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A B S T R A C T

Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a
complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in
remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the
general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for
choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a
useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the
impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution
can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale
parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two
modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and
MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information
entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from
QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal
dimension and information entropy present the same trend with the decrease of spatial resolution, and some
inflection points appear at the same feature scales. Further analysis shows that these feature scales
(corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer
mixed pixels in the image, and these inflection points are significantly indicative of the observed features.
Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-
based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different
aspects. This research will ultimately benefit for remote sensing data selection and application.

1. Introduction

The scale effect is widely considered to be of the primary challenges
in earth observation. Geo-research mainly uses remote sensing images
that have a large span in spatial and temporal resolution. A homo-
geneous phenomenon on a given spatial scale maybe become another
heterogeneous phenomenon on another spatial scale (Ming et al.,
2013), which means that the spatial pattern or phenomena is scale-
dependent (Sun and Jane, 2013). Therefore, the scale of study (defined
in terms of spatial resolution) has a certain impact to both the
modeling of certain processes/phenomena (for example, the effect of
land surface temperature and the spatial resolution of imagery to the
study of temperature diurnal variation) and the representation of

spatial features (landcover objects, buildings etc).
In this field of interpretation of the relationship between scale effect

and spatial resoultion in the remote sensing imagery, the following
research efforts summarize the most significant achievements. Strahler
et al. (1986) built a framework for distinguishing between the scene,
which is real and exists on the ground; Woodcock and Strahler (1987)
proposed the idea for selecting the optimal spatial resolution by using
average Local Variance; Cracknell (1998) discussed the question of
pixel size or instantaneous field-of-view (IFOV) both from the simple
geometrical point of view and from a more physical point of view. Ming
et al., (2008, 2011, 2013) used the Modified Average Local Variance
(MALV) method based on constant ground area (variable window size
and variable resolution) to study the optimal spatial resolution of
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different features on remote sensing images; The above studies are
almost based on geo-statistics methods and utilize geometry to analyze
the linear features (Su et al., 2014) of remote sensing images. However,
both linear and non-linear features (Shokoohi et al., 2013) are
prominent in remote sensing images. The statistic values of spatial
features in image are a function of the scale. Within a certain range, the
linear features (some statistic values of feature in remote sensing image
are a linear function of the spatial resolution) increase and the
nonlinear features (the statistic values of features in remote sensing
image are not a linear function of the spatial resolution) decrease with
decreasing scale. Beyond this range, the linear features decrease and
the nonlinear features increase with decreasing scale (Ming et al.,
2008). Because geo-statistical methods are mainly used to analyze
linear features, the capability of scale feature description of nonlinear
structures based on geo-statistics is limited. The fractal theory origi-
nated from chaos theory (Foroutan-pour et al., 1999), and it mainly
uses fractal dimensions to analyze the spatial patterns’ nonlinear
features in remote sensing images. It is important to use the fractal
theory to analyze the scale effect for remote sensing from different
aspects.

There are several existing methods for fractal dimension comput-
ing: including Brown motion (Hermann et al., 2015) and box dimen-
sion (Chen et al., 2004). However, the applicable range of each method
is different in practical use and the current fractal dimension comput-
ing methods do not take the spatial resolution into account when
analyzing the scale effect of remote sensing images (Zhou and Lam,
2009; Ju and Lam, 2009), which results that the scale effect change
with spatial resolution can't be clearly reflected.

This paper performs an in-depth analysis of the connotation of the
pixel-based scale effect and proposes to use the spatial resolution as the
modified scale parameter to calculate the fractal dimensions. Based on
the modified fractal dimensions, the relationship among fractal dimen-
sion, spatial resolution, and the size of geo-object in remote sensing
image can be further analyzed, so that it is possible to choose some
feature scales to best characterize the specific objects or phenomena of
interest. Existing information entropy (Emerson et al., 2005) is used to
evaluate the validity of modified methods.

2. Connotations of pixel-based scale effects in remote
sensing

2.1. General meanings of scale in geosciences

Scale is a widely used term that mainly refers to the extent or degree
of detail of the study in the field of general scientific research
(Goodchild and Quattrochi, 1997). Scale has different connotations in
different areas of geography. It is understood as the mapping scale in
the field of cartography, the grain size of the study (i.e., the plaque size
of the study) in the field of ecology, and the maximum time interval to
ensure the homogeneity of environmental parameters in the field of
environment (Bierkens et al., 2000), and it is understood as spatial
resolution or the minimum size of object that a sensor can distinguish
in the field of remote sensing (Wu and Li, 2009). The concept of scale
summarized by Lam and Quattrochi is relatively comprehensive, which
can be extended to other research fields of geography. They defined
four types of scale related to the spatial phenomena (Lam and
Quattrochi, 1992): mapping scale (i.e., the scale of the map); observa-
tion scale or geography scale (i.e., the expansion of the study spatial
region); measurement scale or resolution (i.e., the smallest distinguish-
able parts in spatial data set, such as the pixel size of remote sensing
image); and operation scale (i.e., the range of spatial environment that
occurred the geography phenomena).

2.2. Pixel-based scale in remote sensing

Based on the general meanings of scale in geosciences proposed by

Lam and Quattrochi (1992) and Ming et al. (2011) generalize the three
level of connotation of spatial scale of remote sensing image, and they
are pixel-based scale, object based scale (Bian, 2007; Blaschke, 2010)
and pattern-based scale. Of these three connotations of spatial scale,
the former belongs to the level of image data, and the middle one
belongs to the level of image processing, however the last one belongs
to the level of image understanding.

From the view of remote sensing imaging, pixel-based scale refers
to spatial resolution. The essence of pixel-based scale is observation
scale determined by the different capability of satellite sensor. Remote
sensing data with different spatial resolution carries different informa-
tion that are presented at different scales.

2.3. Pixel-based scale effects in remote sensing

So far, the scale effect has not been given a complete academic
definition. In landscape ecology, scale effect refers to the variations of
landscape features with the change of scales (Rietkerk et al., 2002)
when the small scale landscape patterns are re-combined to form the
large scale landscape patterns through scaling. In remote sensing, the
pixel-based scale refers to spatial resolution. Pixel-based scale effects
are mainly caused by the existence of mixed pixels, which lead to
differences between different calculated results (for example, the
average local variance or classification accuracy) with the change of
scale. As shown in Fig. 1, pixel-based scale effect in remote sensing can
be understood from the following two perspectives.

First, from the point of view of remote sensing, landscape scale
effect results in variations of landscape features, which leads to mixed
pixels. This type of scale aggregation makes some statistical features in
image (e.g., local variance and fractal dimension) present a change in
the trend with the changing of scale, and this trend, to a certain extent,
reflects internal homogeneity or heterogeneity among categories. At the
same time, pixel classification accuracies also present a change in trend
with changing of scale, and these changes in trends are theoretically the
embodiment of pixel-based scale effects (Zhou et al., 2014).

Secondly, from the point of view of the data products in remote
sensing, pixel-based scale effect means that under the same set of
conditions (i.e., the same area, same time, similar spectral, similar
imaging conditions, and the same inversion model), the inversed
surface parameters, which are used to measure the physical truth-
value of the geo-surface, differ at different scales. This phenomenon is
known as the scale effect of remote sensing products (Liu, 2014).

3. Data and method

3.1. Study area

Six pieces of an experimental image (3(a, b, c) for building area and
3(a, b, c) for farmland area) with 0.6 m spatial resolution and
1000×1000 size are a subset from panchromatic QuickBird images in
Beijing. The data points are first resampled to 1 m, and then each
image is gradually degraded at a gap of 1 m (with standard deviation
stretch), consequently the series of experimental images with different
spatial resolution (from 1 m to 10 m) are prepared (Fig. 2). The nearest
neighbor method is used in resampling procedure because it does not
produce new pixel values and also not change the values of pixels.

3.2. Traditional fractal dimension calculation methods for remote
sensing image pixels

3.2.1. Windowed Fractal Brownian Motion Based on the Surface
Area Method (FBM)

Among the dimension calculation methods based on the fractal
theory, the fractal Brownian motion method is widely used in a
substantial number of studies. The related model expression is as
follows:
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A r D lgr lgKlg ( ) = (2 − ) + (1)

By the principle of linear regression, the following equation can be
written:
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where r is the scale, A r( ) is the space curved surface area when the scale
is r, D is the fractal dimension, and K is a constant.

Eq. (2) shows that the surface areas of images in several different
scales are required for the fractal dimension calculation. A digital
image is composed of neat rows of pixels and can be observed as a step
in which each pixel constitutes a cube step. The height of the steps is
the pixel gray value (Fig. 3). When the spatial quantization scale is r ,
the attribution of every pixel in the surface area A r( ) is the sum of the
area of the horizontal plane of the post on top of AH and the side-

vertical surface areas AV1 and AV 2. Four side-vertical surfaces are
present in one pixel, whereas every side-vertical surface is shared with
adjacent pixels. To avoid repeated calculations, we only calculate the
front and left vertical surfaces (see Fig. 4). In Fig. 4, A r r= ×H , where
AV1 and AV 2 are the product of the difference between the adjacent pixel

Fig. 1. The conceptual framework for scale effect in remote sensing.

Fig. 2. To the left is a map of Beijing, in which the colored regions are the Daxing and Fengtai districts, where the six study areas located. To the right is the resampled QuickBird pan-
chromatic image with 1 m spatial resolution, from which the six pieces of experimental images are cut.

Fig. 3. Sketch of the remote sensing cube.
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gray value and the scale. A set of the pixels in the image is M N× ;
therefore, the space curved surface area A r( ) can be calculated by Eq.
(3):
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Where f i j( , ) indicates the gray value of a digital image when the scale
is r M j N(i = 1, 2⋯ ; = 1, 2⋯ ).

3.2.2. Windowed Double Blanket Method (DBM)
The double blanket method calculates the fractal dimension by

enclosing the volume formed by the gray image surface similar to the
box method. The related model expression is as follows:

If the image is f i j( , ), then the gray function f i j( , ) can be treated as
a surface in 3D space X Y I( , , ), in which I f X Y= ( , ) is the gray value of
pixels in image x y( , ). According to the fractal method, we can assume
that this surface can be used to display fractal characteristics on a
certain scale. To calculate the fractal dimensions of this surface, the
surface is wrapped into two “carpets” in a certain scale on the top and
bottom of this surface. The surface areas of the carpets changes with
the scale (Fig. 5). Initially, the two carpets overlapped with the image
surface:

f i j u i j d i j( , ) = ( , ) = ( , )0 0 (4)

Where u i j d i j( , ), ( , )0 0 are the top and bottom carpet values, respec-
tively, of the image in (i, j) when the scale is 0. When the scale is ε=1,
2… the two carpet values are as follows:

⎧⎨⎩
i j max u i j r max u m n

d i j min d i j r min d m n
u ( , ) = ( ( , ) + , ( ( , )))
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−1 −1
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where (m, n) is the four adjacent points; the volume of the two wrapped
carpets is as determined by Eq. (6):

∑V u i j d i j= ( ( , ) − ( , ))ε
i j

ε ε
, (6)

The surface area is as follows:

A ε V ε( ) = /(2* )ε (7)

The fractal estimation of the local gray surface can be calculated as
follows:

A ε Fε( ) = D2− (8)

After taking the logarithm, the equation can be rewritten as follows:

A ε D lgε lgFlg ( ) = (2 − ) + (9)

The above experimental data series are used to calculate the fractal
dimensions. The results of the experiment are shown in Fig. 6(a) and
(b):

3.2.3. Discussions of FBM and DBM calculation results
Theoretically, there should be peaks on the fractal dimension

graphs. Actually, shown as in Fig. 6, they do not decline, as the theory
suggests, but gently rise as the spatial resolution declines. The causes of
this phenomenon include the following two aspects:

(1) From the aspect of image, the image used in this study is the high-
resolution images with fine internal structures. When the same
windows size (such as 16×16) were used to calculate the fractal
dimensions, the features outside neighboring the window bound-
ary may appear in this window with declining spatial resolution. At
this time, the complexity of image in the window increases, which
results in the increasing trends of fractal dimensions but not
declining trends.

(2) By analyzing the above two methods, it is found that the key to
calculate fractal dimension is to calculate the surface area of the
image. There is a very important scale parameter r in calculating
the surface area, which the specific meaning is not very clear, and it
is always expressed as the number of pixels in previous research
(Ju and Lam, 2009). In calculating the fractal dimensions of
remote sensing images at different scales, if the values of the scale
parameter r are just the numbers of pixels, and the numbers of
pixels are a group of the same values at different scales (such as
2×2, 4×4……) , there are very slight changes of the surface areas,
and these surface areas cannot completely highlight the specific
details of the change in regional features (such as original feature
size) at different scales. Therefore, this paper proposes to use
spatial resolution as the modified scale parameter to calculate the
fractal dimension for further analyzing the pixel-based scale effect.

3.3. Modified Fractal Dimension Calculation Methods for Remote
Sensing Image Pixels

As analyzed above, it is important to consider the factor of spatial
resolution in pixel-based scale effect analysis. Therefore, this paper
proposes the modified scale parameter r in fractal dimension calcula-
tion and redefines the expression r as follows:r R r= * i, where R is the
spatial resolution, and ri is the numbers of pixels in calculating the unit
surface (e.g., 1×1, 2×2……r r×i i). Modifications to existing fractal
methods are listed as follows.

3.3.1. Modified Windowed Fractal Brownian Motion Based on the
Surface Area (MFBM)

The equation for calculating the horizontal plane area A r r= *H i i is
modified to A R r R r= * * *H i i, and the two side areas A Av v1‵ 2 also are
modified similar to Eq. (10), in which the scale coefficients are modified
to R r* i. Therefore, Eq. (3), that is used to calculate surface area of

Fig. 4. Sketch of the surface calculation.

Fig. 5. Sketch of the double blanket method.
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image, is further modified as follows:
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3.3.2. Modified Windowed Double Blanket Method (MDBM)
Eq. (5), which is used to calculate the two blanket values of image,

is further modified as follows:
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4. Results

4.1. Experimental results obtained by the modified fractal method

The experimental data mentioned above were used to calculate the
modified fractal dimensions. The results are shown in Fig. 7 and are
analyzed as follows.

(1) As shown in Fig. 7(a) and (b), whether for MFBM or for MDBM,
the same trends occur with the curves of the two modified fractal
changing with the spatial resolutions from scale ranges of 1–10 m.
That is, within a certain spatial scale, with the decrease of the
spatial resolution, average fractal dimensions generally increase a
first and then decrease.

This is because within a certain scale range, the nonlinear features
of remote sensing image first enhance then weaken, and linear features
first weaken then enhance with the decrease of scale (Ming et al.,
2008). However, fractal dimensions can reflect nonlinear features of
remote sensing images, and it is an index to measure the complexity of
features. When the image complexity is reduced, the fractal dimension
is also reduced. Therefore, the experimental results of fractal dimen-
sion are basically reliable.

(2) The statistical results of the fractal dimension calculated by MFBM
and MDBM differ from each other. From the sensitivity to the
change of spatial resolution, the former can produce more inflec-
tions reflecting details of geo-object than the latter, and the latter is
more capable of clearly showing the suitable scale range for
features than the former. In general, the trends of the curves by
using MFBM and MDBM are basically the same, and there are also
inflection points at a certain range of scale.

The fractal dimension calculation methods are different in
different applications, and the feature type to which the algorithm
is suitable is also different. As analyzed in the literature (Pentland,
1984), this is because the definition of similar fractal dimension
algorithms may have very different properties. Even if a “good”
data set was used in the experiment, the fractal dimensions
calculated by these similar fractal dimension algorithms will not
be exactly the same even for the same objects.

(3) Fig. 7 shows that there are inflection points at different spatial
resolution on the fractal dimension curves for building areas and
farmland areas. For the former, the inflection points mainly appear
at spatial resolutions of 3 m, 4 m, and 7 m. However, for the latter,
the inflection points appear at spatial resolutions of 2 m, 3 m, and

Fig. 6. Traditional fractal dimension statistics.
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5 m. These scales corresponding to the inflection points are called
the feature scales (the optimal observation scale). The greater the
fractal dimension of the feature scales is, the more suitable the
scale is for studying the regional landscape structure. This scale is
called the optimal observation scale. Therefore, the optimal
observation scale for studying the building is 4 m, and the suitable
range for studying the city landscape is 2–5 m. Similarly, the
optimal observation scale for studying the farmland landscape is
4 m, and the suitable range for studying the farmland landscape is
3–5 m. The conclusion of optimal observation scale is similar to
the research results of Ming et al. (Ming et al., 2011) in which the
Average Local Variance (ALV) method is used to analyze the
optimal observation scale.

4.2. Experimental results analysis using information entropy

To verify the reliability of modified fractal methods, information
entropies of the experimental data are calculated. The information
entropy calculation results are shown in Fig. 8.

(1) The information entropy first increases and then decreases with
decreasing observation scale, which is consistent with the theore-
tical analysis result and consistent with the statistical trend of the
modified fractal dimension curve shown in Fig. 7. More specifi-
cally, the curve of MDBM is more similar to that of information
entropy than MFBM.

(2) Similar to fractal dimension curves, there are also inflection points
on the information entropy curves changing with spatial resolu-
tion. The inflection point for a city landscape is at 4 m, and the

suitable scale range is 2–5 m. For farmland, the inflection point is
at 4 m, and the suitable scale range is 3–5 m. The optimal feature
scale analysis results are basically the same with that of modified
fractal dimension method.

5. Discussions

Theoretically, if there is no scale effect or spatial heterogeneity, the
fractal dimensions with different scales should be a constant value
according to the definition of fractal geometry and its scale should be
invariant. However, just because spatial heterogeneity really exists,
fractal dimension will change with the spatial scale and the fractal
dimension at some certain scale reaches its peak when the spatial
resolution is exactly equal to the size of the geo-object.

This paper uses traditional FBM and DBM to calculate fractal
dimensions with different scales. Actually, practical calculation results
show that neither FBM nor DBM works well on reflecting the scale
effects of remote sensing image. As analyzed above, the key to
calculating fractal dimensions is to calculate the surface area of the
image. However, in calculating the surface area, if scale parameter r is
only the number of pixels and the spatial resolution is not involved in
the calculation, the numbers of pixels are a group of the same values at
different scales (such as 2×2, 4×4……); therefore, the change of fractal
dimensions along with spatial resolution cannot be truly and effectively
expressed. Contrary to expectations, the obvious peak does not appear,
and the fractal dimension graph looks like a variogram (Jupp et al.,
1988a, 1988b; Karl and Maurer, 2010) because the calculation of
fractal dimension is somewhat similar to that of semi-variance chan-
ging with the sample intervals (Journel and Huijbregts, 1978).

Fig. 7. Modified fractal dimension statistics.
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Therefore, this paper proposes to use the spatial resolution as the
modified scale parameter in calculating the fractal dimension to further
analyze the pixel-based scale effect. Compared to FBM or DBM, both
MFBM and MDBM can obtain better and reliable statistical results.

From another point of view, Woodcock and Strahler (1987) noted
that when the spatial resolution of the study is equivalent to the actual
size of the ground objects, this spatial resolution is the optimal
observation scale for this landscape. However, it is inappropriate to
stress this conclusion with high spatial resolution image data coming
into being. The optimal observation scale is no longer equivalent to the
actual size of the ground objects. Instead, the actual size of the ground
objects is a multiple of the optimal observation scale (i.e., pixel size). In
this case, as illustrated in Fig. 9, the number of mixed pixel will be less,
while the fractal dimension will be greater and inflection point (i.e., the
features scale) will appear at the peak of the fractal dimension curve.

When the scale is below or above the optimal observation scale, more
mixed pixels will appear, and the fractal dimension will decrease.

The reasons that each image area has more than one feature scale is
that the actual sizes of the dominant objects on the ground might be
different (such as the size of the house and the plant canopy area);
therefore, a number of feature scales appear on the fractal dimension
curves. It is indicated that the larger the number of feature whose
actual size on the ground is multiple to the feature scale is, the greater
the fractal dimension is. Therefore, this feature scale is the optimal
observation scale to analyze this landscape feature.

6. Conclusions

This paper analyzed the connotation of pixel-based scale effect in
remote sensing images and summarized the understanding of the scale
effect. Fractal dimension is a measurement to reflect the pixel-based
scale effect of remote sensing images. In traditional fractal dimension
calculations, a major problem is the calculation of the surface area of an
image by using a very important scale parameter r. However, in
calculating the surface area, the meaning of r is not very clear, and it
is always expressed as the number of pixels, which causes the
fluctuated change of the surface area to become too slight to highlight
the specific details of changes in the regional features (such as feature
original size) at different scales.

Therefore, this paper suggests the use of spatial resolution as the
modified scale parameter in calculating the fractal dimension. The
research presented has demonstrated the utility of modified fractal
dimension for further analysis of the pixel-based scale effect. According
to experimental results, the conclusions are as follows.

(1) The modified fractal dimension is more sensitive to the change
of spatial resolution; therefore, it is more effective in reflecting the
pixel-based scale effect of the remote sensing image.

(2) The peaks of modified fractal dimension curves can be regarded
as the indicators for the feature scales because the feature scales are
somewhat related to the actual sizes of the geo-object.

(3) With the appearance of high spatial resolution image data, the
optimal observation scale is no longer equivalent to the actual size of
the geo-object. On the contrary, the actual size of the geo-object maybe
a multiple of the optimal observation scale (i.e., spatial resolution or
pixel size), which is consistent with the Nyquist-Shannon sampling
theorem (Nyquist, 1928).

(4) From the sensitivity to the change of spatial resolution, MFBM
can produce more inflections that reflect details of geo-object than
MDBM, and the latter is more capable of clearly showing the suitable
scale range for features than the former. In addition, the curve of
MDBM is more similar to that of information entropy. In practice, the
use of MDBM to study the pixel-based scale effect is preferred.

Fig. 8. Information entropy statistics.

Fig. 9. Relationship between the spatial resolution and the actual size of landscape.
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Additionally, the following points should be noted:

(1) In this paper, the analysis of scale effect connotation in remote
sensing, the understanding of scale effect is just the exploration of
scale theory, not the application problem of hard calculation. The
solution to scale issues involved in remote sensing will become
clear and definite with further analysis.

(2) Through repeated experiments and analysis, the modified fractal
methods are more intuitive for analyzing the feature scales of
different features. However, there is no single and absolute optimal
feature scale to properly describe the shape and size of a complex
object.

(3) Due to limited data, this study calculates the pixel-based scale
effect only for building areas and farmland areas. In future
research, we expect to use multi-source data points to analyze
different features or some features of different types. This will
fundamentally promote the exploration and cognition degree for
remote sensing and the scale aggregation of features.
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