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a b s t r a c t

The exploration of mining has often been limited by time-consuming methods of analysis. This paper
introduces Data Envelopment Analysis (DEA) as a new tool for the exploration phase of mining. DEA is a
non-parametric method for data fusion, and it is used alongside with the on-site Raman analysis. Ten
meters of halved rock drillcore from the Kittil mine (Suurikuusikko deposit) were pulverised and
homogenised, thus ensuring that each meter had a representative sample. These 10 samples, one for each
meter, were subsequently measured with a grid measurement (32�32 measurement each) using the
Raman setup. All the data points were analysed using the point-count method. After identifying the
frequency at which potentially valuable minerals appear in the samples, this information was analysed
using DEA. The study ends by presenting an efficiency score for each meter of drillcore. These efficiency
scores enable geologists to judge more rapidly which parts of the drillcore must be logged more carefully.
In addition, Principal Component Analysis (PCA) is discussed as an alternative for producing similar
results to DEA.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, expediting the exploration phase of mining has
sparked considerable interest in the mining industry due to the
fact that it is highly time-consuming process. One needs to cut
through bedrock with a diamond drill, analyse the drillcores ob-
tained, and then decide the feasibility of establishing a mine, as
well as the exact mining location. The exploration phase depletes
large amounts of both natural and economic resources in the
phase of extraction of drillcores and their analysis. However, this is
the sole way to acquire evidence of ore as well as estimate the
amount available in the rock (Computers & Geosciences, 2011).
Moreover, after the mine has been started, the mine planning in-
cludes drilling new holes to ascertain where the deposit is located.

Possessing accurate information on the contents of the drill-
cores is vital for the mining industry (Ma et al., 2010). The ore
excavated is completely dependent on the analysis carried out on
the drillcores. Time is also of the essence, even though mining
occurs over a period of years. By improving the speed of the
analysis of drillcore samples, geologists can more quickly provide
accurate information to decision-makers.

This paper focuses on affordable but precise methods of ana-
lysing drillcores. These methods might speed up the process for
the geologist from the phase of acquiring the drillcores from the
ground to the next phase of passing on their findings. The phases
involved are: drilling, analysing and presenting the findings. This
paper concentrates on the analysis part of the exploration. A new
method is proposed to help geologists analyse the drillcore faster
but still in a reliable manner.

Analysing the drillcore samples is a time-consuming process
requiring one to two months to acquire the laboratory results. The
methods to circumvent the laboratory analysis using on-site ana-
lysis are further described elsewhere (see Kauppinen et al. (2013,
2014a)) but here it might be noted that by using on-site analysis,
the time required to produce reliable results is measured in hours,
not months. One of the candidates for on-site analysis is the Ra-
man analysis (see e.g. Ishikawa and Gulick (2013)), which is used
in this paper to produce data from rock drillcores. In addition,
geologists need to analyse the rock when it is extracted from the
ground. This analysis is called logging. Logging is hard to quickly
and reliably execute, hence the methodology presented in this
paper. By the method introduced, geologists can produce results
for the decision-makers from a high number of drillholes in a
matter of days.

The object of research in this paper is to show that Data En-
velopment Analysis (DEA) can be used to help geologists log the
drillcores more efficiently (for mineral prospecitivity mapping
with DEA, see Hosseini and Abedi (2015)). The case studied is
Kittilä mine in Finland, but the general application for drillcores is
also discussed. DEA is a non-parametric efficiency measure. It is
used here to fusion the spectral data received from Raman
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experiments into a single efficiency score available for the use of
the geologists. Furthermore, the mathematics of DEA is discussed
and its linkages to other data fusioning methods (see e.g. Abedi
et al. (2012) and Chauhan et al. (2016)) are considered. This paper
also shows that DEA can be considered to be a reliable tool even
though it is by essence non-parametric.
72

74
2. Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a non-parametric method
for evaluating Decision Making Units (DMUs). Typically, DEA is
used to evaluate branches of a companies or medical facilities. The
first contributions for DEA were made by Farrell (1957), who es-
tablished the foundations for DEA by introducing the comparative
efficiency of companies using a linear programming (LP) problem
for input–output data set.

Ever since Farrell's discovery, the DEA method has grown in
popularity. Charnes et al. (1978) published a paper in the field of
operations research. In this and the following paper, Charnes et al.
(1979), presented the Charnes–Cooper–Rhodes (CCR) model,
which was and still is the first basic model for DEA. The CCR model
evaluates the efficiency of the weighted sums of the input–output
ratio. In addition, the efficiency scores of DMUs are given between
[0,1] in CCR modelling, which is even today the basic premise for
many DEA models. After the CCR model, Banker et al. (1984) in-
troduced the Banker–Charnes–Cooper (BCC) model. In BCC mod-
elling, variable returns to scale of DMUs define the efficiency
frontier, while the CCR model assumes constant returns to scale.

The DEA method has grown in popularity in academic pub-
lications worldwide. Therefore, the scientific community has
possibly already accepted or is in the process of accepting the DEA
method as a valid tool for decision making. At present, this method
includes many different models for different usages. For example,
Cooper et al. (2006) describe 20–50 different models, while the
exact number is related to the definition of a model. Of course, for
the user of the DEA method, this poses a new problem of finding
the appropriate model from a selection of models.

In this paper, output-oriented BCC modelling is used to ascer-
tain the efficiency scores for ten (10) consecutive samples of rock
drillcore. BCC modelling assumes varying returns to scale, mean-
ing that even smaller quantities of ore can show a high efficiency
score. Considering drillcore analysis, this is highly acceptable: the
cases where there are multiple minerals in small quantities might
also be a valuable area for geologists to study in more detail.
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Fig. 1. Efficiency frontiers for both DEA CCR model (blue) and DEA BCC model (red).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
2.1. Introduction to mathematics of data envelopment analysis

Data Envelopment Analysis is a linear programming (LP) based
technique for measuring the relative performance of data points
(see e.g. Kauppinen and Khajehzadeh (2015)). The usual measure
of efficiency, i.e.:
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is often inadequate due to existence on multiple inputs and out-
puts related to the data in question. In Eq. (1), u and v are weights
for output and input variables y and x, respectively.
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Eq. (2) is a fractional problem, which can be modified into
Linear Programming (LP) form by defining + ⋯ + =v x v x 1o m mo1 1 .
The result in Eq. (3) is treated as a problem akin to a standard
Linear Programming (LP) problem, also known as the input or-
iented CCR DEA model for DMUs = …o n1, , .
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After developing the CCR model, yet another model can be
introduced, known as the BCC model, which is used in this study
for the actual computations. The multiplier form of input oriented
BCC model can be developed from the Eq. (3) by adding a variable
uo to the cost function. uo is free in sign and it is substracted from
the cost function otherwise equal to the CCR model (see Eq. (4)).

Fig. 1 shows graphically how CCR and BCC efficiency frontiers
differ form each other for a 200 data points. The data is random
data, including one input and one output variable.

Graphically uo marks the difference between the efficiency
frontiers of CCR and BCC models (see Fig. 1), and therefore uo
varies for different DMUs o. The points on the efficiency frontier
always have an efficiency of one. Furthermore, the rest of the
points score a better efficiency scores as the distance from the
efficiency frontier is somewhat reduced. Therefore, the BCC model
gives higher efficiency scores for the data set under study
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The Eq. (4) is similar to fractional problem of Eq. (2), if one
ignores the uo variable. In the same way as before, the problem can
be transformed into a LP-problem by assigning condition for the
denominator to be equal to one (see Eq. (5))
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The Eq. (5) is an input oriented model. The output-oriented
model can be understood graphically in one input and one output
case (see Fig. 1) as measuring the distance from the efficiency
frontier along the y-axis, while input oriented model does this
along the x-axis. In the case of one input and one output, one can
measure the individual, output oriented efficiency score of a DMU
in the following manner: first, by taking the total vertical distance
to the x-axis from a given point, and second, by dividing the result
by the distance that a vertical line through the given point has to
the efficiency frontier.

Eq. (6) introduces the output oriented BCC DEA model. The
difference here is that the inputs are minimised whereas before
the outputs were maximised. This change can most easily be un-
derstood graphically form Fig. 1, as the output-oriented model
seeks to minimise the input variables of DMU o, creating a pos-
sibility to measure the actual efficiency along the y-axis as ex-
plained previously.
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In the actual DEA program that is used for calculations in this
study, a model known as envelopment form of DEA BCC model is
used. This far the discussion has been limited only on the multi-
plier, or dual (see Matousek and Gärtner (2007)) form for the BCC
model (Cooper et al., 2006, p. 91). It should be noted that math-
ematically, the envelopment form and multiplier form produce
exactly the same results.

To develop an envelopment form of DEA BCC model from the
above equations, an extra condition similar to uo has to be given,
namely λ∑ == 1j

n
j1 , where λ is a column vector with all elements

non-negative (see Eq. (7)). This is equivalent to the aforemen-
tioned difference by which the BCC differs from CCR model, im-
posing a convexity condition on allowable ways in which the ob-
servations for the n DMUs may be combined (Cooper et al., 2006,
p. 91).
In this study, the envelopment form of output oriented BCC

model is used to produce efficiency scores for different parts of
rock drillcore. For the envelopment form of BCC model with an
output orientation (Cooper et al., 2006, p. 93), the linear pro-
gramming problem can be given as follows
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In Eq. (7), ηB is a scalar, = ( ) ∈X x Rj
mxn and = ( ) ∈Y y Rj

sxn are
the given input and output data sets, λ ∈ Rn and e is a row vector
with all elements equal to 1. x0 and y0 stand for input and output
values of DMU = …o n1, , , respectively. Therefore, there are n
optimisation problems to be solved. It is also worth of note that x0

and y0 are vectors of length m and s, respectively. For example, if
= ( ) ∈X x Rj

1xn, as is the case with the input data used in this paper,
then x0 is a scalar.

The optimisation process is as follows: the DMU 1 is chosen,
the optimisation as in Eq. (7) is solved, and the efficiency score ηB
is saved for DMU 1. This is then repeated for DMU 2 and so on,
until also the DMU n has an efficiency score ηB. Effectively, n ef-
ficiency scores are reached, one for each DMU. These efficiency
scores are optimal in the sense of Eq. (1), namely having as high
value as the comparison with the other DMUs allow. For the DEA
model solved in this paper for rock drillcores the following holds:
m¼1, s¼2, n¼11.

2.2. Data Envelopment Analysis compared to Principal Components
Analysis

In this subsection, DEA is compared to Principal Component
Analysis (PCA, see also Shlens (2005)), which can be used to
construct a method comparable to certain DEA models. Later it is
also shown how PCA can be used to make an algorithm producing
the same results as output-oriented BCC DEA model, but in less
calculation time. In the conclusion section the PCA and DEA
methods are compared on a more general level.

A modelling scheme for PCA is introduced which generates the
same efficiency frontier as the BCC DEA model. Reason for using
PCA is to speed up the process of finding local maxima. One can
perform PCA in practice as follows. After (1) organising the data
into a p�n matrix (p rows are the input and output variables, in
this order, and n columns are the different DMUs) and (2) sub-
stracting the mean of each row, (3) the eigenvectors of the cov-
ariance can be calculated.

Eigenvectors can be solved for the symmetrical matrix AAT from
the equation

=
( )× ×

A A EDE
8p n

T

n p

T

where A is the p�n data matrix, E is the matrix of eigenvectors
and D is a diagonal matrix consisting of the eigenvalues of AAT

(Shlens, 2005).
After calculating the eigenvectors, which can also be called the

principal component axes, one may note that these axes are or-
thogonal to each other and useful in the context of finding the
efficiency frontier of DEA. As it stands, the second principal com-
ponent axis can be directly used to measure the highest point on
the efficiency frontier (for a graphical presentation for the one
output and one input data, see Fig. 2). This is done by finding the
maximum value of all the points in to the direction of the axis of
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Fig. 2. PCA space for data with one input and one output (see the arrow pointing
upwards for the second principal component).

Fig. 3. Measurement apparatus for Raman measurements (see also Kauppinen
et al. (2014b)).
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the second principal component.
When the first maximum is found, it can be stored. After

concluding whether the point dominates other points, the second
highest value can be searched for. The term dominates means that
the point found is higher on the output axis and lower on the
input axis than some other point, and is therefore always more
efficient. The described process of searching the local maximum in
principal component space produces the DEA efficiency frontier.

The algorithm used to produce the BCC efficiency frontier using
PCA-related functions as follows. The algorithm always picks up
the highest value measured on the second axis of principal com-
ponent space, stores it and after this ignores it in further calcula-
tion. If the maximum point found is higher on the output axis and
lower on the input axis than some points, those points can also be
ignored in further calculation, as they cannot be on the efficiency
frontier. Then the algorithm again picks up the highest value and
continues the iteration. After all the other points beside the last
efficiency frontier point have been analysed, the program termi-
nates, with the stored efficiency frontier values.

The points on the efficiency frontier always have the efficiency
score of one. After receiving the efficiency frontier values, the al-
gorithm continues by finding the individual efficiency scores of the
other points. This can be done by vector calculus: the algorithm
measures the distance of the points from the efficiency frontier,
and divides this distance with the total distance from the x-axis to
the efficiency frontier.
Fig. 4. Pulverised sample made into a pellet (on the left) and tools used to produce
one (see also Kauppinen et al. (2014a)).
3. Raman measurements

Raman analysis was conducted on pulverised and homogenised
rock drillcore samples gathered from Agnico-Eagle Kittilä Mine,
Finland. Kittilä mine (Suurikuusikko deposit) is concentrated on
gold mining. In Kittilä mine there is abundance of sulphide and
gangue, as three fourths of gold is present in arsenopyrite mineral
and the rest in pyrite mineral, free gold is very rare.

In total, 10,240 (ten thousand two hundred and forty) Raman
spectra were analysed from Kittilä mine. The sample spectra were
measured in a 32�32 grid on the surface of pulverised and
homogenised samples.
3.1. Measurement apparatus

A laser operating at 532 nm and with power of 100 mW was
used for Raman measurements (see Fig. 3). The measurements
were performed by moving the sample in front of the measure-
ment area of the spectrograph in a grid of 32 by 32 measurement
points. The Raman measurements were performed with a home-
built Raman spectrometer in a backscattering geometry. Samples
were excited with laser at wavelength of 532 nm (Changchun New
Industries Optoelectronics Tech.Co., Ltd, MLL-III-532 nm–

200 mW). The excitation light was attenuated to 100 mW and
focused into a sample with a microscope objective (Zeiss, 10x, 0.30
N.A.) and the backscattered light was collected with the same
objective. Rayleigh scattering was attenuated with a 532 nm Razor
Edge ultrasteep long-pass edge lter (Semrock) allowing recording
of Raman spectrum down to 100 (1/cm). Raman scattering was
dispersed with 1200 g/mm grating in a 0.5 m imaging spectro-
graph (Acton, SpectraPro 2500i). The signal was detected with an
CCD camera (Andor, Newton DU940N-BV).

3.2. Preparing the samples

First the samples were pulverised and homogenised. Although
for the purpose of this study the samples were received ready for
spectroscopy, they can also be pulverised and homogenised on
site. The pulverised samples (see Fig. 4) were pressed together for
the Raman measurement. Each measured sample represents a one
meter of rock drillcore, in a form of homogenised and pulverised
sample. The Raman spectra were collected by 32�32 grid on the
surface of the pulverised sample. The total area covered was
0.64 cm�0.64 cm in size. With 10 samples studied, the total



Table 1
Drillcore samples measured with Raman from Kittilä mine: the number of ar-
senopyrite and pyrite spectra in the samples, with a combined maximum of 1024
for each meter.

Drillcore X (m¼1) Y (s¼1) Y (s¼2)
Depth (m) No. of arsenopyrite No. of pyrite

1 204 3 5
2 205 3 11
3 206 6 10
4 207 2 50
5 208 10 67
6 209 6 96
7 210 3 23
8 211 6 20
9 212 3 12
10 213 3 6
Average 208.5 4.5 30
Ideal 1 100 500
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Fig. 5. Efficiency scores for both output-oriented BCC DEA and PCA-related
algorithm.
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Raman spectra measured was 10,240. The speed of measurement
was approximately one second per grid point, giving approxi-
mately seventeen minutes per meter of drillcore.

3.3. Data used in computation

The data from Raman spectroscopy was digitised as shown in
Fig. 3, and loaded into computer memory for use in Matlab. Nor-
malisation and baseline correction were performed before any
other techniques applied to raw data. Baseline correctionwas done
by an algorithm given by Eilers and Boelens (2005), to remove the
baseline from the measured spectra. Normalisation was done to
remove the mean and to scale each measured spectrum to unit
variance. The data preparation is done with Matlab code, as is all
the further analysis described herein.

3.4. Point-count method

Haskin et al. (1997) introduced a point-count method for Ra-
man analysis. Point-count is a method of computing the number of
spectra that represent a certain mineral. If in hundred measured
spectra there are 10 that are classified as showing a clear peak on a
wavelength of a certain mineral, then according to the point-count
method it is safe to conclude that 10 percent of that sample has
the given mineral.

Here the point-count method is used as follows: first, pyrite
mineral is given a window of 350–375 nm, all the spectra showing
the highest peak inside this window are classified as representing
pyrite, and second, all the spectra showing the highest peak at
wavelengths 330–350 nm are classified as arsenopyrite.

3.5. Preparing the data for DEA

DEA models have by definition both input and output variables.
Here two output variables (pyrite and arsenopyrite content) are
considered. These output variables are selected because most of
the gold in Kittilä mine is present in pyrite or arsenopyrite, free
gold being very rare. The only input variable taken into account is
the depth fromwhich the drillcore is excavated. This input variable
is selected to take into account the effort needed to reach a given
mineral deposit. It is fascinating however to understand the pos-
sibility of using more input variables, or for example the costs as
input variables, eventhough in this paper these options are left
unused. It can also be argued that DEA modelling works also with
greater number of inputs and outputs than in the case of Kittilä
mine studied.
4. Results

Table 1 shows the number of spectra that belong to either
pyrite or arsenopyrite group (hereby called ‘hits’). These hits can
then be further analysed with DEA-BCC output-oriented modelling
to arrive at efficiency scores. It should also be noted that an ‘ideal’
case with 500 hits for pyrite and 100 hits for arsenopyrite is in-
serted to give a baseline for DEA model. From Table 1 it can be
seen that during the 10 m of drillcore studied there is a great
variation in pyrite and arsenopyrite content.

4.1. DEA compared to PCA

As can be seen from Fig. 5, using the mineralogical data pro-
duces coinciding efficiency scores for both DEA BCC output or-
iented model and PCA-related algorithm.

A model can also be built which introduces the mineralogical
data with an ideal case, having high content of pyrite and
arsenopyrite near the surface (low depth). However, the PCA-re-
lated algorithm cannot handle the ideal case, as it becomes nu-
merically unstable. This is just one example how PCA-related al-
gorithms need to be built on case-by-case basis to handle the
different phenomena, whereas DEA (output-oriented BCC) is more
robust in its handling of different problems. Fig. 6 shows the ef-
ficiency frontier formed by DEA modelling, when there is an ideal
case (see Table 1) included in the analysis.

The computing times of different models can be compared. The
mineralogical data produces 1.4 s for the DEA model and 0.7 s for
the PCA-related algorithm. By testing it was concluded that the
PCA-related algorithm is always faster than linear programming
that DEA uses. To reduce the time difference in the favour of DEA,
on could use significantly larger data. Moreover, if the multiplier
form, or the dual (see Matousek and Gärtner (2007)) formulation
of DEA is used, DEA algorithm should become comparatively faster
with a large data set.

The Principle Component Analysis (PCA) modelling showed its
computational strength against linear programming which the
DEA method is based on. However, this is a subsidiary point in the
studies where computational speed is only a minor factor affecting
the results, as in the study of rock drillcore. It is more important to
consider the DEA theory as a complete set of tools for different
data, whereas PCA-related algorithms are more dependent on the
model developed on a case-by-case basis. Therefore, the DEA can
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Fig. 6. Efficiency score for each meter of drillcore given by BCC modelling.
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Fig. 8. The combined pyrite and arsenopyrite hits at each depth.
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be seen as being slower, but more reliable a way of analysing ef-
ficiency, compared to PCA-related algorithms.
4.2. The DEA modelling

Figs. 6–8 present the main finding of this paper. One can see
from the figures that they are somewhat similar. Fig. 6 shows the
DEA efficiency scores of 10 m of drillcore, and Fig. 7 gives indicator
elements, which are the current method for indicating whether
there is pyrite or arsenopyrite present in the sample. For com-
parison, also the total number of hits for each depth is shown in
Fig. 8.

It can be seen that the small efficiency scores do not differ from
the findings made with indicator elements. The peak values,
however, of pyrite and arsenopyrite are different in Figs. 6 and 8
compared to Fig. 7. In Figs. 6 and 8, the peak is at 209 mof depth,
but in Fig. 7 the peak is at 208 m of depth. This can be because
these samples actually have pyrite and/or arsenopyrite which the
indicator elements do not show, or because the Raman analysis
conducted contains some error in labelling minerals pyrite or ar-
senopyrite. However, most likely is that the sample at depth 209 m
has a high efficiency score and high number of hits because it
contains a lot of pyrite and only a little arsenopyrite. This gives
higher efficiency than indicator elements (e.g. Arsenic, As) would
dictate.
Fig. 7. The amount of trace elements for the 10 m of drillcore studied.
5. Conclusion

After having examined the results, there is little doubt that the
Data Envelopment Analysis (DEA) is a proper tool for the ex-
ploration phase of mining. Although the example in this study was
simple and non-complex, including depth, pyrite content and ar-
senopyrite content, it showed the potential of introducing multi-
dimensional problems a two dimensional solution (Fig. 6). The
number of outputs and inputs can be decided in different cases
using geological knowledge of the mineralogy of the deposit. It
should be of interest to geologists to introduce variables to DEA
which reflect the mineralogy of the given mine.

5.1. DEA modelling of drillcores

The on-site Raman analysis gives more data, both more accu-
rate and larger amount, than the study of indicator elements at the
moment can. Also, using DEA brings greater confidence in the
findings, and helps in logging as geologists can concentrate on the
parts with a higher amount of valuable minerals. The results for-
mulated with DEA can be trusted, and, as was shown, validated
using other data analysis methods as PCA.

It was shown that the DEA method combined with the on-site
Raman analysis can help geologists log the drillcore more precisely
and faster. This is because the data provided combines all the
important mineralogical aspects into one dimension (the effi-
ciency score). By comparing the values in this dimension, geolo-
gists can make a faster decision of which drillcores to log more
carefully. Moreover, the decision-making of the geologist utilising
DEA method becomes easier, as the DEA can include many drill-
cores from different drillholes, comparing them to each other.
Third, leading the exploration phase becomes easier with the fu-
sioned data that DEA provides. The DEA results solved in this
paper compared well with the current method of indicator
elements.

Data Envelopment Analysis can be used as a new exploration
tool for mining. In particular, the application of DEA in the logging
of drillcores was found plausible in the case of undefined number
of outputs and inputs. It is also worth to observe that almost any
type of DEA model (here DEA BCC output oriented model) can
potentially be used to produce meaningful efficiency scores. Fur-
thermore, the output and input variables can be more varied than
in the case presented in this paper. These points offer abundant
possibilities for further research.
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