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Landslides are a common hazard worldwide that result in major economic, environmental and social
impacts. Despite their devastating effects, inventorying existing landslides, often the regions at highest
risk of reoccurrence, is challenging, time-consuming, and expensive. Current landslide mapping tech-
niques include field inventorying, photogrammetric approaches, and use of bare-earth (BE) lidar digital
terrain models (DTMs) to highlight regions of instability. However, many techniques do not have suffi-
cient resolution, detail, and accuracy for mapping across landscape scale with the exception of using BE
DTMs, which can reveal the landscape beneath vegetation and other obstructions, highlighting landslide
features, including scarps, deposits, fans and more. Current approaches to landslide inventorying with
lidar to create BE DTMs include manual digitizing, statistical or machine learning approaches, and use of
alternate sensors (e.g., hyperspectral imaging) with lidar.

This paper outlines a novel algorithm to automatically and consistently detect landslide deposits on a
landscape scale. The proposed method is named as the Contour Connection Method (CCM) and is pri-
marily based on bare earth lidar data requiring minimal user input such as the landslide scarp and
deposit gradients. The CCM algorithm functions by applying contours and nodes to a map, and using
vectors connecting the nodes to evaluate gradient and associated landslide features based on the user
defined input criteria. Furthermore, in addition to the detection capabilities, CCM also provides an op-
portunity to be potentially used to classify different landscape features. This is possible because each
landslide feature has a distinct set of metadata – specifically, density of connection vectors on each
contour – that provides a unique signature for each landslide. In this paper, demonstrations of using CCM
are presented by applying the algorithm to the region surrounding the Oso landslide in Washington
(March 2014), as well as two 14,000 ha DTMs in Oregon, which were used as a comparison of CCM and
manually delineated landslide deposits. The results show the capability of the CCM with limited data
requirements and the agreement with manual delineation but achieving the results at a much faster
time.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A landslide, as defined by Cruden (1991) is a movement of a
mass of rock, debris, or earth down a slope. This geo-hazard can
result in severe consequences, including economic and infra-
structural impacts and casualties, in the worst cases. Therefore,
identifying hazardous locations, determining the magnitude of
risk, understanding causative factors, and mitigating the impacts
u (B.A. Leshchinsky),
gmu.edu (B.F. Tanyu).
of this phenomenon have been a critical area of research. Typically,
previous studies focus on evaluating the specific details of in-
dividual landslides and understanding the causative mechanism.
Beyond these case studies, large inventories of landslides are being
collected by geologists and remote sensing professionals in an
effort to mitigate landslide impacts. For example, the United States
Geological Survey (USGS) has an open access database on their
web site reporting the landslides that occur around the world
since 1994 (USGS, 2014) as well as other state and local organi-
zations also work on establishing hazard databases (e.g., Burns
et al., 2013 and Puget Sound lidar Consortium, 2014).

Landslides manifest in a variety of morphologies and magni-
tudes (Burns and Madin, 2009). For example, recently in March
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and April in 2014, the media has reported several landslide events
that ranged significantly in magnitude and location. The first
major landslide reported was in Steelhead Haven, 6.5 km east of
Oso, Washington (The Pacific Northwest of the United States). The
footprint of the landslide covered an area approximately 2.6 km2

and 41 people have lost their lives (Seattle Times, 2014). At the end
of April, a large landslide in Afghanistan's Badakhshan region
covered about 300 homes with mud and debris and more than 350
people reported to have lost their lives with an additional 2000
people missing BBC (2014).

In general, the combination of geometry of the slope/hillside,
vegetation, soil and rock properties, rock mass structure, pre-
cipitation and water conditions (including both groundwater and
surface water) have direct effects affecting slope instability
(Cornforth, 2005; Ling et al., 2009; Leshchinsky, 2013). Under-
standing these factors enables scientists and engineers to evaluate
potential hazards for particular areas, a critical step for prevention
or minimization of damage. However, geotechnical evaluation of
slope stability is often on an individual basis, and often only in
consideration of two-dimensional conditions (ignoring three-di-
mensional effects) with idealized soil and rock properties. DTM-
based mechanistic are mainly dependent on the infinite slope
method (translational failure with assumed soil strength) for
highlighting regions of instability Dietrich et al. (2001). Currently,
the USGS has a specific landslide hazards program that includes
seven monitoring sites along the west coast where particular
landslides are monitored with an aim on developing methodolo-
gies geared towards predicting the behavior of the landslide
(USGS, 2014). A similar interest in characterizing and mitigating of
landslides also exist within the transportation agencies in the
United States. The Transportation Research Board has developed a
special report particularly focusing on landslide investigations and
mitigations (Turner and Schuster, 1996) and more recently Na-
tional Research Council (NRC) has developed guidelines for as-
sessment of national landslide and rock fall hazards NRC (2004).
Mitigation of landslides is a benefit for a variety of reasons, in-
cluding safety and development of infrastructure and environ-
mental concerns, yet the most ideal way of mitigating the impacts
of landslides is simple – avoiding them. However, avoidance of
these features is not trivial as it requires adequate mapping and
inventorying – a daunting task over large, vegetated landscapes.

1.1. Landslide mapping

Despite its challenges, landslide hazard mapping is a common
practice in urban settings for planning purposes. There are three
primary types of mapping:
1.
 Inventory – Mapping, classification and documentation of ex-
isting landslides, both historic and pre-historic based on geo-
logic evidence; and
2.
 Susceptibility – Mapping based on soil and site conditions that
indicate areas susceptible to landslides, and
3.
 Hazard – Mapping and evaluating the potential for damage,
incorporating external factors. This differs from susceptibility in
that the triggering sources are included in the analysis. In some
literature, these are referred to generically as hazard maps.
Further, potential mapping methodologies can be classified into
deterministic and probabilistic.

Recently, there has been a drive to utilize new remote sensing
technologies to identify, investigate, and map landslides as op-
posed to field visits (small coverage) or classical photogrammetry
(susceptible to missing landslides in forested terrain). Several
techniques include (but are not limited to) differential interfero-
metric synthetic aperture radar (DInSAR) which can measure
displacements (Belardinelli et al., 2005) at high (mm-level) ac-
curacies, panchromatic QuickBird satellite images of the ground
that can be used to evaluate changes in topography (Niebergall
et al., 2007), airborne and terrestrial geodetic lidar-scans, which
can create detailed, 3D point clouds used for monitoring changes
in the terrain (Jaboyedoff et al., 2012; Olsen et al., 2012; Olsen,
2013; Conner and Olsen, 2014) at high resolutions, and unmanned
aerial vehicles (UAVs) equipped with digital cameras to map and
record spatial and temporal measurements (Niethammer et al.,
2012).

Using remote sensing methods provide a significant advantage
by facilitating landscape-scale hazard inventories without the
practical challenges of physically verifying landslide features (Van
Westen et al., 2008; Burns and Madin, 2009). Not only does the
use of some new remote sensing technologies enable landscape-
scale collection of topography; but also it can provide abilities to
remove vegetation or forest canopies from the models, clearly
exposing the scarred earth beneath. However, when data obtained
from remote sensing is used to develop models to predict and
forecast landslides, the models become very complex; therefore,
inventorying of old landslides is the first major, yet exhaustive
measure to evaluate potential hazards on a landscape.

1.2. Use of lidar in remote sensing

Light detection and ranging (lidar) technology is a line-of-sight
technology that emits laser pulses at defined, horizontal and ver-
tical angular increments to produce a 3D point cloud, containing
XYZ coordinates for objects that return a portion of the light pulse
within range of the sensor. This detailed point cloud is a virtual
world that can be explored and analyzed for multiple uses long
after the data are collected. Time series surveys enable damage
and deterioration analyses at unprecedented detail across multiple
scales. Currently, an initiative, the 3D elevation plan (3DEP) is
underway to obtain airborne lidar data across the entire U.S. at
meter level resolution (Snyder, 2012).

One of the key benefits of lidar data is its ability to model the
ground surface and key geomorphological features covered by
vegetation when a portion of the emitted light is able to penetrate
the ground. A variety of processing techniques exist to filter
ground points and create a Digital Terrain Model (DTM). These
approaches depend on the type of terrain and vegetation char-
acteristics. Common approaches including lowest elevations,
ground surface steepness, ground surface elevation difference, and
ground surface homogeneity are reviewed in Meng et al. (2010).

In the last decade, lidar has become a key tool for landslide
delineation. Jaboyedoff et al. (2012) provides a detailed review of
lidar usage for landslide studies. Lidar has been used to undertake
detailed geological assessments of several landslides, enabling
improved understanding of the processes and mechanisms con-
tributing to landslide movement. Considerable work has also been
undertaken in recent years to document the patterns of landslides
and mechanisms for failure, particularly in forested environments
where lidar provides detailed surface topography to delineate
landslides that were previously undetectable. In general, there are
three approaches to delineate landslides from lidar data:
1.
 Manual – Manually delineating landslide deposits and scarps
from airborne lidar is the most common approach (see Fig. 1).
Burns and Madin (2009) demonstrate a systematic methodol-
ogy using airborne lidar to map landslides in northwest Ore-
gon, ultimately creating landslide hazard maps that could be
used by local government for planning purposes. Similarly,
Schulz (2007) presents approaches for landslide susceptibility
estimation from airborne lidar data.



Fig. 1. Comparison of ortho-photograph, lidar bare earth hillshade and landslide deposit inventory (Burns et al., 2013).
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2.
 Statistical\Machine Learning – Mora et al. (2014) developed
an approach using repeat scans to probabilistically determine
areas that are likely susceptible to future landslides or are un-
dergoing movement. Booth et al. (2009) analyzed topographic
signatures (wavelengths) observed in lidar data and used ma-
chine learning to automatically identify deep-seated landslides.
This approach utilized power spectra and two-dimensional
Fourier transforms to characterize and calibrate landslide
morphology, facilitating algorithmic landslide searches in their
five study areas. The approach is calibrated by using a landslide
inventory in a nearby area.
3.
 Combination with another sensor – Wang et al. (2013) per-
formed landslide boundary delineation using a combination of
terrestrial and airborne lidar.

Although automated landslide detection systems are available,
their accuracy is directly related to the resolution and qualities of
the input data, requiring expensive datasets that are often beyond
the reach of decision-makers affiliated with mission agencies
concerned with addressing landslide hazards. Many systems are
also computationally expensive, requiring significant post-pro-
cessing with a steep learning curve. Therefore, using and under-
standing these complex models require specialty training and
their accuracy of predictions have not been sufficient enough for
public agencies to invest the time and resources to have a suffi-
cient number of trained professionals in each region. Currently,
geologists in most regions frequently use site investigation, topo-
graphic maps, known geology, and known historic landslides to
identify the potential areas of concern. This method, although if
performed by a trained geologist with expertise, may provide re-
sults with sufficient accuracy, requires substantial time and effort,
and ultimately, the result is subjective because it is based on the
interpretation of an individual. This also leads to inconsistencies
between mapped tiles.

An alternative to this approach is presented herein, called the
Contour Connection Method (CCM). This approach operates on
downsampled lidar bare earth (BE) DTMs and uses discretized
contours (i.e., contours) and vector connections to serve as
mediums for shape and steepness between layers. A potential
landslide deposit is designated from steep scarp geometry from
vector connections and is terminated when landslide deposits
have shallow vector connections. Therefore, this simple approach
requires notably less input information than other landslide
mapping methods since it does not require any training data. Once
provided with a lidar DTM, the algorithm needs a few basic
parameters: (i) steep input gradient to start a search, (ii) a shallow
input gradient to end a search, (iii) contour vertical spacing, and
(iv) amount of branching for each connection at each layer. The
shape and connection signature attained from this approach pro-
vides a simplified, consistent means of rapidly mapping landslides
on a landscape scale. This general approach can be employed in a
wide variety of terrains.
2. Contour Connection Method (CCM)

The CCM is developed to identify previous landslides or areas
prone to landslides. The purpose of the method is to quickly scan
large areas within the region and identify ground conditions that
indicate possible landslides based on the morphological feature
detection. Having these areas identified with an automated system
will allow the decision-makers to primarily focus in these geo-
metric locations to further assess mitigation or forecasting. The
overall approach is similar to the existing practice but the areas of
concerns are identified by an automated system rather than
trained geologist, whose experience may vary from region to re-
gion. This automated approach will provide fast, consistent, and
repeatable results and can be applied to evaluate large regions
with results obtained in matter of minutes. In most cases, the
triggering mechanism of landslides is associated with heavy rain
precipitation (Cornforth, 2005) as in the case of all of the above-
described cases that occurred in 2014. Therefore, if the areas of
particular concern could be identified with an accuracy using CCM,
these areas could be used for forecasting landslides.

CCM is intended to be a tool to identify these areas and assign a
unique, quantitative signature to each feature. This algorithm and



Table 1
Typical values of input data for landslide deposit detection using CCM.

Input Slides Flows Complex

Δscarp 0.2–0.7 0.15–1.0 0.15–1.0
Δactive 0.10 0.02 0.02
Bn 2–6 2–6 2–6
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subsequent analysis provides the unique benefit in that it only
requires one data set for application: a digital terrain model (DTM)
attained from bare earth (BE) LiDAR rasters. The use of this tool,
especially when calibrated to ground-truthed landscape features,
serves as a computationally efficient means to scanning large
landscapes for landslide features in an automated and consistent
manner. This is especially applicable for landscapes of moderate
homogeneity in terms of geology and terrain. This tool primarily
functions by assigning contours (i.e., contours) and nodes then
uses a user-defined steep gradient, representative of potential
landslide scarps or convergent geometry at risk of instability, to
initiate a search from these points. The tool then continues by
highlighting regions downslope of this steep region that are
within the flow path of the slope, representative of soil deposits or
a fan. It finally terminates when the gradient does not meet spe-
cified steepness criteria. The CCM approach, outlined within this
paper, is advantageous due to its basic computing requirements of
only lidar bare earth data, which is unique when compared with
other existing tools currently available for landslide detection.

This tool was developed and implemented as a Python script
that processes a given DTM, and output shape files (polygons) that
are compatible with a variety of commercially available GIS
software.
2.1. Automated landslide detection algorithm: overview

Given scarp gradient input parameters, nodal connections
within a predefined range are considered at start of analysis,
starting at contour with highest elevation. Then, every connection
from the nodes activated by detection of a scarp feature, according
to input data will begin a branch of connections that are directly or
indirectly connected to the nodes that were activated by scarp
features. This chain of nodal connections branching from these
initial “activation points” will highlight a general shape and “flow
path” of landslide deposits based on input data calibrated to ex-
isting landslide lidar DTMs. Landslide features that may be de-
tected using CCM include slope failures and downslope deposits
that have a headscarp or headwall feature (i.e. a steeper portion at
the initiation point of a slope failure), primarily focusing initial
application on translational slides, rotational failures, earth flows,
debris flows, and topples.
3. Automated landslide detection algorithm: general
numerical approach

The automated detection of landslides begins with the input of
lidar DTMs, which consists of a series of X, Y, and Z coordinates
necessary to perform a topographical analysis of the landscape
without vegetation or canopy cover. A search area within a given
DTM must be input to bracket the boundaries of an automated
landslide search. Within a search area, the following input para-
meters will be used to govern detection of a potential active
landslide zone using a lidar DTM:
�
 (Xo, Yo, Zo), a search area with a given length, width and height
in the X, Y and Z (Cartesian) coordinate system;
�
 Δscarp, a minimum gradient for scarp classification;

�
 Δactive, a minimum gradient for active slide region;

�
 ΔEz, a fixed vertical distance between X–Y contour layers for

given range Z;

�
 E, a tolerance for finding points for each contour layer;

�
 Ln, a fixed length between contour node assignments; and,

�
 Bn, a branching connection parameter.
The entry of the DTM and the associated analytical input
parameters are chosen by the user (typical input values shown in
Table 1), and enable pre- and post-processing to occur. The prin-
cipal input parameters that govern the search algorithm for scarps
and deposits are Δscarp and Δactive, while resolution is affected by
input parameters ΔEz, Ln, and Bn. A flow chart describing the al-
gorithm is presented in Fig. 2.

Preprocessing of the DTM is facilitated by the assignment of
contour layers and connectivity between pre-assigned, evenly
spaced nodes on each contour (Fig. 3). Within a search area (X, Y,
Z) and (XþL, YþW, ZþH), contours are assigned based on the
coordinates from a recorded bare DTM, and the contour interval
input, ΔEz. Starting at the point of maximum elevation of the
search area, contours are assigned based on coordinates that fall
within each respective elevation. Coordinates (Xi,Yi,Zi) are added to
each respective contour, Zi.

At each contour, a pre-selected, even spacing of nodes will be
assigned. The assignment of nodes begins at the lowest (X, Y, Zi)
coordinate and assigns each progressive node at a spacing (Ln)
along a contour. This assignment of nodes is performed con-
sistently for each contour layer until the lower threshold of the
search elevation is reached.

With the discretization pre-processing phase finished, the proces-
sing phase begins. The assignment of nodes at specified lateral and
vertical spacing facilitates the processing step, which includes detec-
tion of landslide features based on the search criteria of scarp gradient,
Δscarp, active slide zone gradient, and branching parameters (Fig. 2).
This begins between the top contour, Zi, and next contour at a lower
elevation, Zj. These contours are described as
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The gradient between each node on Zi is evaluated to each node
on Zj. When connections are made between nodes that are equal
to or exceed a gradient indicative of scarp signature, the node on Zi
is considered an activation node, the node on Zj is considered an
active node, and the connection between these points is called an
activation connection vector (see Fig. 2). This process is performed
using linear optimization between two consecutive contour layers
and their respective nodes, described by

ΔΔ Δ Δ ≥− − −X Y Z( , , )i j i j i j scarp

An activation node indicates that one or more optimized max-
imum gradient connections stemming from that node are activa-
tion connection vectors, and downslope nodes that are connected
to these nodes are active. The active nodes that are downslope of
the activation connection vector then connect to the next n closest
nodes downslope of it, known as active connection vectors (see
Fig. 3). The quantity of active connection vectors that originate from
each active node is equal to the branching parameter, Bn. Active
connection vectors may or may not have a larger slope than Δscarp,
but continue branching downslope until the gradient of the active
connection vectors becomes less than Δactive. When the slope for a



Fig. 2. Flow chart describing CCM algorithm.
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Fig. 3. Conceptual schematic of active landslide zone (Bn¼2).

Fig. 4. Morphological signature for landscape feature (based on slide schematic in
Fig. 3, Bn¼2).
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connection vector between two contours becomes less than Δactive,
the active nodes terminate at this point. At any contour, nodes
lying in between the outer most nodes at the boundary of a single
active landslide zone are considered an active node, even if no
connection vectors are in contact with it (see Fig. 3). This behavior
is common when the flow path of the landslide is circumventing
an obstacle or the fan or toe deposit begins. These unconnected
nodes within the flow path are called orphan nodes. The calcula-
tion of contours, activation nodes, active nodes, orphan nodes,
active connection vectors, and the active landslide zone con-
stitutes the processing phase of the CCM, which can then be post-
processed into meaningful data based on the flow chart shown on
Fig. 2.

The density of connection vectors between layers is indicative
of morphological features within a slide. Connection vector density,
Di, is defined by the number of upslope connection vectors con-
necting to active nodes on a contour layer (see Figs. 3 and 4).
Contours containing nodes with multiple upslope connections are
indicative of steep concavities; while areas with orphan nodes are
indicative of outward flow and more shallow convexities. For ex-
ample, a vector direction that is shaped concavely inwards and has
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notably steep grades may be indicative of a scarp signature or the
body of a landslide that has occurred, typically represented by
connection vector densities that are greater than the branching
parameter, Bn. Inversely, outward vector flow or shallow vector
gradient as elevation contours may be indicative of a landslide fan,
or deposits from an earth flow and manifest as connection vector
densities that are less than Bn (Fig. 3). The calculation of active
connection density is used to as a quantifiable and unique sig-
nature or “fingerprint” for given landslide topology.

Progressive change in the connection vector density with a
shift in elevation is indicative of unique features in the morpho-
logical signature of a landslide. Connection vector density is higher
when more upslope connection vectors are connecting to the ac-
tive nodes in an elevation level. Inversely, the connection density
is lower when fewer upslope connection vectors are connecting to
active nodes, or more orphan nodes are starting to be introduced
on an elevation level (see Fig. 4). This higher density of nodal
connections suggests concavity while the lower density indicates
convexity. Strong concavity is an indicator of a scarp or headwall of
a potential deep-seated landslide or debris flow. Strong convexity
is indicative of outward flow, or “fan” behavior. In between these
regions is the slide “body”, generally demonstrated by a decrease
in nodal connection density from the peak. Generally, the nodal
connection density (Di) in active nodes on a layer can be indicative
of convexity or concavity used to define features of a landslide.
Specifically when compared with Bn, the connection branching
parameter:
1.
 Di4Bn: concavity (potential scarp/headwall).

2.
 Di≅Bn: no concavity/convexity (inflection/pivot point, start of

fan or deposits).

3.
 DioBn: convexity (fan or deposits).

Change in nodal connection density in each respective layer can
also be indicative of certain “signatures” of a landslide (see Fig. 4),
defined by

Δ = −D D Dij i j

where Di is connection density on elevation, Zi and Dj is connection
density on elevation, Zj.

=D
Z

Z

Active nodes within activate slide on elevation

Upslope connections within activated slide on elevationj
j

j

The scarp can be defined by increased nodal connection density
progressing downslope within an active landslide zone. This
change in nodal density peaks (reaches a maximum), and starts to
decrease when progressing downslope within the active landslide
zone, eventually decreasing less than the connection branching
parameter, Bn. The zone in between this inflection point and
crossover of Bn is indicative of the body of a landslide, which is the
mass of earth that has moved from the scarp. As the debris fan
starts to become more pronounced, the nodal density decreases
significantly, eventually dropping well below Bn, an indicator of
the presence of orphan nodes within an active landslide zone, and
an increased size of an active landslide zone. The connection
density signature given by the Contour Connection Method is not
only indicative of landslide morphology, but also may be asso-
ciated hummocky terrain, typically corresponding to an erratic
signature (certain geologic strata, topples, newer landslides), while
eroded and weathered morphology is associated with smoothed
signatures. Specifically, the roughness of a bare earth DTM, typical
to younger landslide deposits that have not yet weathered, eroded
or “smoothened”, yields an erratic signature while older mor-
phology generally yields smoother CCM signatures. The benefit of
a signature associated with a detected landslide is that they are
representative of a quantifiable, consistent and automated “index
property” that is unique to that specific landscape feature – a
property that may then be associated with other significant be-
haviors associated with landslide morphology, such as erosion
potential, probabilistic analyses, risk and more.

A user′s selection of input parameters can slightly influence the
analysis results. One node at contour elevation Z1 can only connect
to Bn node(s) at contour elevation Z2 (elevation below Z1), and the
connection must be indicative of the shortest route (i.e., steepest).
Hence, selected nodal density and contour density are important
for discretization and accuracy. Higher quantities of both enable
better discretization, and potentially more refined landslide de-
tection output, however, the coarser the results, the more toler-
ance is required for DTM noise (i.e., stumps, boulders, trees, etc.).
The shortest distance detected between each of the discretized
nodes and elevations is a simple linear optimization problem with
limited computing requirements, especially since analysis begins
from the top elevation contour and only considers nodal connec-
tions between the next, highest elevation below the starting
contour. Hence, only two contours are being analyzed at a time.
However, it is key that the user is consistent with input para-
meters when searching for specific landslide features across a
landscape. For example, certain input parameters (i.e., Δscarp,
Δactive) will highlight morphological features that are typically
susceptible to debris flows (i.e., headwalls, the cirque features of a
channel or gully found in mountainous terrain), while other
parameters will highlight the features indicative of deep-seated
landslides (scarps, fan deposits). Contour interval and node spa-
cing should typically be at least greater than three times the DTM
pixel dimensions to prevent artifacts in the analysis. Therefore, if
available, it is beneficial to choose input parameters that have a
basis on ground-truthed landslides or known areas of instability
and then use it to search landscapes with similar geology and
terrain. However, a range of typical input values is presented in
Table 1, which may serve as initial input if data is unavailable. If
ground-truthed data or known landslides are not available, it is
recommended that the user run the analysis with both the upper
bound and lower bound values for Δscarp to highlight landslide
geometry. If landslide features are being detected according to
user judgment, then correct input values are being used. General
ranges of input parameters for three different common landslide
features (slides, flows, and complex movements) are provided in
Table 1. One practical consideration is that CCM needs a digital
terrain model raster with pixels sufficiently small (preferably less
than 5 m) to adequately resolve the small landslide features of
interest. As with any technique (manual or automatic), too large of
a pixel size will not enable the detection of smaller slides. Larger
nodal spacing and vertical contour spacing will reduce the dis-
cretization of details attained from a DTM; however, there will be
more tolerance for noise resulting from features such as vegetation
or boulders. Contour interval (contour spacing) is the primary
factor in the filtration of noise or the resolution of details. Contour
interval should be chosen to ensure that it is smaller than the size
of typical expected scarp features. For example, if scarp features in
a region tend to be between 5 and 15 m in height, the user should
select a maximum contour interval of 5 m as to ensure smaller
scarps are not neglected in the search. If a larger contour interval is
chosen, it is possible that smaller scarps will not be detected be-
cause the steepness is not adequately discretized. Hence, refined
accuracy can be attained with some basic pre-defined knowledge
of regional instability. It is suggested that the spacing for nodes, Ln,
is generally less than or equal to the contour interval between
layers, ΔEz to ensure that the flow path will be adequately re-
solved. Furthermore, the nodal spacing, assigned by the algorithm,
needs to be greater than the cell size of the baseline DTM. Nodal
spacing, applied along the true distance of a contour (which can be
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affected by DTM resolution/pixel size) is best kept at spacing closer
to the contour interval for computational efficiency. Finally, in-
creasing the branching parameter increases the size and shading
of the detected regions. Input of larger Bn value results in a larger
shaded area as it connects to an increasing amount of nodes in the
following layer; however, it also increases computation time in a
non-linear rate. This factor, like nodal density, can be used to
discretize landslide deposits as well as amplify output signatures
(see Section 4.4). A user may choose to perform several iterations
of an analysis to observe the effects of branching parameters,
which are typically adequate when kept between 2 and 6 (see
Table 1), but the effects of Bn primarily affect visualization and
post-processing (landslide signature amplification). Activation
nodes or active nodes are automatically calculated based on the
aforementioned input parameters. Calibration of the CCM ap-
proach to large landscapes that are adequately homogenous in
terrain and geology will provide the best results. That is, appro-
priate input parameters based on size and geometry of a number
of known landslides with varying shape, classification and size will
allow for better bounding of input criteria and more refined de-
tection accuracy.
4. Results

4.1. Case 1: Oso landslide and surrounding region, Snohomish
county, Washington

On March 22nd, 2014, a catastrophic landslide occurred above
the town of Oso, Washington, resulting in the tragic loss of human
lives; however, the landscape surrounding Oso and the Stilla-
guamish River is far from static. Despite ubiquitous landslide
features readily apparent in the bare earth lidar DTM (1 m pixel
dimension, Fig. 5), the satellite imagery shows little hint of the
surrounding slopes' unstable history. A landslide inventory by the
US Geological Survey (Haugerud, 2014) also contains these land-
slide deposits, which includes the traits of many slides of varying
ages in a region known for slope instability. The landslide in-
ventory, assessed by a trained geologist (Haugerud, 2014), ade-
quately captures ground-proofed slope failures based on the ex-
pertise of the individual assessing the area. However, use of the
Fig. 5. CCM detection and bare earth map of landslides surrounding Stillaguamish Valley
the web version of this article.)
CCM approach (10 m contour intervals), with appropriate scarp
gradient and active gradient criteria (Table 2) of the slides captures
the scarps and deposits of these landslides (see Fig. 5). The blue,
shaded areas are representative of active connection vectors that
have a gradient less than Δscarp but more than Δactive (re-
presentative of potential landslide deposits). The red, shaded areas
represent active connection vectors stemming from activation
points (i.e., the gradient is greater than Δscarp, representative of
steep, risky terrain and/or headscarps). At this relatively high-re-
solution array of input parameters, over 900 ha of land was ana-
lyzed for landslides within a matter of approximately 9 min (run
with an Intel Xeon Processor, 3.2 GHz).

4.2. Case 2: Oregon coast range – Pittsburg quadrangle

The CCM algorithmwas tested on a USGS quadrangle consisting
of approximately 14,261 ha (142.61 km2, 3 m pixel dimension,
25 m contour intervals), with input data shown in Table 2, re-
quiring 59 min to run when using one processor (Intel Xeon Pro-
cessor, 3.2 GHz). The steep and mountainous terrain consisted of
complex geology and demonstrated significant instability as there
were 754 landslides inventoried by DOGAMI (Burns et al., 2011),
221 of which were observed to be within the past 150 years. By
assigning 30 m buffers to the results of the active connection
vectors as defined by CCM and converting the previous landslide
inventory by DOGAMI to rasters, a comparison of inventories could
be made. A basic comparison showed a 91% agreement between
pixels representative of landslide deposits (Fig. 6). Furthermore,
more landslide features and gross landslide area was found with
CCM. However, approximately 41% of pixels marked by CCM were
false positives, while 59% were true negatives for landslide de-
posits-potentially an artifact of the analysis, such as channels or
valleys in the southwest mountain range (see Table 3). It is im-
portant to note that although these places were considered false
positives, they are likely locations for debris flows, weathering,
topples and similar hazards. To evaluate algorithm sensitivity to
input parameters, the analysis was performed with the lower-
bound activation gradient (Δactive) value of 0.15 while keeping all
other parameters the same. As expected, this led to better detec-
tion of landslide deposits, yet also caused more over-prediction.
Specifically, 96% of inventoried landslide deposits were picked up
. (For interpretation of the references to color in this figure, the reader is referred to



Table 2
Summary of input data and results for three case studies.

Case study ΔEz Ln Δscarp Δactive Bn Comp. time Inventoried landslides Landslide agreement Landslides since 1985

Case 1: Oso 10 10 0.7 0.02 4 00:09:05 N/A N/A N/A
Case 2: Pittsburg 25 25 1.0 0.02 4 00:59:13 754 91% 4
Case 3: Dixie Mt. 20 20 0.15 0.02 4 01:29:25 953 30% 4

Fig. 6. Comparison of DOGAMI landslide inventory (translucent red polygons) and
CCM landslide inventory (blue vectors) in the Pittsburg Quadrangle. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 3
Error matrix for comparison of CCM and manual landslide inventorying for Pitts-
burg and Dixie mountain quadrangles.

Landslide Not landslide

Landslide % Pixels marked as a land-
slide by both manual in-
ventory and CCM (true
positive)

% Pixels marked as a landslide
by both manual inventory but
not CCM (false negative)

Not landslide % Pixels marked as a land-
slide by CCM but not man-
ual inventory (false
positive)

% Pixels not marked as a
landslide by both manual in-
ventory but not CCM (true
negative)

LS NLS

Case 2: Oregon coast range – Pittsburg quadrangle
LS 0.91 0.09
NLS 0.41 0.59
Case 3: Oregon coastal range – Dixie mountain quadrangle
LS 0.30 0.70
NLS 0.11 0.89
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by CCM, yet 76% of pixels were marked as false deposits and 24% as
true negatives. Therefore, the algorithm is sensitive to the scarp
activation criteria, but little gain is made in accuracy, and poten-
tially the inverse, when shallow activation gradients are applied to
very steep terrain. Hence, improved accuracy is possible with input
parameters attained from confirmed, regional landslide geometry,
especially activation and active gradients. When this range is not
too broad, (1) the computational tool will run more efficiently and
(2) fewer false positives will be detected. Further work involving
use of Booleans and input of other data layers (geology, hydrologic
features, etc.) will also help reduce false positives, especially with
broader input criteria.

4.3. Case 3: Oregon coastal range – Dixie mountain quadrangle

For the third case, the CCM algorithm was tested on a USGS
quadrangle (Dixie Mountain) consisting of approximately
13,872 ha (138.72 km2, 3 m pixel dimension, 20 m contour inter-
vals), with input data shown in Table 2, requiring 89 min to run
when using one processor (Intel Xeon Processor, 3.2 GHz). The
shallow and hummocky terrain demonstrated even more complex
landslide inventory than the one presented in Case 2, including
943 landslides inventoried by DOGAMI, 350 of which were ob-
served to be within the past 150 years. The CCM analysis and
conversion of DOGAMI inventory were made the same way as in
the Case 2 with 30 m buffers. A preliminary comparison identified
by the inventory and CCM showed a 30% agreement between
pixels representative of landslide deposits (see Table 3). This lower
agreement is representative of large, potentially conservative de-
marcations of deposits in the northern portion of the DTM (see
Fig. 7). That is, the large area manually inventoried as a complex
movement has a large spatial area assigned to it, meaning that
pixel–pixel comparisons may show low agreement, despite ade-
quate detection of most significant landslide features. Further-
more, there is potential that some landslides were missed in the
manual inventory, but captured in the CCM mapping. However,
these deposits and sub-deposits within are still captured with the
CCM, despite the dissonance in pixel comparisons. Furthermore,
there was an excellent agreement between regions that were not
considered landslide deposits between the two analyses. Specifi-
cally, 90% of the pixels that were not marked as landslide deposits
in DOGAMI's inventory were also not marked by the CCM method,
showing that the method was generally not over-predicting
landslide deposits (i.e., few “false positives”). Despite the see-
mingly poor match of landslide deposit pixels, CCM still captured
the general locations of most of the significant deposits in the
quad (see Fig. 7). A sensitivity analysis for this region using an
upper bound activation gradient of 1.0 yielded no landslide deposit
detection as the terrain was shallow and the landslide features
tended to have gentle slopes. The fact that the landslides were out
of the range with the upper-bound search criteria demonstrates
that it would be beneficial to have a general idea of local geology,
current landslide inventories, and associated properties for a re-
fined analysis. With a small inventory for a given region, the CCM
analysis can be applied adequately to assist with landslide hazard
mapping.



Fig. 7. Comparison of DOGAMI landslide inventory (translucent red polygons) and
CCM landslide inventory (blue vectors) in Dixie Mountain Quadrangle. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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4.4. Connection density signatures

In addition to detection of landslide features, the CCM analysis
provides a unique signature of each individual landslide feature
that can potentially be used as a classification tool for landscape
characteristics (i.e., erosion, age classification, etc.). Three example
signatures were chosen for observation.

The first was an earthflow found in Case 2 (Pittsburg Quad, OR)
that had a well-defined channel shape and little change in con-
cavity and convexity with elevation change. This feature, marked
in Fig. 6 and shown in Fig. 8a and b, is represented by a connection
density signature (Fig. 8a) that tends to hover around the
branching parameter as there is little change in convexity, yet
small fluctuations are representative of hummocky terrain and
smaller channels within the flow (Fig. 8b).

Another example was that of a complex failure in Case 3 (Dixie
Mountain Quad, OR), represented in Fig. 9a and b by an initial
increase connection density from the scarp to the body, with a
highly erratic decrease in density as elevation lowered (Fig. 9a),
representative of outward earth flow and the extremely hum-
mocky, rough terrain associated with complex earth movements
(Fig. 9b).

A final example was that of a deep-seated slide that occurred in
Washington County, OR (Fig. 10a and b). This signature demon-
strated an initial increase in connection density above the
branching parameter, Bn, then transitioning into a gradual and
smooth decrease in connection vector density as the elevation
decreased (Fig. 10a). This “smooth” signature can highlight older
landslide ages, as the “rough” terrain erodes over time, leaving less
ponding, channels and hummocky deposits (Fig. 10b). This
assessment is in agreement with the DOGAMI inventory classifi-
cation of the feature as a “prehistoric” slide.

The signature provided by CCM can serve as a classification tool
and potentially be connected with important landscape features
like (1) concavity; (2) convexity; (3) terrain roughness; and
(4) landslide types. An increase in connection density tends to
correspond to regions of concavity, like a headwall, channel or
gully, while a reduction in connection density tends to correspond
to increasing convexity, typical to debris fans or talus deposits, all
features of progressive, landscape mass wasting. An erratic sig-
nature tends to correspond to regions of highly variable convexity
or concavity, typical to hummocky, rough terrain. This uneven
terrain is typically implicative of young geological age of a feature,
as erosive forces typically “smoothen” roughness over a long
period. A gradual signature typically corresponds to an older fea-
ture in geological time. The consideration of age in signature could
be very important for landslide classification, as landslides of
certain age classes may be more or less predisposed to reactiva-
tion, dependent on geology, terrain and climate. In addition to
roughness and concavity or convexity, a given signature of a
landslide feature presents an automated means for classifying
landslides in a consistent manner. That is, landslides matching
general signature shape criteria may be classified as a certain
feature (i.e. translational slide, debris flow, etc.), allowing for im-
proved hazard mapping, risk assessment and classification me-
chanism. The branching factor, Bn, directly affects the magnitudes
of connection densities and can be used as a means of amplifying
signatures for enhanced classification. That is, increasing Bn allows
for more connections and of course, higher connection densities,
exaggerating certain features, like hummocky terrain or extreme
changes in concavity or convexity. Improved discretization of
signatures can also be affected by increasing number of contours
or number of nodes (which will not necessarily amplify signatures,
but may refine the signature in relation to elevation profile).
5. Conclusions

The CCM approach presents an alternative means of estab-
lishing landslides and their deposits. This method relies on basic
lidar data that is becoming increasingly available and is easily
adaptable to a variety of landscapes or hazards types. The CCM
approach presents several benefits and contributions in addition
to current landslide detection tools or manual approaches.
Specifically:
�
 Application of CCM requires only simplified input parameters:
input for scarp “activation” gradient, active gradient, contour
interval, nodal spacing and branching parameter. Typical input
values for select features are presented within this paper.
However; selection of input criteria is best based off of geo-
metry of actual, regional landslides. Reasonable agreement
with actual DTMs demonstrates potential as a landslide deposit
detection tool.
�
 CCM does not require additional data sets (hyper-spectral data,
RGB photographic color, etc.), machine learning processes, or
many parameters to function. It requires only basic input per-
taining to landslide geometry, which can easily be attained
from known, regional features.
�
 Automation of this tool is easily performed. The simplicity of
input parameters and calibration facilitates easily application to
landscape scale landslide detection. Increased range of input
parameters, larger landscapes, higher resolution datasets and
increased discretization (higher Bn) can lead to increased
computational cost primarily based on the time needed to



Fig. 8. Signature for earth flow from Pittsburg Quadrangle (branching parameter¼4). The erratic nature of the signature is representative of hummocky terrain. Red
connections are representative of scarp geometry, blue of potential deposits. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 9. Signature for complex in Pittsburg Quadrangle (branching parameter¼4). Red connections are representative of scarp geometry, blue of potential deposits. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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post-process data, yet the primary parameters that govern the
algorithm's search are the activation and active gradient.
�
 The CCM algorithm can handle large lidar datasets because it
can analyze discrete portions of the data at a time. The algo-
rithm is fast because it is a simple slope problem that is per-
formed between only two contours at a time, reducing com-
plexity. This facilitates rapid landslide detection on large
landscapes, a slow and subjective process with the trained eye
of a geologist.
�
 Use of automated landslide detection tools enables enhanced
landslide inventorying and classification. Different landslide
characteristics (age, size, hummocky features, etc.) and types
(debris flow, earth flow, deep-seated slide, etc.) yield varying
risks and concerns for safety, development, environmental
concerns and more. The CCM algorithm presents an automated
and consistent means of detecting different landslide types and
their deposits over large landscapes, enabling not only
mapping of hazards, but classification of hazards and their as-
sociated risks with a signature that is unique to each individual
landslide. Current processes that serve this function are limited,
slow and expensive.

With the exceedingly rapid development of lidar technology
and push to establish bare earth maps on a large scale, simplified
tools like CCM may serve as an excellent means of identifying and
classifying landslides.

There are several different approaches that would facilitate
improved automated detection of landslides with CCM. First off,
computational speed could easily be improved with parallelization
of computations. Furthermore, input parameters could be con-
nected to geology, allowing for improved assessment over regions
of inhomogeneous geologic features. Specifically, activation and
active parameters could be connected to specific geological for-
mations, reducing user input parameters required for analysis.



Fig. 10. Signature for slide in Dixie Mountain Quadrangle (branching parameter¼4). Red connections are representative of scarp geometry, blue of potential deposits. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Finally, use of stream or river channels and computational buf-
fering could allow for over-prediction of landslide deposits in river
channels or valleys (i.e. Boolean approach). Despite the propensity
of these regions to debris flows, it would enable better segregation
of landslide features. Association of CCM with weather data would
also allow for better evaluation of precipitation-induced landslide
risk.
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