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a b s t r a c t

A micro-seismic signal's transient features are non-stationary. The traditional weighted generalized
cross-correlation (GCC) algorithm is based on the cross-power spectrum density. This algorithm di-
minishes the performance of the time delay estimation for homologous micro-seismic signals. This paper
analyzed the influence of calculation error on the cross-power spectrum density of a non-stationary
signal and proposed a new cross-correlation analysis and time delay estimation method for homologous
micro-seismic signals based on the Hilbert–Huang transform (HHT). First, the original signals are de-
composed into intrinsic mode function (IMF) components using empirical mode decomposition (EMD)
for de-noising. Subsequently, the IMF components and the original signals are analyzed using a cross-
correlation analysis. The IMF components are subsequently remodeled at different scales using the
Hilbert transform. The marginal spectrum density is obtained via a time integration of the remodeled
components. The cross-marginal spectrum density of the two signals can also be obtained. Finally, the
cross-marginal spectrum density is used in the weighted GCC algorithm for time delay estimation in-
stead of the cross-power spectrum density. The time delay estimation is determined by searching for the
weighted GCC function peak. The experiments demonstrated the superior time delay estimation per-
formance of the new method for non-stationary transient signals. Therefore, a new time delay estimation
method for non-stationary random signals is presented in this paper.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The localization of original seismic activity is an essential mi-
cro-seismic monitoring technique. Accurate localization can ex-
plain the focal mechanisms of the seismic activity or evaluate
disasters, such as rock burst. The time difference of arrival method
is commonly used for micro-seismic source localization. In this
method, the time difference immediately impacts the localization
accuracy.

The arrival time difference of the signals acquired by different
vibrational sensors is called the time delay. Typical time delay
estimation methods include the generalized cross-correlation
(GCC) method (Knapp and Carter, 1976; Souden et al., 2010), least
mean square (LMS) method (Youn et al., 1982; Salvati and Canazza,
2013; Gedalyahu and Eldar, 2010), acoustic transfer function (ATF)
method (Dvorkind and Gannot, 2003; Cornelis et al., 2010) and
time–frequency energy method (Juliana, 2011). The GCC method is
n Science and Engineering,
dao 266590, China.
the most common. The method calculates the cross-correlation
function between two homologous micro-seismic signals and later
searches for the maximum peak. Accurate time delay estimations
can be obtained for cases characterized by weak Gaussian noise.
However, the performance declines in the case of low-SNR signals
(Lee et al., 2014). Therefore, various improved techniques have
been proposed, such as the ROTH filter (ROTH), smoothed co-
herence transform (SCOT), maximum likelihood (ML), ECKART
filter (ECKART), Wiener filter (WP), phase transform (PHAT) and
Hassab Boucher (HB) methods. Among these methods, the ML,
ECKART, WP and HB methods can reach the Cramer-Rao low
bound (CRLB) (Knapp and Carter, 1976; Davide et al.,2013), redu-
cing the time delay estimation noise influence to a certain extent.

These methods are based on the second-order statistics theory
and technology that comply with the Gaussian noise distribution
characteristics. However, seismic signals and noise are non-sta-
tionary and non-Gaussian (Yue et al., 2012). Therefore, these
methods significantly reduce the time delay estimation perfor-
mance. This paper proposes a time delay estimation method based
on the HHT to address the non-stationary characteristics of micro-
seismic signals with noise. This method decomposes the micro-

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.03.012
http://dx.doi.org/10.1016/j.cageo.2016.03.012
http://dx.doi.org/10.1016/j.cageo.2016.03.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.012&domain=pdf
mailto:jrs716@163.com
http://dx.doi.org/10.1016/j.cageo.2016.03.012


Fig. 2. Schematic diagram of the GCC method.
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seismic signals using empirical mode decomposition (EMD) and
sets reconstruction rules for the intrinsic mode function (IMF) to
filter the high frequency noise. The marginal spectrum densities of
the micro-seismic signals are then obtained via the Hilbert
transform. The cross-marginal spectrum density is used in the
weighted GCC algorithm instead of the cross-power spectrum
density to estimate the time delay, thereby improving the time
delay estimation performance.
2. Influence of non-stationary seismic signals on the GCC
algorithm

2.1. Generalized cross-correlation time delay estimation algorithm

The seismic geophone acquisition of vibration signals is af-
fected by external noise during the micro-seismic monitoring
process, as shown in Fig. 1.

The x1(t) and x2(t) signals are received by the seismic geo-
phones m1 and m2 and expressed as:

( ) = ( ) + ( ) ( )x t s t b t 11 1

( ) = ( − ) + ( ) ( )x t s t D b t , 22 2

where s(t) represents the original signal, D is the time difference
between the two seismic geophones (m1 and m2) and b1(t) and b2
(t) represent the external noise. In addition, s(t), b1(t) and b2(t) are
uncorrelated. The cross-correlation function between the micro-
seismic signals x1(t) and x2(t) is subsequently represented as

τ τ τ τ τ

τ

( ) = ( ) ( + ) = ( − ) + ( − ) + ( )

+ ( ) ( )

⎡⎣ ⎤⎦R E x t x t R D R D R
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where E[ � ] represents the mathematical expectation, Rss is the
auto-correlation function of the original signal and Rb b1 2 is the
cross-correlation function of additive noise from the two seismic
geophones m1 and m2. It is assumed that s(t), b1(t) and b2(t) are
unrelated and completely orthonormal, yielding

τ τ τ( − ) = ( ) = ( ) = ( )R D R R 0 4sb sb b b1 2 1 2

Formula (3) can be rewritten as

τ τ( ) = ( − ) ( )R R D 5x x ss1 2

The auto-correlation function is governed by
τ( − ) ≤ ( )R D R 0ss ss . Thus, Rss is maximized when τ − =D 0. The

time delay estimation between the two seismic geophones can
now be expressed as
Fig. 1. Seismic geophone detects micro-seismic signals with noise.
τ^ = ( − ) ( )τ
⎡⎣ ⎤⎦D R Darg max 6x x1 2

When the SNR is sufficiently large, the cross-correlation
method can estimate the time delay by detecting the peak position
of the cross-correlation function. However, the cross-correlation
function does not work if background noise exists. The GCC
method pre-filters the signals using the weighted function in the
frequency domain before passing the signals to the correlator. This
step whitens the signals and noise, accentuates the original signal
and suppresses the noise power to improve the time delay esti-
mation. The principle of the GCC algorithm is shown in Fig. 2.

As shown in Fig. 2, a generalized cross-correlation function can
be defined as the Fourier inverse transformation of the weighted
power spectrum density function.

τ( ) = ( ) ( )( ) − ⎡⎣ ⎤⎦R F G f 7x x
g

x x
1

1 2 1 2

( )G fx x1 2 can be expressed as

( ) = ( ) *( ) ( ) ( )G f H f H f G f 8x x x x1 21 2 1 2

where * represents the complex conjugate and ( )G fx x1 2 represents
the cross-power spectrum density function of x1(t) and x2(t). The
cross-correlation function of x1(t) and x2(t) can then be expressed
as

∫τ( ) = ( ) ( ) ( )
π τ( )

−∞

+∞
R H f G f e df 9x x

g
x x

j f2
1 2 1 2

where:

( ) = ( ) *( ) ( )H f H f H f 101 2

H(f) is the generalized weighted function. Common generalized
weighted functions include the SCOT, PHAT, ECKART and HB
functions (Knapp and Carter, 1976; Joseph and Ronald, 1979;
Wittlinger et al., 2007).

2.2. Error influence when calculating the power spectrum density of
the time delay estimation algorithm

The GCC and improved-GCC algorithms are based on the phase
difference of the power spectrum. The power spectrum density
function is defined as

∑ω ω( ) = ( ) = ( )
( )

ω

=

−
−P

N
x n e

N
X

1 1

11
xx

n

N
j n

N
0
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where ω( )Pxx represents the power spectrum density and
ω( )XN is the Fourier transform for finite sequences

( )( = − )X n n N0, 1, 2, ... , 1N . In theory, the Fourier transformation
can only be applied to stationary random signals, while micro-
seismic signals are non-stationary and non-Gaussian. Therefore, a
relatively large error will accrue during the power spectrum esti-
mation process, which affects the precision of the time delay es-
timation. Modern power spectrum estimation techniques, such as
the Welch, AR modeling, maximum entropy and Burg recursive
methods, have improved the time delay estimation precision.
However, these methods are all based on the Fourier transform.
Fig. 3 shows the time delay estimation results for two micro-
seismic signals utilizing the PHAT-GCC and SCOT-GCC algorithms,



Fig. 3. Two homologous micro-seismic signal waveforms and time delay estimations based on different GCC methods.
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where the signal length is 2000 and the sampling frequency is
1 kHz. In addition, the power spectrum density is calculated using
the Welch method, the window function is given by the Hanning
window for 512 sampling points and the number of overlapping
sampling points of segmented sections of the signal sequence is
256.

The actual delay of signals x and y is 76 sampling points
(0.076 s), and the estimations of PHAT-GCC and SCOT-GCC are 87
and 84 sampling points, respectively, as shown in Fig. 3. Both
methods include considerable errors. The peaks in Fig. 3(c) and
(d) are not sharp, and the anti-noise damping is significantly de-
creased. The main reasons for this error include: (1) this power
spectrum estimation method is not suitable for non-stationary
seismic signals, as it is based on the Fourier transform, which is
applied to stationary signals. As a result, the time delay estimation
based on the cross-power spectrum density includes considerable
errors; (2) a large amount of external noise is included in the
micro-seismic signal collection process. The noise reduces the
precision of the time delay estimation.

This paper re-examines the non-stationary and non-Gaussian
characteristics of micro-seismic signals, decomposes the signal
with EMD, filters high frequency noise via IMF reconstruction,
calculates the marginal spectrum density utilizing the Hilbert
transform and estimates the time delay based on the cross-mar-
ginal spectrum density instead of the cross-power spectrum
density used in the GCC algorithm. Thus, the time delay estimation
precision is improved.
3. Time delay estimation algorithm based on HHT

The HHT is a new signal analysis technology proposed by N. E.
Huang, which is suitable for processing non-stationary random
signals (Huang et al., 1998). The approach is more adaptive for
time-frequency localization analyses compared to Fourier trans-
form and wavelet analysis methods (Chengwu et al., 2012). The
HHT contains two parts, including an empirical mode decom-
position (EMD) and Hilbert transform. This method has been
widely used in seismic data processing, signal de-noising, fault
diagnosis and other fields (Shadnaz et al., 2015; Wang et al., 2013;
Jiang et al., 2013).

3.1. Principle of the time delay estimation algorithm based on HHT

The principle of this time delay estimation algorithm based on
the HHT is shown in Fig. 4 for two homologous seismic signals.
First, the two signals are decomposed into IMF components and
ordered from high frequency to low frequency using EMD. The
cross-correlation coefficients of each IMF and signal are then cal-
culated to determine the signal and noise boundaries according to
certain rules, so that the IMF noise can be rejected. The Hilbert
spectrum of the remaining IMF is then calculated by utilizing the
Hilbert transform. The marginal spectrum density is obtained via
time integration of the Hilbert spectrum. Furthermore, the mar-
ginal spectrum density accumulates on the IMF to obtain the
marginal spectrum density of the signal after de-noising. Finally,
the cross-marginal spectrum density is used for time delay esti-
mation instead of the cross-power spectrum density used in the
weighted GCC algorithm. This weighted coefficient suppresses the
noise and improves the time delay estimation.

3.2. Empirical mode decomposition and signal de-noising

EMD can decompose a signal into a series of IMFs with different
time scales according to the characteristics of the non-stationary
signals. These IMFs meet both of the following conditions (Sidorov,
2015): (1) the number of local extreme points is equal to or only
one different from the number of zero-crossing points and (2) the
mean value of the lower and upper enveloping curves, obtained
via interpolation of the local maximum and minimum values, is
zero. The EMD and signal x(t) de-noising process is as follows.

Step 1: Search for the local maximum and minimum points on
the time curve of the signal x(t), fit the lower and upper en-
veloping curves three times using the spline function and cal-
culate the mean lines m1(t) of the lower and upper enveloping
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Fig. 4. Time delay estimation algorithm based on the HHT.
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curves. h1(t) can be obtained via Formula (12).

( ) = ( ) − ( ) ( )h t x t m t 121 1

Step 2: Check that h1(t) satisfies the above two conditions. If
satisfied, the first-order IMF of signal x(t) is obtained, or h1(t) is
considered as original signal and Step 1 is repeated.

( ) = ( ) − ( ) ( )h t h t m t 1311 1 11

After k iterations, the stopping criteria for the iteration must
satisfy the above conditions. The first-order IMF of signal x(t) is
then obtained and expressed as c1(t).

( ) = ( )
( ) = ( ) − ( ) ( )( − ) ( − )

⎪

⎪⎧⎨
⎩

c t h t

h t h t m t 14

k

k k k

1 1

1 1 1 1 1
Fig. 5. (a), (c) and (e) illustrate the cross-power spectrum density, time-frequency
based on PHAT-GCC; (b), (d) (f) and illustrate the cross-marginal spectrum densi
correlation function based on HHT-GCC.
Step 3: Subtract c1(t) from the original signal x(t) to obtain the
residual r1(t).

( ) = ( ) − ( ) ( )t x t c tr 151 1

r1(t) is treated as a new signal to repeat Steps 1 and 2. A ci(t)
series and residuals res, which did not continue to decompose,
are obtained. The original signal can be expressed as

∑( ) = ( ) +
( )=

x t c t res.
16i

n

1
i

Step 4: With the n of IMFs obtained from the decomposition,
the noise domination of the IMF gradually decreases, and the
signal's domination strengthens according to the series c1(t), c2
(t), …, cn(t). The method for determining the boundary between
the noise and signal is as follows. First, the cross-correlation
coefficients of each IMF and the original signal are calculated
using formula (17)
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N is the number of sampling points for signal x(t)

∑ ∑= ( ) = ( )
( )= =

x
N

x t c
N

c t
1

,
1

18t

N

i
t

N

i
1 1

The first local minimum is sequentially searched from the n
cross-correlation coefficients obtained by Formula (17). The IMF
corresponding to the first local minimum is the boundary between
spectrum of the cross-correlation function and normalized cross-correlation function
ty, time-frequency spectrum of the cross-correlation function and normalized cross-



Fig. 6. Performance comparison of two time delay estimation algorithms for different SNRs.

Table 1
Comparison of time delay estimation accuracies for different signal-to-noise ratios.

SNR (dB) Accuracy rate (%)

PHAT-GCC HHT-GCC

30 84.44 100.00
20 77.78 100.00
10 55.56 97.78
0 37.78 91.11

H.-M. Sun et al. / Computers & Geosciences 91 (2016) 98–104102
the noise and signal (Li et al., 2013), denoted by ck(t). The previous
k�1 IMFs are deleted and the remaining IMFs are reconstructed
for signal de-noising. The post-de-noising signal can be expressed
as

∑^( ) = ( ) +
( )=

x t c t res.
19i k

n

i

3.3. Hilbert transform and marginal spectrum calculation

Each of the IMFs in formula (19) are transformed utilizing the
Hilbert transform

∫π
( ) = ( ′)

− ′
′ ( )−∞

+∞⎡⎣ ⎤⎦H c t
c t
t t

dt
1

20i
i

The analytic signal can then be constructed via:
( ) = ( ) + ( ) = ( ) ( )θ ( )⎡⎣ ⎤⎦s t c t jH c t a t e 21i i i
j ti

where ( )a ti is the instantaneous amplitude function, θ ( )ti is the
instantaneous phase function and

( ) = ( ) + ( ) ( )⎡⎣ ⎤⎦a t c t H c t 22i i i
2 2

θ ( )=
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arctg
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The instantaneous frequency can then be obtained.

ω θ( ) = ( )
( )t

d t
dt 24i
i

The signal x(t) after de-noising can be expressed as

∑ ∑ ∫^( ) = ( ) = ( )
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θ ω
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The expansion of formula (25) is called the Hilbert spectrum

∑ ∫ω( ) = ( )
( )

ω

=

( )H t Re a t e,
26i k

n

i
j t dti

The time integration of formula (26) is defined as the marginal
spectrum density
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∫ω ω( ) = ( ) ( )h H t dt, 27
T

0

The marginal spectrum density of signal x(t) can be obtained
after de-noising from formulas (26) and (27)

∫ ∫∑ ∑

∑

∫ ∫ω

ω

^( ) = ( ) = ( )

= ( )
( )

ω ω

=

( )

=

( )

=

h a t e dt a t e dt

h

Re

28

T

i k

n

i
j t dt

i k

n T

i
j t dt
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where ω( )hi represents the marginal spectrum density corre-
sponding to the i-th IMF.

A marginal spectrum density calculation process analysis sug-
gests that the marginal spectrum density statistically represents
the accumulation amplitude distribution of each frequency point
of the entire signal. Thus, the marginal spectrum density reflects
the true frequency components of the signal and can be applied to
non-stationary signals.
3.4. Weighted GCC algorithm based on marginal spectrum

The SNR of the micro-seismic signal is improved after EMD and
de-noising. The marginal spectrum density is then used in the
weighted GCC algorithm instead of the power spectrum density.
The cross-marginal spectrum density of signals x1(t) and x2(t) can
be obtained from formula (28)

∑ ∑ω ω ω ω ω^ ( ) = ^ ( )⋅ ^ ( )
*

= ( )⋅ ( )
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where []* represents the complex conjugate. The weighted cross-
marginal spectrum density function can be obtained from for-
mulas (9) and (28)

∫τ π( ) = ( ) ^ ( ) ( )
π τ( )
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R H f h f e df2 30x x

g
T x x

j f

0

2
1 2

1 2

The marginal spectrum density is used to calculate the
weighting coefficient H(f) instead of the power spectrum density.

Strong external noises exist in the actual micro-seismic mon-
itoring environment, increases the latter three expressions. A large
error is produced by the assumption that Rx x1 2 in formula (5) is
approximately equal to Rss. In this paper, the EMD and re-
construction have eliminated the majority of the high frequency
noise effects. The weighting coefficient H(f) in formula (30) can be
improved based on Ma et al. (2004) to sharpen the associated peak
and improve the time delay estimation precision

π
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^ ( )
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H f

h f

1

2
31
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where 0.5rλr1 and λ changes as the SNR changes
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where σ represents the SNR, σ σ λ λ, , ,0 1 0 1 are constants that are
based on the actual situation, and λ λ>1 0.

The improved weighted GCC function is as follows:

∫τ π( ) = ′( ) ^ ( ) ( )
π τ( ) ′ ( )

R H f h f e df2 33x x
g

T x x
j f

0

2
1 2

1 2
4. Experimental results and analysis

The PHAT weighted generalized cross-correlation algorithm
(PHAT-GCC algorithm) can reduce the side lobe and sharpen the
main peak of the correlation function, improving the time delay
estimation algorithm accuracy. The PHAT-GCC method is com-
monly used in practical applications and used to contrast the
method proposed in this paper. The two waveforms in Fig. 3
(a) and (b) are from the ISS Micro-seismic Monitoring System of
China's eastern coal mine and are produced by homologous micro-
seismic waves at a data acquisition frequency of 1 kHz. The pre-
vious 2000 sampling points of each waveform are chosen as the
experimental samples and used to estimate the time delay, uti-
lizing the PHAT-GCC algorithm based on the power spectrum
density and the generalized cross-correlation algorithm (HHT-GCC
algorithm) based on the HHT. In the PHAT-GCC algorithm, the
power spectrum density is calculated using the Welch method, the
length of the frame is 512 sampling points and the window
function is a half-overlapping Hanning window. In the HHT-GCC
algorithm, the signal is decomposed with the EMD toolbox (http://
rcada.ncu.edu.tw/research1.htm) from the Research Center for
Adaptive Data Analysis (RCADA) at Taiwan's Central University.
The two algorithms are implemented in MATLAB, and the time
delay estimation performance comparison is shown in Fig. 5.

The sharpness of the cross-correlation function peak reflects
the precision of the algorithm, as shown in Fig. 5(e) and (f). The
anti-noise performance of the HHT-GCC method increases after
EMD de-noising and cross-marginal spectrum density calculations.
Meanwhile, the normalized cross-correlation function peak is
more prominent. The correct estimation can be obtained using 76
sampling points (0.076 ms). Fig. 5(a) and (b) illustrate the cross-
power spectrum density and cross-marginal spectrum density
distributions of the two signals. The distributions demonstrate
that the signals and noise are effectively treated by the GCC
method based on the marginal spectrum density. This method
enhances the signals with a high signal-to-noise ratio and re-
strains the noise, improving the estimation's precision. A com-
parison of Fig. 5(c) and (d) suggests that the frequency compo-
nents in the time-frequency spectrum of the cross-correlation
function calculated using the proposed method are more cen-
tralized, creating a more prominent cross-correlation function
peak.

The anti-noise performance of the algorithm proposed in this
paper was further tested by adding non-Gaussian random noise to
a seismic signal and conducting a computer simulation using dif-
ferent signal-to-noise ratios. First, a signal was selected with an
obvious take-off point and high signal-to-noise ratio (SNR¼30 dB).
The sampling frequency was 1 kHz, and the length of the signal
was 256 sampling points. The homologous signal was obtained
after a delay of 20 sampling points, and the two signals with non-
stationary random noises of different intensities were then ana-
lyzed via a cross-correlation analysis. PHAT was chosen as the
weighted coefficient. The result is shown in Fig. 6. The non-sta-
tionary random noise is generated by the α-stable distribution
model (Shao and Nikias, 1993) and the strength is calculated by
formula (34)

∫ ∑= ( ) = ( )
( )=

E x t dt x t
34T t

m
2

1

2

where x(t) represents the signal amplitude, T represents the
sampling period and m represents the sampling number.

Fig. 6(a) and (b) shows that the peaks of the cross-correlation
function are both sharp, and both estimates suggest 20 sample
points when the SNR¼30 dB, demonstrating high precisions. The
peak of the PHAT-GCC method cross-correlation function begins to

http://www.rcada.ncu.edu.tw/research1.htm
http://www.rcada.ncu.edu.tw/research1.htm
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expand as the signal-to-noise ratio decreases and several inter-
ference signals appear. However, the HHT-GCC method peak is also
sharp. The results of the two methods are both correct, as shown
in Fig. 6(c)–(f). The peak is submerged in the interference in the
PHAT-GCC method results when SNR¼0 dB, while the peak re-
mains sharp in the HHT-GCC method results. The HHT-GCC
method result is also correct, although the interference increases.

45 groups of homologous signals were randomly chosen ran-
domly from the mentioned ISS micro-seismic monitoring system
to further verify the performance of the proposed algorithm. Non-
Gaussian random noises with different intensities were added to
these signals. The time delay estimation accuracies of the PHAT-
GCC and HHT-GCC methods are compared for different signal-to-
noise ratios. This paper defines estimates as differing when the
error estimates vary from the true values by at least 5 sampling
points. The accuracies are shown in Table 1.

As seen in Table 1, the method proposed in this paper results in
a superior time delay estimation accuracy. Accuracy rates of at
least 91.11% were maintained, even in a 0 dB strong noise en-
vironment. This method is suitable for the time delay estimation of
micro-seismic signals and exhibits a strong anti-noise perfor-
mance. The micro-seismic signals and external noise that signals
contain are typical of random non-stationary signals. Generalized
cross-correlation time delay estimation based on the power
spectrum is unable to accurately estimate spectral distributions,
which can lead to increased time delay errors. The proposed
method is based on the HHT, which can process EMD noise re-
duction for micro-seismic signals with noise and random non-
stationary characteristics. The marginal spectrum reflects the ac-
tual frequency components of the micro-seismic signals. There-
fore, substituting the marginal spectrum for the power spectrum
in the time delay estimation calculations ensures a high accuracy
rate.
5. Conclusions

The micro-seismic signal's transient features are non-sta-
tionary. The cross-power spectrum density is widely used in tra-
ditional generalized cross-correlation algorithms to reduce the
influence of external noise on the delay estimation accuracy.
However, the cross-power spectrum estimation of non-stationary
signals possesses a high uncertainty and exhibits poor perfor-
mance when analyzing short signals. Therefore, the generalized
cross-correlation algorithm based on the cross-power spectrum
density is not suitable for non-stationary micro-seismic signals.
The marginal spectrum density estimation based on the HHT can
accurately reflect the signal distributions in the frequency domain.
Thus, the cross-marginal spectrum density is used for time delay
estimation instead of the cross-power spectrum density in the GCC
algorithm. This substitution leads to a sharper correlation function
peak for the homologous micro-seismic signals and improves the
time delay estimation accuracy, even for non-stationary noises.
The experimental results suggest that the method proposed in this
paper is superior to the reference method.
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