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A B S T R A C T

A new algorithm for data-adaptive, large-scale, computationally efficient estimation of bathymetry is proposed.
The algorithm uses a first pass over the observations to construct a spatially varying estimate of data density,
which is then used to predict achievable estimate sample spacing for robust depth estimation across the area of
interest. A low-resolution estimate of depth is also constructed during the first pass as a guide for further work.
A piecewise-regular grid is then constructed following the sample spacing estimates, and accurate depth is
finally estimated using the composite refined grid and an extended and re-implemented version of the CUBE

algorithm. Resource-efficient data structures allow for the algorithm to operate over large areas and large
datasets without excessive compute resources; modular design allows for more complex spatial representations
to be included if required. The proposed system is demonstrated on a pair of hydrographic datasets, illustrating
the adaptation of the algorithm to different depth- and sensor-driven data densities. Although the algorithm was
designed for bathymetric estimation, it could be readily used on other two dimensional scalar fields where
variable data density is a driver.

1. Introduction

In a number of remote sensing modalities the density of observa-
tions achievable by any given sensor is a function of the environment.
For example, in many sonar and lidar ocean mapping systems, the
observations are made at a given angular separation across a swath, or
are spaced equidistantly across a swath, so that the average density of
observations is inversely proportional to water depth below the sensor.
Attempts to increase the data density in deeper water are found
wanting in independence of observations and inefficiency of survey
effort due to the necessarily reduced swath width.

Consequently, the fidelity with which the true spatial configuration
of the measurand can be reconstructed is limited not only by the point
spread function of the observing system, but by a system-mediated
sample spacing which will inevitably alias at some wavelengths.
Attempting to reconstruct the measurand beyond the sample spacing
supported by the data, observing that the Nyquist limit (Proakis and
Manolakis, 2006) for the measurand is not well defined, and unknown
a priori, are therefore at best inefficient and at worst misleading for the
user (compare Gardner et al. (2014) for a limited approach to this in
deep water). Further, an estimation or reconstruction scheme that does
not allow the sample spacing to adapt to the data is forced to choose a
compromise sample spacing that is guaranteed to be incorrect almost
everywhere. Optimistic estimates of achievable sample spacing can be

inefficient in both memory and computational load and lead to poor
reconstruction stability where the data density falls off; pessimistic
estimates can lead to significant aliasing in regions of high data density.

Algorithms that allow for spatial variations in sample spacing, and
even for adaptation, are common in finite element modeling and
rendering for computer graphics (Borouchaki et al., 1997a, 1997b;
Borouchaki and Frey, 1998; Cao et al., 1999), and are a standard
method for spatial data structures in the form of the quadtree (Fischer
and Bar-Yoseph, 2000; Samet, 2006). These methods, however, gen-
erally require that the location of the estimation nodes be stored
individually, and often have a significant cost to index each observation
being applied to the reconstruction. This works well when limited
numbers of observations are being considered (the definition of
“limited numbers” naturally changing with advances in processor,
memory, and storage systems), but for remote sensing datasets of
billions of points the theoretical overhead costs can be significant. To
be practical, a reconstruction method has to be computationally
efficient on a “per observation” basis.

A practical reconstruction method must also be robust to noise
inherent in the observations. In ocean mapping applications, in
addition to the measurement noise that affects every observation, it
is common to have “blunders” where the instrument mis-detects the
ocean depth, for example because the acoustic energy bounced off a
target in the water column prior to interacting with the seafloor, or
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because sidelobe interference caused the instrument to detect the
specular return in an off-nadir beam. It can be difficult or impossible to
predict where these events will occur, and therefore any useful
reconstruction method can make only limited assumptions about the
data, and if adapting to the data, must continue to do so successfully in
the face of such blunders.

A method is therefore required, and is here proposed, for a remote
sensing reconstruction scheme that can adapt to the achievable sample
spacing inherent to the observations gathered. It maintains these
variations in sampling spacing within a single coherent data structure,
is computationally efficient, and is robust to the effects of observation
blunders through the use of a multi-hypothesis tracking sub-algorithm;
the primary focus here, however, is on the data adaptation.

Conventional algorithms within the hydrographic (nautical chart-
ing) community mostly focus on selecting, from all observations, which
ones are believed to be plausible (that is, they form no grid, except
perhaps as a means to identify which observations to keep, and which
to remove from consideration). Methods has been attempted based on
pointwise testing (Lirakis and Bongiovanni, 2000), emulation of hu-
man subjective editing (Du et al., 1996), various statistical tests
(Debese, 2007; Debese and Michaux, 2002; Debese et al., 2012; Eeg,
1995; Ware et al., 1992), and constructing triangulated irregular
networks (TINS) directly from points (Canepa et al., 2003; Arge et al.,
2010), with varying computational costs, degrees of robustness, and
scalability. No one method has become dominant in practice. Within
the geosciences community, where there are fewer concerns about
preserving the shallowest point within an area and the consequent
liability that might ensue, processing algorithms have been most
focussed on (fixed resolution, regular) grid-based techniques, with
methods based on (weighted) averages of various kinds (Gourley and
Dodd, 2000), geostatistical methods (Cressie and Wikle, 2011), scale-
control interpolation (Cleveland and Devlin, 1988; Plant et al., 2002),
robust surface fitting (Chen et al., 2016; Nurunnabi et al., 2015), or
splines in tension (Smith and Wessel, 1990) (see Hell (2011) for a
variable resolution method). Again, no method has become dominant
in hydrographic practice, although the method of Smith and Wessel
(1990) is probably the most commonly used in conventional bathy-
metric estimation, at least in deep water. A technique that straddles
both camps is the CUBE algorithm (Calder and Mayer, 2003), which is
designed to compute the best estimate of depth at any given point in
the area of interest, taking into account measurement uncertainty,
which is often repeated over a regular grid to reconstruct the
measurand. Modifications of the CUBE algorithm for sparse data have
also been proposed (Bourgeois et al., 2016; Zambo et al., 2015). The
CUBE algorithm has become a widely accepted approach for bathymetric
data processing, being incorporated into a large majority of the
software packages used for this purpose.

The use of a gridded reconstruction is computationally beneficial,
simplifies data structures, and allows for assimilation of information
from a collection of observations in order to robustly process raw
observations with blunders. The CUBE algorithm is robust to typical
blunders, and uses the estimated measurement uncertainty of observa-
tions not only to weight the contribution of the observations but also to
separate them into internally consistent but externally distinct groups
so that blunders do not contaminate the developing estimate of depth.
Although the algorithm does not require it, being a pointwise estimator
of depth, all known implementations of the algorithm use a regular grid
of estimation nodes for efficiency.

Consequently, an extended version of CUBE is here proposed that
relieves this constraint, while still remaining computationally efficient.
The algorithm, called CUBE with Hierarchical Resolution Techniques
(CHRT), extends the CUBE algorithm by initially estimating the data
density achieved by the observations, which is translated into an
estimate of sample spacing that can be supported by the observations.
A low-resolution estimate of depth is simultaneously generated in
order to aid decisions about further processing. A set of piecewise-

constant sample spacing (PCSS) grids are then constructed over the area
of interest, and the observations are processed using a CUBE-derived
estimation algorithm to reconstruct depths and uncertainty pairs at
each estimation node, along with other metrics to inform the recon-
struction. The supporting data structure is designed to scale to
essentially arbitrary-sized areas, and maintain the variable resolution
grids within a single structure.

The remainder of this manuscript describes the design of the CHRT

algorithm in detail. In particular the method for estimating data
density and translating it to sample spacing estimates, and the data
structure to support essentially arbitrary-sized areas of interest
(Section 2). Illustrative examples of the estimator in use with dense
hydrographic datasets are given in Section 3. A discussion of the design
and conclusions follow.

2. Algorithm design

2.1. Variable resolution with piecewise-constant sample spacing

To establish the core structure, consider a coarse uniform grid over
the area of interest with sample spacing S-m (in both axes), such that
S s> max, the coarsest refined sample spacing expected in the final
reconstruction. Around each grid point establish a super-cell, covering
area pA( ) ⊂ 2 for sample reference u vp = [ , ]′ ∈ 2 , so that

p⋃ A( ) =p
2 . Assume that from a first pass over the data it is possible

to compute for each super-cell the sample spacing achievable by the
observations, s p( ). Then, at each sample point generate a regular grid

pG( ) with sample spacing s p( )-m, with

n S sp p( ) = ⌊ / ( )⌋ + 1 (1)

nodes in each axis, centred at

Sx p p( ) = ( + 1/2) (2)

so that the area covered by the grid, p pA ( ) ⊂ A( )G , Fig. 1, since
n s Sp p( ( ) − 1) ( ) < by construction. The edge buffer is

b S n s sp p p p( ) = − ( ( ) − 1) ( ) < ( ) so the spacing between edge nodes in
adjacent super-cells maintains at least the estimated sample spacing.
The ultimate estimation of depth is conducted on the PCSS grid

pG = ⋃ G( )p . Fig. 2 shows a synthetic example of this refinement on
an area where there is sufficiently rapid change in supportable sample
spacing to show the effects.

The simple PCSS grid is memory and computationally efficient, but is
limited in that the sample spacing can only be modified at S-m
intervals. Since each pG( ) is independent, however, it would be possible
to replace those where further flexibility were required with a more
complex data structure (e.g., a quadtree) without loss of efficiency
elsewhere. This topic is considered further in Section 4.

Fig. 1. Geometry of super-cell refinement. The refined grid is a proper subset of the area
supporting the super-cell, with edge area that is not covered being less than one (refined)
sample spacing.
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2.2. Resolution estimation

For most estimators, information is gleaned from observations in
the vicinity of the point of estimation, with the estimation improving
with the number of observations assimilated. Consider, then, observa-
tions in the closed disc B x( ) ∈c

2 , radius c-m about location x used to
estimate the depth at x, where nreq observations are required on average
to form a sufficiently precise estimate (nreq is a user parameter, see
Section 4). Allowing that a proportion, ϵ, of observations will be
blunders and not used for estimation, for data density ρ x( )m−2, it is
clear that πc ρ nx( ) ≥ (1 + ϵ)2

req is required for stable estimation. Define

γ s cp≜ ( )/ , so that this constraint becomes

s γ
n

πρ
p

p
( ) ≥

(1 + ϵ)
( )

.req

(3)

In order to ensure representability of objects of linear scale L-m, it is
also required that

s κL κp( ) ≤ , 0 < ≤ 1
2 (4)

from the Nyquist theorem. In order to avoid missing observations, the
ratio γ must be chosen to ensure that the whole area of interest is
considered; for efficiency, choose

c δ Bp x n= min : A ( ) ⊆ ⋃ ( ( )) ,δ
n p

G

∈G( )

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭ (5)

which is equivalent to setting γ = 2 . The resolution is then bracketed
by the pair of inequalities

κL s
n

πρ
κp

p
≥ ( ) ≥

2 (1 + ϵ)
( )

, 0 < < 1
2

.req

(6)

Given suitable user-selected values for nreq and ϵ, the only unknown
is the data density, which must be estimated directly from the
observations during an initial pass over the data. This is a variant of
spatial point density estimation (Cressie and Wikle, 2011), where each
observation location i Nx ∈ , 1 ≤ ≤i

2 represents area a ⊂i
2 in the

plane; the effective area occupied within a super-cell is therefore

p pa( ) ≜ A( ) ∩ ⋃ a
i

i
x p{ : ∈A( )}i (7)

and hence the observation density can be estimated as

ρ Np p p( ) = ( )/∥ a( )∥ where N p x p( ) = ∑ [ ∈ A( )]i i is the number of
observations that fall in the super-cell.

Computing (7) is expensive. For random point data, an
approximation is to digitise a representation of ai, say
k a bx q x q q( ( )) = [ ( ) ∈ a ], = [ , ]′ ∈i i

2 at some suitable sample spacing
S U U/ , > 1 so that S Ux q q( ) = ( + 1/2)( / ) and compute

∑ ∑ kp x qa( ) ≈ max 1, ( ( )) ,
i

N

i
q x q p{ : ( )∈A( )} =1

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭ (8)

choosing U sufficiently large to provide a reasonable approximation to
the true areas.

For data that is collected in swathes, however, a more efficient
approximation is to determine the effective area covered by the extents
of each swathe, and connect these together into an outline polygon,
Fig. 3, before rasterising the polygon at an appropriate resolution to
provide an estimate of the area covered by the observations. The spatial
extents of the swathe can be determined directly from the positions of
the observations in the edges of the swathe; this is subject to blunders
in positioning or solutions for the observation's position with respect to
the sensor, but these have a minimal effect on area estimation and
almost always occur on the edge of the observed area where they have
lesser significance. In order to ensure that the along-track extent of the

Fig. 2. Example of pG( ) and s p( ), and simulated refinement node placement, where dotted lines indicate super-cell boundaries. The density of nodes always at least matches the sample

spacing required, although it can exceed this on super-cell edges. Axes here are arbitrary projected units.

Fig. 3. Geometry of the swathe's effective-area polygon computation. Each swathe is one
set of observations derived from a single acoustic transmission, or “ping”; due to
transmission geometries the observations form an approximate line on the seafloor.
Rasterising thick lines (of the estimated along-track ensonified area) in addition to the
polygon ensures a minimum area coverage estimate even in the case of a static observing
platform.
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observations are considered (e.g., for a stationary observer), an
approximate estimate of the mean depth z[ ] of the observations in
each ping can be determined, after which given the along-track
beamwidth, β, the estimated along-track ping width is simply
w z β= 2 [ ]tan( /2) , which can be rasterised as a line in addition to the
overall polygon. In the proposed implementation, the mean depth
estimate is constructed over the observations about the middle of the
ping using a trimmed mean estimate (i.e., first computing a weighted
arithmetic mean and standard deviation of all observations using the
estimated vertical uncertainty of the observations as weights, and then
recompute ignoring all observations more than three standard devia-
tions from the initial mean).

Hardware rasterisation can be achieved using a suitable graphical
processing unit (GPU) library, such as OpenGL (Kessenich et al., 2016),
rendering to an offscreen frame buffer, rather than directly to the
screen buffer. Such implementations are often limited as to the size of
the frame buffers that can be used, which limits the over-sampling rate
U that can be achieved. In order to minimise the quantisation noise
associated with the estimation of area by this method, graphical anti-
aliasing techniques can be used, which allows for partial sub-cells to be
maintained. The GPU hardware can also be used to implement an
approximation to (7) by rendering each swathe into a “saturation
overflow” stencil buffer, and then reading the frame buffer back
through a boxcar convolution kernel (Proakis and Manolakis, 2006)
to compute the final summation of all of the anti-aliased partial and full
sub-cells within the domain of a super-cell and thereby generate the
area estimate.

Typical values of nreq range over [3,10] (Rice and Calder, 2009) with
a common choice being five observations (National Ocean Service,
2016). The choice of “noise factor” ϵ depends to some extent on the
degree of blunders in the observations; typical ranges during testing
were [0.01, 0.10]. Selection of these parameters is considered further in
Section 4.

2.3. Estimation node placement

Estimation nodes must be placed within the super-cell so as to
maintain the edge guard region b p( ) shown in Fig. 1 by manipulating
the sample spacing. This ensures nodes are not placed exactly on the
boundary of the super-cell, which can be inefficient, and cause
difficulties for visualisation code. In order to avoid these problems,
define a nominal relative boundary gap of

B k
s

S
=

2
min

(9)

for some arbitrary constant k k∈ , 0 < < 1 . For spacing s p( ) the
number of estimation nodes is N S s p= ⌊ / ( )⌋ + 1e ; if
N s B Sp( − 1) ( ) > (1 − 2 )e , the edge guard region would be violated,
therefore remap the spacing to

s B S
N

S ks
S s

p

p

′( ) = (1 − 2 )
− 1

=
−

⌊ / ( )⌋

e

min

(10)

which results in a remapped width for pG( ) of

W N s

S S s
S ks

S S s
S ks

S

p

p p

′ = ( − 1) ′( )

= ⌊ / ( )⌋
−

⌊ / ( )⌋
−

.

e

min min

−1⎢
⎣⎢

⎥
⎦⎥
⎛
⎝⎜

⎞
⎠⎟ (11)

This can unfortunately result in W S′ = by an exact cancellation if

f S S s
S ks

p= ⌊ / ( )⌋
−

∈
min


(12)

so that f f⌊ ⌋ = . This condition pertains if S S ks/( − ) ∈min  since
S s p⌊ / ( )⌋ ∈  by definition. However, since k ∈  is arbitrary (with

preference for k ≲ 1), S S ks1 < /( − ) < ∞min so there is a choice
S s k( , , )min that avoids cancellation, and can be determined a priori.
Examination of the structure of (10) (S. MacGillivray, personal
communication) can demonstrate that any choice of k satisfies the
conditions required with reasonable assumptions on the properties of
the inputs; in practice, corner cases make these assumptions hard to
ensure, and a one-time computation of k to avoid (12) is more reliable.

2.4. Core estimator

Given the PCSS grid pG = ⋃ G( )p , any estimation algorithm can be
applied to the component nodes, with index costs per observation (i.e.,
the cost to determine which node is closest to an observation) being
limited to three multiplications and two additions per observation (i.e.,
O(n)). Although any algorithm could be used, the proposed method
uses the core estimator from the CUBE algorithm (Calder and Mayer,
2003), with some simplifications due to the direct link between data
density and sample spacing induced by CHRT.

CUBE operated by a scatter-gather process: each observation was
offered to a subset of the estimation nodes within its local vicinity
(scatter), and at each node a decision was made as to which offered
observations to accept for estimation (gather). The scatter and gather
radii were user parameters. In CHRT, however, automatically computing
the sample spacing and selecting γ = 2 in (3) means that all
observations are required only to be propagated to their nearest
neighbour estimation nodes, and each node automatically accepts all
observations that are propagated to it. Similarly, determining which
observations need to be propagated from one super-cell to its neigh-
bours can be greatly simplified.

CUBE also assumed that each observation contained both a depth
estimate and its associated 3D uncertainty; depth estimates con-
structed also included an uncertainty estimate. The algorithm used
an uncertainty propagation equation to reflect the idea that the
uncertainty of an observation that is used at some distance from its
nominal location should be higher (i.e., the information content is
diluted to some extent). Experience with the original equation has
demonstrated that the uncertainty often increases too rapidly, and CHRT

uses an equation based on the mean distance of propagation, given the
horizontal uncertainty of the observation, rather than CUBE's worst-case
approach. For more details, and examples, the reader is directed to
Calder and Elmore (2017).

As with CUBE, as each observation is propagated to an estimation
node, the CHRT algorithm assimilates it against the appropriate depth
estimate using a simple dynamic linear model (West and Harrison,
1997), which could also be considered a simple Kalman filter, or a
sequential Bayesian estimator. Prior to assimilation, each observation
is tested against the null hypothesis that the current estimate and the
new observation are consistent in depth within their respective
uncertainties, with the alternative hypothesis being a step change in
depth. If the null hypothesis is rejected, a separate tracking structure is
initialised from the new observation (called a “hypothesis” in CUBE for
obvious reasons); otherwise, the new observation is assimilated into
the current estimate. When more than one hypothesis is being tracked,
new observations are sequentially tested against the set of hypotheses
until one matches or all fail and a new hypothesis is spawned. The
algorithm therefore sequentially constructs a set of hypotheses as to the
true depth at the node location as observations are made available, but
defers a decision as to which is most likely to be the true depth until the
user requests a reconstruction, at which point one hypothesis is
reported as most likely, along with metrics to quantify the algorithm's
reliability in this choice. A number of methods are available to make
this choice, from selecting the hypothesis with most observations to
selecting the hypothesis that is closest in depth to that declared at the
nearest node with a unique reconstruction (i.e., with only one hypoth-
esis). Many variations are obviously possible. For more details, the
interested reader is directed to Calder and Mayer (2003).
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2.5. Data structure

The CHRT data structure is in essence a collection of regular grids.
For efficiency, however, careful arrangement of the memory structures
is required. There are three primary design requirements: efficient core
data structures that can be expanded readily during observation
assimilation, the ability to do lazy allocation of resources and minimise
resource usage, and the ability to operate over large physical areas and
datasets without manual intervention of the user. The first two
requirements addresses computational performance; the last address
user experience and ease of use.

A spatially-tiled data structure is used to allow for demand paging.
Within each tile of D D×0 0 super-cells, the data structures required
include a base object to hold statistics on sample spacing, and a set of
structures for CUBE. Each estimation node consists of a core structure, a
short queue of working data, and zero or more hypotheses on the true
depth, augmentable as new observations are assimilated. For efficient
addition of hypotheses and data transfer, these structures are held as
separate files that can be memory-mapped in file groups, Fig. 4. For
simplicity, the hypotheses associated with a given estimation node are
required to appear in the same file group, and a single integer-indexed
singly-linked list allows for random allocation of hypotheses. A 32-bit
index is used, with the CUBE core structure holding the root index, or a
null index if there are no hypotheses; theoretically, 2 − 132 hypotheses
can be indexed in a file group, although other constraints typically
preclude this.

Establishing the maximum area that can be accessed requires a
determination of the tile sizes allowed. Nodes and queues are always
paired so only a single index is required to find refinements; the nodes
and queues for a refinement are stored sequentially within their
respective files, which constrains how many refinements can be placed
in a file group. Multiple file groups are therefore required per tile. To do
this, a 32-bit index is used, split between a b-bit file group reference
and a b(32 − )-bit intra-group index. A primary design choice is
therefore the selection of b.

Consider a file group with 2 − 1b32− nodes (reserving one value to
represent an invalid index), each of m Bn . In the worst case, for example
if a swathe covered the corner of four separate tiles, with load-before-
delete semantics, plus a spare, up to nine file groups might need to be
mapped to avoid paging. A maximum of M m= 9 (2 − 1)Bn

b32− is there-
fore required, and for a 32-bit address space, M < 232, giving

b
m

> 32 − log 2
9

+ 1
n

2

32⎛
⎝⎜

⎞
⎠⎟ (13)

or, since m2 /(9 ) ≫ 1n
32 ,

b m m> log (9 ) ≈ 3.17 + logn n2 2 (14)

For the development implementation, m = 212 Bn , so b > 10.90 bits, or
b ≥ 11 bits.

Establishing an upper limit for b requires a detailed analysis of the
node count in each tile, considering the D0

2 nodes required for the low-
resolution first-pass depth, the worst-case refinement node count of
S s⌈ / ⌉min

2, and that M D S s D S s( , , ) = max{ , ⌈ / ⌉ }0 min 0
2

min
2 nodes might be

unused at the end of the file group due to local addressing constraints.
It can be shown, however, that the constraints can be satisfied (Calder
and Rice, 2011) if

D
S s

≤ (2 − 1)(2 − 1)
2 + ⌈ / ⌉

,
b b

b0

32−

min
2

(15)

and

b S s≤ 32 − log (⌈ / ⌉ + 1)2 min
2

(16)

which leads to a range of allowable tile sizes given b and the refinement
ratio r S s= / min, Fig. 5.

Combined, these limits provide for tile sizing, which can be
physically extensive. For b = 11 bits, D ∈ [319, 1324]0 and for

Fig. 4. Structure of memory-mapped components of an individual tile. Each tile maintains a single super-cell file, and any number of file groups for CUBE depth estimation purposes.

Fig. 5. Maximum allowed tile sizes for different choices of file group index bits b, and
refinement ratio r S s= / ∈ [20, 200]min , assuming no other constraints. Increasing the

refinement ratio generally reduces the maximum tile size allowable, although other limits
might be stronger in practice.
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S s( , ) = (20, 0.1) mmin , D = 3190 , implying ≈6.4 km tiles; for
S s( , ) = (30, 0.25) mmin , D ≈ 5100 implies ≈15.3 km tiles. Since the tiles
are indexed by 32-bit integers, the overall size of the addressable space
is greater than the circumference of Earth.

Hence, there is no practical limit on the size of survey area that can
be addressed, as required.

Establishing an addressing scheme that can circle Earth supports
the design goals of user experience and lazy allocation. Since the whole
projected plane is addressable, the user does not have to specify a
bounding box a priori: the tiles, and their refinements, can be fixed to
the origin of the coordinate system, Fig. 6. It is then simple to turn on
only required tiles as new data is observed. Within each tile, a
compressed bit-mask is used to identify active super-cells, and
resources are only allocated where required, providing for lazy alloca-
tion of resources with low overhead.

3. Estimation examples

3.1. Woods Hole, MA

Woods Hole, MA was surveyed in 2001 by the NOAA Ship Whiting
(Barnum, 2001), eventually becoming registered as survey H11077.
The primary instrument used was a Reson 8101 multibeam echosoun-
der, with ApplAnix POS/MV 320 motion sensor, and differential-aided
GNSS using Trimble receivers; sidescan and singlebeam echosounder
data were also collected, but are not used here. For processing through
CHRT, the data were converted using CARIS HIPS data processing software
(version 9.0) for manipulation, and then exported in projected
coordinates (UTM zone 19N on NAD83 ellipsoid). A total of 37.2 × 106

observations were used, creating 5.36 × 106 populated nodes after
refinement.

The survey is in relatively shallow water with vertical range of 2–
30 m, limiting changes required in sample spacing, and allowing for a
relatively small super-cell width of S = 8 m. The CHRT first-pass output
products are given in Fig. 7. The estimated data density is relatively
constant, although the edges of the survey show lower sample spacing
estimates as might be expected; some overlay of multibeam echosoun-
der data density differences are also observable, highlighting the survey
line pattern used. A mean sample count per hypothesis (nreq) of 11

observations and a noise compensation (ϵ) of 0.10 were used to
compute the sample spacing estimates.

A section of the variable resolution estimate of depth, in the main
channel heading north to Woods Hole, is shown in Fig. 8, and is shown
with an overlay of the estimate node positions in Fig. 9. As expected,
the algorithm has adapted to the variability in data density within the
region, increasing sample spacing from approximately 0.6 m to 1.3 m
over a depth range of 8.5–15.5 m; these conservative sample spacing
estimates reflect the choice of nreq and ϵ, which were chosen to ensure
that 95% of the estimation points had at least five observations, as
required by current NOAA survey specifications (National Ocean Service,
2016).

The survey area in H11077 is relatively benign except for the many
small objects on the seafloor. It is interesting to note, however, that the
sample spacing selected is not driven solely by depth: the northwest
corner of the area shown in Fig. 8 is deeper than the southwest, but still
has smaller sample spacing estimates due to the higher density of data
points in the area.

3.2. Ernest Sound, AK

Ernest Sound, AK was surveyed by the NOAA Ship Fairweather in
2009 (Baird, 2009), eventually becoming registered as survey H11825.
The primary instruments used were Reson 8101, 8111, and 8125
multibeam echosounders (selected according to depth range), with
ApplAnix POS/MV 320 motion sensor and differential-aided GNSS using
Trimble receivers. A sub-set of the overall survey was extracted as the
survey progressed, and was handled as before. A total of 8.57 × 106

observations were used, creating 1.87 × 106 populated nodes after
refinement.

As with many Alaskan locations, the area covers depths from
shoreline to approximately 220 m, leading to dramatic changes in
sample spacing that can be accommodated by the multibeam echo-
sounders in use, which also differ significantly in the number of beams
they can produce, and the swathe angle over which they can operate.
This mandates a larger super-cell width of S = 32 m to ensure stable
estimation of data density and sample spacing, Fig. 10: at smaller
super-cell widths, the spacing between beams of the multibeam
echosounder at depth are greater than the super-cell size, leading to
poor estimates. Algorithm control parameters were otherwise main-
tained as before.

The significantly higher dynamic depth range is reflected in the data
density estimates, which vary over more than five orders of magnitude.
The predicted sample spacing mostly corresponds to depth, although
variations due to instrument choice, repeated survey lines (at centre),
and lack of density on the outer swathe edges (west edge, southeast
corner) are also observed. The greater dynamic range also requires the
sample spacing to vary significantly faster, making this a good test for
the assumption that only PCSS grid refinements are required. Fig. 11
shows a sub-set of the variable resolution depth estimates in the
vicinity of the southern-most island in the northeast corner of the area,
with the over-laid estimation node positions in Fig. 12. The algorithm
clearly adapts to the data density variation without any evident
“tearing” that might indicate a discontinuous estimate.

4. Discussion

The CHRT algorithm clearly adapts to the available data density, and
appears to be sufficiently adaptable to accommodate typical datasets.
The current model of a PCSS grid is computationally efficient, although it
is conceivable that there may be topographies for which it is inade-
quate. It would in theory be possible to replace any component regular
grid with a more complex data structure where this occurs, however,
and only pay the runtime cost for this where absolutely required. In
addition to standard spatial indexing structures such as a quadtree, it
would be possible to adopt more complex schemes such as a curvilinear

Fig. 6. Illustration of global grid structure, which covers the projected coordinate system
with fixed-size data storage tiles that are only allocated (orange shading) in the active
area (red outline), i.e., the minimum bounding box of tiles that cover the area in which
observations occur (grey). Orange shaded cells are allocated on disc, and mapped to
memory when required; cells in the active area, but not containing data, use no
resources. The algorithm automatically maintains the list of active tiles and the current
bounding box based on the data observed. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).
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coordinate frame with suitable basis to provide continuously variable
sample spacing, or even an adaptive node placement that was density-
seeking. The only question is the trade-off between fidelity of repre-
sentation and computational complexity.

Data density has been used here as a scheme for predicting the
achievable sample spacing (i.e., through (6)). For most sensors,
however, it might not be the case that increasing data density
continuously improves the achievable resolution. A multibeam echo-
sounder, for example, has a limited aperture per beam, and finite
pulselength, with consequent minimum resolvable object size. If the
system is stationary, the ground-relative data density will increase

without limit, but objects below the resolvable limit will never be
resolvable although increasing sample spacing will be possible.
Estimating the achievable resolution, given the sensor, might be more
physically appropriate, but data density appears to be a reasonable, and
pragmatic, proxy. The specifics of the conversion of data density to
sample spacing are in any case essentially ad hoc, and the key
components of the proposed algorithm do not depend on the details:
only that a domain-suitable mapping exists. In theory, it might even be
possible to estimate locally, given the noisy, non-uniformly spaced, raw
observations, a spatial frequency spectrum (Gardner et al., 2014) and
then modify it by an effective point spread function for the sensor. It

Fig. 7. First-pass estimate of (left to right) depth, data density, and predicted sample spacing for Woods Hole, MA, NOAA survey H11077 of 2001. Note logarithmic scale on data density;
black rectangle marks location of Figs. 8 and 9; details of super-cell geometry, etc. are given in the text.

Fig. 8. Variable resolution depth estimate subset (right) with fixed (low) resolution first-pass depth and sample spacing estimates (left). The variation in data density over even relatively
small depth ranges results in a significant difference in stable sample spacing.
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seems likely, however, that the computational cost of such an approach
would heavily outweigh any benefits beyond those derived from a
strictly empirical estimate of data density.

Choice of super-cell size is a trade-off between reliability of density
estimation and sample spacing flexibility: the larger the super-cell, the
more stable the data density estimate, but the less often the sample
spacing can be adjusted. Larger super-cells may therefore induce
structure in the estimates, since varying background data density will
be averaged over the super-cell, leading to over- and under-estimation
of the sample spacing. In effect, the data changes more rapidly than the
algorithm can adapt. The super-cell must however be at least as large as
the maximum expected sample spacing, often a predictable function of
the field being measured and the sensor.

Choice of required number of samples is often set by survey
specification, but choice of the “noise accommodation” factor, ϵ, has
to be based on the data itself. As shown in Fig. 13, increasing ϵ tunes
the sample spacing upwards to allow for more observations at each
node, and therefore more stable estimation. A suitable value of ϵ is
unlikely to be possible to determine a priori since the level of noise in
the data is not known. Monitoring the performance of a system over
time might, however, provide some guidance.

The proposed system assumes implicitly that all data is available a
priori. The core estimator, however, is not so restricted, and can
continuously assimilate data and provide incremental depth recon-
structions. The only limitation in extending the system to continuous
estimation is the density estimation, which would require adjustment

of the refined grids where new data were added. There are no
theoretical restrictions on this, although it would require the previous
data were available for reprocessing after the refinement is adjusted,
since this resets the estimation nodes. A suitable spatial indexing
scheme for data would obviously assist in efficiency.

Visibility of objects is a common metric in assessing a survey, which
is directly addressed by estimated sample spacing in the proposed
system. The sample spacing estimate therefore allows surveyors to
demonstrate both that they met any requirement provided, and the
converse: that the sample spacing requirement (and hence object
visibility) cannot be met with the equipment being used. Such a
straightforward metric would avoid unnecessary effort where the
equipment available cannot meet the requirements.

To some extent, the core estimator used reflects the nature of the
bathymetric estimation problem. The interpretation of multiple com-
peting hypotheses on the true depth being tracked at a node, for
example, relies on the principle that there is only one true depth at a
point location. Applying the algorithm described here to other scalar
fields might necessitate different interpretations, or perhaps a different
core estimator. Since the choice of estimator is essentially independent
of the supporting data adaptivity, this would affect only the imple-
mentation, not the fundamental concepts presented.

Although presented here for bathymetric estimation, the techniques
described could be extended to other two-dimensional estimation
problems so long as an equivalent to (6) can be formed. In some cases,
the same formulation could be used with different estimation techni-

Fig. 9. Variable resolution depth estimates of Fig. 8 with overlaid positions for the estimation nodes derived from first-pass sample spacing estimates.
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Fig. 10. First-pass estimate of (left to right) depth, data density, and predicted sample spacing for Ernest Sound, AK in the vicinity of Union Point, part of NOAA survey H11825 of 2009.
Note logarithmic scale on data density; black rectangle marks location of Figs. 11 and 12.

Fig. 11. Variable resolution depth estimate subset (right) and fixed (low) resolution first-pass depth and sample spacing estimates (left). The rapid drop-off in depth in this area results
in a change of sample spacing estimate from approximately 1 to 6 m within 225 m horizontal distance.
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ques for data density; in others, the critical factor might be field
complexity rather than data density. In datasets where the observations
are not as structured (e.g., where the method of Fig. 3 cannot be used),
the estimation of area covered by the observations would be more

difficult, but could be approached by assigning each observation a
region of support, and computing their spatial union per super-cell.
Although the CHRT algorithm is not intended for interpolation per se,
such an approach might also allow for the intriguing possibility of using
the technique as a means to estimate a plausible interpolation density,
given the observations, for a more general sparse interpolation
problem. Finally, a different core estimator might be required depend-
ing on the properties of the dataset or application area, as outlined
above. None of these modifications fundamentally change the core idea
of a data-adaptive PCSS grid, with the attendant computational efficiency
gains.

5. Conclusions

Based on the concept of a data-adaptive PCSS grid, the CHRT

algorithm adapts, simplifies, and extends the CUBE estimator, leading
to a method for data-adaptive, large-scale, variable resolution scalar
field estimation with resource-efficient implementation. The algorithm
estimates data density directly from the observations, and uses this to
adapt the scalar field estimation to spatially varying sample spacings; a
second pass over the observations completes the estimation.

The algorithm implementation is modular, so that it could be
readily adapted to different methods for sample spacing estimation
from the data density (or other measures), be efficiently extended to
different base representations (other than regular grids) if required by
the data, and even support other base estimators than CUBE.

Although primarily designed for bathymetric estimation, the algo-

Fig. 12. Variable resolution depth estimates of Fig. 11 with overlaid positions for the estimation nodes derived from first-pass sample spacing estimates.

Fig. 13. Probability mass estimates for number of samples in the primary depth
hypothesis for varying noise accommodation parameter, ϵ. The predicted sample spacing
is proportional to ϵ, so increasing the parameter allows for more observations at each
node.
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rithm is sufficiently generic that it could be used for reconstruction of
other two-dimensional fields where variable data density naturally
implies variable resolution of reconstruction.
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