteration q using the normal equations:

⎡
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Successive iterations are computed by

x x x , 16q q q1 α= + △ ( )+

with a real-valued parameter 0, 1α ∈ [ ]. The value of α is de-
termined from a classical line search, explained further below, and
the limitation 1α ≤ prevents from overshooting (at the cost of
potentially increasing the number of iterations until convergence
is reached).

2.3.3. Starting model
The starting model for each spectrum is determined by testing

a series of homogeneous RTDs for chargeability values between
10�12 and 1. The model yielding the minimal value of RMSIm is
then used as the starting model in the inversion.

2.3.4. Stopping criteria
The inversion is stopped when one or more of the following

criteria are met:

� The RMSIm does not change significantly (smaller than pre-
defined percentage) between subsequent iterations.

� The RMSIm decrease lies below a certain threshold value. An
exception is the first iteration, where an RMSIm increase of up to
100% is allowed to account for a possible tuning-in phase based
on the starting model.

� The update leads to a numerical error (e.g. overflow error).

2.3.5. Step-length selection
At each iteration an optimal step length parameter α (Eq. (16))

is selected using a line search approach (e.g., Kemna, 2000; Gün-
ther, 2004): a parabola is fitted through three RMSIm values
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corresponding to the α values 0, 0.5, and 1, and the minimum of
the parabola determines the step length αmin for the model up-
date. In case of a minimum above 1 the step length is set to 1. For

0minα ≤ , the model update does not lead to an improvement of
RMSIm and the inversion is stopped.

2.3.6. Data weighting
The diagonal entries of W compensate for different ranges of

ρ ω′( ) and ρ ω″( ):

⎛
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where WRe is the unity matrix of size N Nf f× , and WIm is a N Nf f×

diagonal matrix with entries w /i
N

i i
N

i1 1
f fρ ρ= ∑ | ′| ∑ | ″|= = . This weighting

scheme ensures that both real and imaginary parts are fitted to
similar misfit levels irrespective of their values.

2.3.7. Regularisation
Smoothness constraints are applied to the chargeability values

using first- and second-order finite-difference operators (e.g.,
Menke, 2012; Aster et al., 2013). The first-order smoothing op-
erator is given by the N N1( − ) ×τ τ matrix
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As no smoothing between ρ0 and the chargeabilities is imposed,
the regularisation matrix R of size N Nx x× is chosen as
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20
1 , 2=

( )( ) ( )

with either D 1( ) or D 2( ).

2.3.8. Selection of τ values
Two parameters determine the discrete relaxation times used

for the decomposition: The number of relaxation times per fre-
quency decade, Nd, and the min/max limits for the relaxation
times. The Nd parameter must provide enough degrees of freedom
to fit the data (Uhlmann and Hakim, 1971). Minimal and maximal τ
values can be inferred from the frequency limits of the data using
the inverse correlation of τ and ω (Uhlmann and Hakim, 1971).
These limits can be extended by multiplicative constants, de-
faulting to an extension of one frequency decade to either side of
the data frequency limits. Integral parameters are only computed
for the τ range defined by the data frequency range, irrespective of
the actual range set for the decomposition.

2.3.9. Selection of λfreq values
Three methods of selecting the regularisation parameter are

implemented: a fixed value can be used for all iterations, the L-
curve (e.g., Hansen, 1990; Florsch et al., 2014) can be used to infer
an optimal regularisation parameter (Zisser et al., 2010a; Florsch
et al., 2012), and a line search (simplified from the one used in
Kemna, 2000) is implemented to automatically determine an op-
timal λfreq value at each iteration. In the latter approach, the λfreq
value of the previous (qth) iteration is used as a starting point and
multiple new values in the range between 0.1 freqλ and 10 freq
4λ are

sampled. The value yielding the smallest RMSIm value is then used
to actually compute the model update. For the first iteration, the
λfreq value is set to the number of model parameters. The inversion
results presented in the following were computed using this last
approach of selecting λfreq.

2.4. Extension to time-lapse inversion

Time-lapse data can be accounted for in the inversion scheme
by extending the vectors and matrices to include all time steps.
Based on the formulation for a single spectrum ρ ω^( ) the new
vectors sequentially contain the quantities for the different time
steps, and the new matrices become block matrices with each
block along the diagonal corresponding to a time step. In the fol-
lowing, the subscript d denotes the time index and Nt the total
number of time steps.

The extended model vector xall, data vector y
all
, and model

response f
all

are thus given by

⎛
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with xall of size N Nx t· (one parameter set for each time step), and
y

all
and f

all
of size N N2 f t· (real and imaginary parts for each fre-

quency for each time step).
The corresponding Jacobian matrix can be assembled based on

Eq. (13) for each time step:
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with the size N N N N2x t f t( · ) × ( · ).
The RMSIm

all value incorporates the misfits of the imaginary parts
for all time steps:

RMS
N N

y f x
1

.
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d N i d N i d
1 1
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( )= =
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The regularisation termΨx (Eq. (8)) is now extended to include not
only the frequency regularisation, but also time-regularisation
terms for ρ0 and the chargeabilities. Thus, the objective function
with time regularisation, Ψtime, becomes

R x R x R x ,
26time y f f all

L
all

L
m m all L

2 2 2

2
0 0

2 2
Ψ Ψ λ λ λ= + + +

( )ρ ρ

with the regularisation parameters , ,f m0
λ λ λρ controlling the influ-

ence of the frequency regularisation operator R f , the ρ0-time reg-
ularisation operator R

0ρ , and the chargeability-time regularisation

operator Rm
, respectively. Fixed values are used for

0
λρ and λm.



Fig. 2. DD results in terms of inferred integral parameters for varying Nd values. (a) Synthetic SIP data (grey: σ′, black: σ″). (b) mn tot, results, (c) τmean results, (d) peak1,τ results.
All fits were performed using a frequency regularisation parameter 100λ = .
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The extended frequency regularisation matrix R f
is constructed

as a N N N Nx t x t( · ) × ( · ) block matrix containing the individual reg-
ularisation matrices R (Eq. (20)) for each time step:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟R

R

R

0 0

0 0
0 0

.

27
t f, = ⋱

( )

Depending on the type of regularisation used, R is either based on

D 1( ) (Eq. (18)) or D 2( ) (Eq. (19)).
The smoothness constraints along the time axis require some

further consideration. The smoothing operator has to be applied to
each parameter of x separately along the time axis, and thus
correspondingly resized versions of Eqs. (18) and (19) are used,
denoted by the matrices T 1 , 2( ) ( ) of size N Nt t× . As the time-lapse
entries of a specific parameter are non-continuously distributed in
xall, T 1 , 2( ) ( ) must be projected into an extended matrix of size
N N N Nx t x t( · ) × ( · ), which is filled up with zeros. For the pth para-

meter of x, a given element tl m, of T 1 , 2( ) ( ) is projected to the
l N p m N p1 , 1x x[( − ) + ( − ) + ] th element of this enlarged matrix,

denoted by Rp. For p¼1, R
0ρ results, while Rm

is obtained by

summing up the regularisation matrices for all chargeabilities:

R R .
28

m
p

N

p
2

x

∑=
( )=

The scheme described above simplifies the implementation of the
regularisation matrices, as only a base version (with variable size)
has to be created for each regularisation type, which then can be
applied to both frequency and time domains using the projection.

It is noted that so far the smoothing operators do not take the
distance between adjacent parameters in the respective direction
(frequency or time) into account. However, in particular for time-
lapse measurements it is not uncommon to encounter irregular
time intervals tΔ . These time intervals can be used to weight the
regularisation matrices by means of a diagonal time-weighting
matrix Ct

:
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where td is the time (measured in an arbitrary unit) of the dth time
step. The original regularisation matrix is then transformed ac-
cording to

T C T , 30tw t
1 1= ( )

( ) ( )

with subscript tw indicating the time-weighted variant of the
regularisation matrix. The time weighting can be disabled by
setting the matrix Ct

to the unity matrix. In the current im-
plementation, time weighting can only be applied in conjunction
with first-order smoothing. However, in the future we plan to also
extend it to second-order smoothing based on the implementation
of the second-order derivative operator also for non-regularly
sampled points.
3. Results and discussion

In this section the optimal selection of the number and range of
τ values is examined, followed by an investigation of the effect of
the regularisation, both in frequency and time domain.

3.1. Relaxation times

The choice of relaxation times is crucial for the decomposition
process. Using an exemplary bimodal SIP response (Fig. 2a), re-
covered integral parameters were investigated for various Nd va-
lues (in the literature, values for Nd range from 4 to 166 (Uhlmann
and Hakim, 1971; Morgan and Lesmes, 1994; Nordsiek and Weller,
2008; Zisser et al., 2010b). Fig. 2b–d presents the results for mn tot, ,
τmean, and peak1,τ . A strong variation in the results can be observed
for Nd values below 10. For larger values of Nd, the reconstructed
values practically do not vary anymore and converge for mn tot, and
τmean, and peak1,τ only increases slightly beyond N 10d > .



Fig. 3. DD results using different τ ranges. (a) Synthetic SIP data (dots) and fitting results (solid curves) (grey: σ′, black: σ″). (b,e): RTD and coverage SIm using τ limits
determined by data limits. c,f): RTD and coverage SIm using τ limits extended by one frequency decade (shaded area) relative to the data limits. (d,g) RTD and coverage SIm
using τ limits increased by two frequency decades (shaded area) relative to the data limits. All fits were performed using a frequency regularisation parameter 50λ = and
Nd¼20. Vertical lines mark peaks in the inverted RTD (see also discussion in the text).
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The response of even a single Debye term spreads significantly
over a range of more than one frequency decade to both sides of its
peak frequency (e.g., Florsch et al., 2014). Hence, τ values outside
the data frequency range can influence the inverted RTD inside the
data frequency range. To illustrate the effects of too narrow τ
ranges, synthetic SIP data were generated in a frequency range
between 10�3 Hz and 10 Hz3 using a two-term Cole–Cole model
(Fig. 3a), and subsequently the DD was applied using three dif-
ferent τ ranges: (1) the range was determined from the data fre-
quencies, (2) the data frequency range was symmetrically ex-
tended by one frequency decade, and (3) the data frequency range
was symmetrically extended by two frequency decades. In all
cases, Nd was set to 20, and the data could be adequately fitted.
However, the obtained RTDs vary considerably (Fig. 3b–d). With-
out any extension of the τ range (Fig. 3b), two peaks can be ob-
served in the RTD (Fig. 3c), of which only one can be related to a
polarisation peak in the SIP data (compare detected peaks, i.e.,
solid and dashed lines in Fig. 3a and b). However, when the τ range
is increased (Fig. 3c and d), only the polarisation peak indeed
present in the data is recovered. The high-frequency peak (low
relaxation times) in the RTD (Fig. 3b) corresponds to a large in-
crease in SIm (Fig. 3e), indicating an over-proportional influence of
the small τ values in the case of the insufficiently broad τ ranges.
Note that, irrespective of the τ range used, large values of SIm can
be observed for the not fully covered high-frequency peak, sug-
gesting a strong influence of the corresponding chargeabilities if
polarisation peaks are not fully covered by the data.
Based on the results (Figs. 2 and 3) we recommend to use a
value of at least Nd¼20 for the DD, and to extend the τ range at
least by one frequency decade to each side of the data frequency
limits.

3.2. Regularisation strategies

The effect of too weak or too strong (first-order) frequency
regularisation is demonstrated using synthetic SIP data con-
taminated by normally distributed noise (this type of noise is in
the following also referred to as measurement noise). Three DDs
were performed using regularisation parameter values 1, 103λ = ,
and 105. The corresponding fitting results are shown in Fig. 4a, c,
and e, with RTDs plotted in Fig. 4b, d, and f. For a λ value of 1, a
relatively rough RTD is obtained, nonetheless adequately fitting
the data. Due to the roughness of the RTD no clear peak relaxation
time can be identified. The DDs performed with λ values of 103 and
105 show smooth RTD curves, each exhibiting a clear peak. How-
ever, the larger regularisation parameter leads to a flat polarisation
response which does not fit the SIP data (Fig. 4e). Thus, the used
regularisation parameters should be verified to avoid situations as
presented in Fig. 4b and f.

Considering the analysis of time-lapse data, no inherent con-
straints (or preferences) regarding the time evolution of the DD
parameters can be inferred from the method itself. All such con-
straints must be based on some sort of a-priori information (e.g.,
on the type of polarisation or the type of process being



Fig. 4. DD results for different values of the frequency regularisation parameter λfreq. a,c,e) Synthetic SIP data (dots) and fitting results (solid curves) for λfreq values of 1, 103,
and 105, respectively (grey: σ′, black: σ″). Uncorrelated, normally distributed noise with standard deviations of 1.5 mΩ and 2 mrad for magnitude and phase of the complex
resistivity, respectively, was added to the SIP data prior to DD. (b,d,f) Corresponding RTDs, with mlog n tot10 ,( ) values of ( 2.72, 2.71, 2.67− − − ) and log mean10 τ( ) values of
( 1.34, 1.36, 1.45− − − ).
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investigated with SIP measurements). Therefore, a variety of reg-
ularisation operators can be used for time regularisation. However,
it should be kept in mind that different constraints reflect different
a priori information, which can have considerable influence on the
resulting RTD.

The influence of time regularisation operators on the decom-
position process is illustrated on a synthetic time-lapse SIP data
set which comprises spectra at 20 (irregular) time steps created
using a single-term Cole-Cole model response (Fig. 5). The char-
geability values of the SIP spectra decrease linearly with time,
imitating a corresponding time-dependent polarisation process
(Fig. 5a, increasing opacity indicates increasing time). A small,
normally distributed measurement noise component with a
standard deviation of 0.5 mrad was added to each spectrum. Ad-
ditionally, a time dependent, normally distributed noise compo-
nent with a standard deviation of 5% was added to the Cole–Cole
chargeability values to simulate variations in the underlying po-
larisation process (in the following also referred to as process
noise). This second noise component does not distort the SIP
spectra, however, the spectra are vertically shifted. This is the
primary type of noise that can be smoothened out using a time-
regularisation approach. Measurement noise would have to be
very large in order to influence integral parameters such as mtot.
The mn tot, values inferred from the inverted RTDs for different
time-regularisation approaches in the DD are plotted in Fig. 5b. For
consistency, the DD without any time regularisation was per-
formed with the same frequency regularisation parameter as the
DD with time regularisation. The results show that time regular-
isation successfully smoothens the noise-induced roughness in the
mn tot, evolution compared to the DD results without time reg-
ularisation. Due to the non-regular spacing of the time-steps (as
often found in long-term experiments, e.g. due to equipment
failures or miscellaneous delays), the time-weighted regularisation
scheme creates smoother results in this example.

Time regularisation operates on the RTD, i.e., the chargeabilities
at the discrete relaxation times. Smoothing of the chargeabilities
thus directly influences the integral chargeability parameters mtot

and mn tot, , as shown above. Integral relaxation time parameters are
only influenced implicitly due to the deformation of the RTD by the
time regularisation. Nonetheless, time regularisation can improve
the reconstruction quality of integral relaxation time parameters for
noisy time-lapse SIP data. Here, measurement and process noise



Fig. 5. DD results in terms of inferred mn tot, for different time regularisation approaches. (a) Synthetic SIP data for all time steps, generated using a single-term Cole–Cole
model. Amplitudes decrease with increasing time. Uncorrelated, normally distributed noise was added to the Cole–Cole chargeability (standard deviation 5%) prior to
computation of the spectra, and frequency noise with a standard deviation of 0.5 mrad was added to the computed phase data for each time step. (b) mn tot, results without
time regularisation, with first-order time regularisation, and with time-weighted first-order time regularisation (see legend).

Fig. 6. DD results in terms of inferred integral parameters peak1,τ and τmean without and with time regularisation. (a) Synthetic SIP data in terms of σ″. Increasing opacity
indicates increasing time. The data include uncorrelated, normally distributed measurement noise (standard deviation 0.5 mrad) added to the phase data for each time step
prior to DD, as well as 20% process noise added to the Cole–Cole relaxation times before computation of the spectra. (b) peak1,τ results, (c) σ″ data (dots) and fitting results
(solid lines) for time step 13 without (grey) and with (black) time regularisation. (d) τmean results, (e) RTD results for time step 13 without (grey) and with (black) time
regularisation. Solid vertical lines indicate τmean results, while dashed lines indicate peak relaxation times.
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Fig. 7. DD results in terms of inferred integral parameters peak1,τ and τmean without and with time regularisation. (a) Synthetic SIP data in terms of σ″. Increasing opacity
indicates increasing time. The data include uncorrelated, normally distributed measurement noise (standard deviation 2 mrad) added to the phase data for each time step
prior to DD. (b) peak1,τ results, (c) σ″ data (dots) and fitting results (solid lines) for time step 21 without (grey) and with (black) time regularisation. (d) τmean results, (e) RTD
result for time step 21 without (grey) and with (black) time regularisation. Solid vertical lines indicate τmean results, while dashed lines indicate peak relaxation times.
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components are treated separately. Fig. 6a presents 20 single-term
Cole–Cole model responses whose relaxation time changes linearly
with time on a logarithmic scale (the simulated time steps, again,
are not regularly spaced). A normally distributed process noise level
of 20 % was added to the log-values of the relaxation times before
computing the responses. This large noise level is justified by the
large possible dynamics that can be observed for relaxation times.
Additionally, a small measurement noise level of 0.5 mrad was
added to the generated spectra. The time evolution of the integral
parameters peak1,τ and τmean, inferred from the obtained RTDs, is
presented in Fig. 6b and d, respectively. Time regularisation greatly
improves the quality of the τmean results, while the peak1,τ results are
only slightly improved. This can be explained by the nature of the
data noise: process noise components in τ directly translate to
changes in the peak position of the RTD, without affecting the
smoothness of the spectrum and the RTD. Time regularisation
strategies thus have to move the RTD peak in order to change peak1,τ
results, but only have to change the shape of the RTD in order to
influence τmean. This is illustrated in Fig. 6c and e. Time regular-
isation changes the model response only slightly, but deforms the
RTD enough to influence τmean (Fig. 6c, black curve).

However, peak1,τ results can be heavily improved by time reg-
ularisation schemes, if the data are primarily influenced by mea-
surement noise. This effect is illustrated in Fig. 7, which shows a
simulation similar to the previous one (presented in Fig. 6).
However, no process noise component was added to the Cole–Cole
relaxation time, and the standard deviation of the measurement
noise was increased to 2 mrad. As can be observed in Fig. 7b, peak1,τ
is heavily influenced by these noise components, while τmean is
only slightly affected. This result can be explained by the resulting
RTDs (Fig. 7e), where the noise produces misdirecting peaks which
get smoothed out by the time regularisation.

Note, again, that peak1,τ is usually only interesting if multiple
dominating polarisation responses are present in the SIP spectra,
and only a subset is analysed. In other cases a more robust re-
laxation time parameter such as τmean should be preferred.

The presented results (Figs. 4–7) illustrate that care must be
taken with respect to both adequately balancing regularisation
versus data misfit and adequately balancing time versus frequency
regularisation. The former issue can be addressed by, for example,
performing a line search at each iteration of the DD to find the
regularisation parameter value which locally minimises the data
misfit, or by using the L-curve criterion. For the present inverse
problem, however, it was found that the latter approach may yield
varying results. To ensure a good balance between frequency and
time regularisation, the involved regularisation parameters should
be chosen such that the norms of the different regularisation
terms in Eq. (26), i.e. R x R x,f all all

0ρ , and R xm all, yield values of si-

milar order of magnitude, so that the dominance of a single term
over the others is avoided.
4. Conclusions

The presented Debye decomposition procedure is a robust and
versatile tool to describe and analyse time-lapse SIP data. The
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implementation of the procedure available under an open source
licence facilitates further development and an easy adaptation to
specific data types and fields of application. Time-regularisation
strategies yield improved results for a better interpretation of
monitoring measurements, especially when peak relaxation times
are considered. The number of relaxation times per frequency
decade should be larger than 20, and the range of relaxation times
should be extended by at least one frequency decade beyond the
limits given by the data frequencies. In addition, as with all reg-
ularised inversion problems, the choice of regularisation type and
strength can significantly influence the results of the Debye de-
composition. Future developments of the DD implementation will
include the incorporation of specific polarisation terms, for ex-
ample to represent higher-frequency electromagnetic coupling
responses, as well as the inclusion of spatial regularisation for an
improved analysis of SIP imaging results.

The code described in this study is maintained and developed
at https://github.com/m-weigand/Debye_Decomposition_Tools.
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Appendix A. Relationship between σ″ and mn for a Debye
response

The imaginary component of a complex resistivity Debye re-
sponse according to Eq. (3) is given by

m
1

.
A.10 2ρ ω ρ ωτ
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+ ( ) ( )

With / 2σ ρ ρ″ = − ″ |^| (since 1/σ ρ^ = ^) we obtain for the imaginary
component of the complex conductivity
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Since m10ρ ρ= ( − )∞ (see, e.g., Tarasov and Titov, 2013), with the
high-frequency asymptotic resistivity ρ∞, and ρ ρ ω< |^( )|∞ , we can
write f m10ρ ω ρ ω|^( )| = [ − ( ) ], with some real-valued parameter
f 0, 1ω( ) ∈ [ ]. Substitution into Eq. (A.2) yields
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If we now assume that the polarisation is not too strong, i.e., m 1⪡ ,
expand the term m f m/ 1 2ω[ − ( ) ] into a Taylor series and neglect
higher-order terms in m, we obtain
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which relates σ″ with the normalised chargeability m m/n 0ρ= (Eq.
(5)).
Appendix B. DD derivatives

The real and imaginary parts of the complex resistivity, as
described by Eq. (3), are given by (e.g., Nordsiek and Weller, 2008)
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The corresponding partial derivatives with respect to the model
parameters used here are given by
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Appendix C. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2015.09.021.
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