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A B S T R A C T

Precise point positioning (PPP) is a well established Global Navigation Satellite System (GNSS) technique that
only requires information from the receiver (or rover) to obtain high-precision position coordinates. This is a
very interesting and promising technique because eliminates the need for a reference station near the rover
receiver or a network of reference stations, thus reducing the cost of a GNSS survey.

From a computational perspective, there are two ways to solve the system of observation equations produced
by static PPP either in a single step (so-called batch adjustment) or with a sequential adjustment/filter. The
results of each should be the same if they are both well implemented. However, if a sequential solution (that is,
not only the final coordinates, but also those observed in previous GNSS epochs), is needed, as for convergence
studies, finding a batch solution becomes a very time consuming task owing to the need for matrix inversion that
accumulates with each consecutive epoch. This is not a problem for the filter solution, which uses information
computed in the previous epoch for the solution of the current epoch. Thus filter implementations need extra
considerations of user dynamics and parameter state variations between observation epochs with appropriate
stochastic update parameter variances from epoch to epoch. These filtering considerations are not needed in
batch adjustment, which makes it attractive.

The main objective of this research is to significantly reduce the computation time required to obtain
sequential results using batch adjustment. The new method we implemented in the adjustment process led to a
mean reduction in computational time by 45%.

1. Introduction

Since the pioneering work of Zumberge et al. (1997), precise point
positioning (PPP) has been studied extensively (Kouba and Héroux,
2001; Gao and Shen, 2001; Colombo et al., 2004; Bisnath and Gao,
2008; Chen et al., 2009; Geng et al., 2010) and applied to a wide variety
of potential applications both in static and kinematic environments,
including not just positioning and navigation, but also plate tectonics
studies, resource management in remote areas, aerial photogrammetry
and sea-level measurements (Chen, 2004; Heroux et al., 2004; Kouba,
2005; Zhang and Andersen, 2006; Bisnath and Gao, 2008).

PPP uses high-precision carrier phase and pseudorange observa-
tions of a single receiver in processing undifferenced Global Navigation
Satellite System (GNSS) algorithms, in which the most accurate

satellite orbits and clock information as published by the
International GNSS service (IGS), (Dow et al., 2009; Rai, 2010), are
used.

The undifferenced GNSS observation equations for pseudorange
and carrier phase measurements are based on the following simplified
observation equations (Leick, 2004; Hofmann-Wellenhof et al., 2008):

P L ρ c dt dT d d ε

ϕ L ρ c dt dT d d λ N ε

( ) = + ( − ) + + +

( ) = + ( − ) + − + +

i trop Ion
Li

i trop Ion
Li

i
i (1)

where P(Li) is the measured pseudorange on Li frequency (m); φ(Li) is
the measured carrier phase on Li (m); ρ is the geometric range between
the receiver and the satellite (m); c is the speed of light (m/s); dT is the
satellite clock bias with respect to Global Positioning System (GPS)
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time (s); dt is the receiver clock bias respect to the GPS time (s); dTrop is
the tropospheric delay (m); dIon/Li is the ionosphere delay on Li (m); λi
is the carrier wavelength on Li (m/cycle); Ni is the integer phase
ambiguity on Li (cycles); and ε represents all remaining biases
including the measurement noise and multipath effect in pseudorange
or carrier phase (m).

Finally:

ρ X X Y Y Z Z= ( − ) + ( − ) + ( − )S S S
2 2 2

where (XS, YS, ZS) represents the satellite position and (X, Y, Z)
represents the receiver position, both in the Earth-fixed geocentric
reference frame.

Linear combinations from the two frequencies can reduce or even
eliminate some of the parameters presented in the previous equations.
One of these is the ionosphere-free combination, which eliminates the
first-order delay (more than the 99% of the total delay) of the
ionosphere (Seepard and Bisnath, 2014). This combination is tradi-
tionally used as a functional model for PPP. IGS precise satellite clocks
are estimated from the ionosphere-free combination of carrier phase
and pseudorange observations using a world wide network solution
(Dach et al., 2015), therefore, they contain the ionosphere-free
combination of the satellite electronic biases, so no differential code
bias (DCB) correction is needed for the ionosphere-free linear combi-
nation of P(L1), P(L2) data.

The ionosphere-free pseudorange (P(LIF)) and carrier phase
(φ(LIF)) combinations can be formed as follows (Leick, 2004;
Hofmann-Wellenhof et al., 2008):

P L ρ c dt dT d ε

ϕ L ρ c dt dT d N ε
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where f1 and f2 are the GPS frequencies on L1 and L2 (Hz), respectively,
and NIF is the ionosphere-free ambiguity term, further described
below:

N
cf N cf N

f f
=

−
−IF

1 1 2 2

1
2

2
2

It should be noted that the ionosphere-free ambiguity term is no
longer an integer number. Ambiguity resolution is an important aspect
in PPP, a review of the principal methods can be found in Shi and Gao
(2015); in the present research it is treated as a floating-point number.

To transform point positioning to PPP, high-accuracy satellite
coordinates and clock bias are needed. Therefore, the best approach
to solving these system equations, in a post-process stage, is to use the
IGS final orbit and clock products (Dow et al., 2009), which are freely
available for public use. These products are made available to the user
with a lag time of 12–18 days, (IGS 2013). In recent years, the accuracy
of IGS orbit and clock products has improved drastically (Dow et al.,
2009), the orbit accuracy of the final IGS products is better than
2.5 cm, and the clock accuracies are approximately 75 ps.

The system of observation equations outlined above should be
soved with a least-squares adjustment. This can be done in a single step
(batch adjustment) or with a sequential adjustment/filter. The dis-
advantage of batch adjustment is that it may become too computa-
tionally time consuming even for powerful computers, especially for a
large set of equations.

Additionally, extra computational time is required if a sequential
solution (coordinates of the receiver at each epoch) are required in
batch adjustment. This sequential solution is essential for studies of the
convergence time required for PPP; thus, this research focuses on
reducing the computation time required for a sequential PPP solution
using batch adjustment to solve system equations.

As an example, a batch adjustment using 6 h of GNSS observation
at 30-s intervals, 8 visible satellites per epoch, and 2 observation
equations per epoch per satellite with no cycle slips will generate a final
system with 11,520 observation equations and 3 station coordinate
parameters (in the static case), 720 receiver clock parameters, 3
troposphere parameters (one every two hours) and the ambiguity
terms for each observed satellite. If we consider only the ambiguity
for the same 8 satellites for the entire observation period, this system of
equations has a total of 732 parameters to solve; if a sequential solution
is required, a different system equation need to be solved at each epoch,
and so, in this example, 720 growing different system equations should
be solved. Taking into account that the computing time for matrix
inversion is increasing quadratically with the size of the matrix, a
procedure to reduce the time in the matrix inversion is key for reducing
the sequential processing time in batch adjustment solution.

This manuscript is written as follows: Section 2 explains the
classical PPP software development, Section 3 introduces the new
strategy to reduce the computational time in the sequential batch
processing, Section 4 explains in detail how the design matrices should
be formed in accordance with the new strategy, in Section 5 the
experiments to check the proposed method are explained and, finally, a
brief concluding section ends the paper.

2. PPP software

A PPP sequential batch approach was implemented using
MATLAB software. To achieve the highest possible PPP positioning
accuracy, phase wind-up, antenna phase offset and variation at the
satellite and receiver, solid Earth tide, pole tide, relativistic
corrections, and pseudorange- and carrier-phase biases are mod-
elled in accordance with international standards (Kouba and
Héroux, 2001); if a cycle slip was detected, a new column for the
satellite (a new ambiguity term) was introduced in the design
matrix. Finally, the developed software (UPV software) can be
considered to be the state-of-the-art in PPP. Fig. 1 shows the
receiver coordinates differences between the BERNESE 5.2 soft-
ware solution (Dach et al., 2015) and the final IGS weekly
coordinates for JPLM permanent IGS station in static mode using
the data from the first 6 h of October 1, 2013. Stacking equations
into blocks of ten minutes are used for the coordinates compar-
isons; the same differences are plotted for the results of the
developed software.

The core of the developed software is the establishment of the
observation equations (the matrix definition A), because its solution is
quite simple using MATLAB libraries and least-squares theory:

Ax b v= + (3)

where A is the design matrix of coefficients; x is the unknowns or
parameter vector, b is the vector of observations (observed minus
computed terms) and v is observation noise and uncertainty (the so-
called residuals), which are assumed to be Gaussian normally dis-
tributed with zero mean.

The strategy for solving Eq. (3) is to minimize the sum of the
squares of the residuals, obtaining the common notation:

x A WA A Wb= ( ) ( )T T−1
(4)

where W is introduced as the weight matrix, which is diagonal,
considering uncorrelated observations.

This system can be simplified to:

x A A A b= ( ) ( )T T−1
(5)

if the design matrices are renamed using the notation: A W A=
andb W b= . In this case W is a diagonal matrix, so the square root
of the matrix is simply the square root of the elements of the diagonal.
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Fig. 1. Precise point positioning coordinate convergence (in comparison with the weekly IGS coordinates) of the JPLM IGS GNSS permanent station using BERNESE 5.2 and UPV
software. North (N), East (E) and Up (h) components are considered.

Fig. 2. (a) Location of the 7 North American IGS GNSS stations used in the study. Coastline file from the U.S. National Geophysical Data Center (2010). (b) Location of the 4 European
IGS GNSS stations used in the study. Coastline file from the U.S. National Geophysical Data Center (2010).
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The linearization of the observation equations is the basis for the
construction of the design matrix (Hofmann-Wellenhof et al., 2008). An
example of PPP design matrix from t1 to tn epochs and observed satellites 1
to S, is:

There are two equations for every satellite per epoch, the first
corresponding to the pseudorange observation and the second to the
carrier phase observation (containing the ambiguity term). X0, Y0 and
Z0 are the approximate coordinates of the station andm is the mapping
function of the tropospheric wet delay. The troposphere can be divided
into two components, the hydrostatic component (dry) and wet
component. The troposphere path delay can be expressed as a function

of the dry and wet zenith path delay with an individual mapping
function, relating the tropospheric delay to the elevation angle of the
satellite. The hydrostatic component consists of mostly dry gases, is

rather stable and can be modeled accurately with the Saastamoinen
model. The wet component is a result of the water vapour, and it is
difficult to model accurately, so in the linearization process of the
observation equations, only the wet component is included as a
parameter to be determined. The derivative with respect to the wet
zenith path delay in the satellite direction is simply the mapping
function of the wet part.

Table 1
Location, receivers, antennas and coordinates for the IGS permanent sites.

Station Location Receiver Antenna Latitude (deg) Longitude (deg) H (m)

ALBH Victoria (Canada) AOA B. ACT AOAD/M_T SCIS 48.389722 -123.487222 32.0
ALGO Algonqui-Park (Canada) TPS NET-G3A AOAD/M_T NONE 45.958611 -78.071388 202.0
ANKR Ankara (Turkey) TPS E_GGD TPSCR3_GGD NONE 39.887500 32.758333 974.8
DUBO Lac Du Bonnet (Canada) TPS NETG3 AOAD/M_T NONE 50.258611 -95.866111 251.0
GODZ Greenbelt (USA) JPS EGGDT AOAD/M_T JPLA 39.021666 -76.826666 14.5
JPLM Pasadena (USA) JPS EGGDT AOAD/M_T NONE 34.204722 -118.173055 423.9
PICL Pickle Lake (Canada) AOA SNR-12 ACT AOAD/M_T NONE 51.479722 -90.161944 315.1
ROAP San Fernando (Spain) SEPT POLARX3ETR LEIAR25.R4 NONE 36.464166 -6.206111 73.7
SPT0 Boras (Sweden) JAVAD TRE_G3TH AOAD/M_T OSOD 57.714722 12.891111 219.9
SVTL Svetloe (Russian Federation) TPS NETG3 TPSCR.G3 TPSH 60.532777 29.780833 77.1
YELL Yellowknife (Canada) JAVAD TRE_G3T AOAD/M_T NONE 62.480833 -114.480555 181.0

(6)
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Matrix b has the form

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

b

P t ρ t cdT t cdt t Trop t

L t ρ t cdT t cdt t Trop t

P t ρ t cdT t cdt t Trop t
L t ρ t cdT t cdt t Trop t

P t ρ t cdT t cdt t Trop t
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where P and L are the observed ionosphere-free linear combina-
tions of pseudrange and carrier phase respectively, ρ0 is the geometric
range receiver-satellite distance, cdT is the satellite clock delay
(obtained from the IGS clock final file), Trop is the tropospheric dry
delay computed based on the Saastamoien zenith path delay and Niell
mapping functions, cdt is the a priori receiver clock correction, which is
0 for the first iteration of the first epoch, and, the computed value for
the rest of the iterations; for the rest of the epochs, the value for the
fisrt iteration is the final value obtained in the previous epoch, and, the
computed value for the rest of the iterations.

Finally, the weight can be obtained as a function of elevation angle
el corresponding to a satellite 1…S and epoch t:

( )

( )

W

W

=

=

L
e el

P
e el

1

cos
1

cos

L t
S

P t
S

2 2

2 2 (8)

where eP is the a priori ionosphere-free standard deviation of pseudor-
ange observations and eL is the ionosphere-free standard deviation of
the phase observations. Typically, eL is 5–20 mm and the ratio eP/
eL=100 for ionosphere-free undifferenced carrier phase and pseudor-
ange observations is used.

Finally, the parameter vector is:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠
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X
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c dt t
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N
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⋮

k

n

IF

IF
s
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1

1
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where δX, δY and δZ are the corrections to the a priori receiver
position, ZWD are the zenith components for the wet tropospheric
delay (k different parameters, one every two hours), cΔdt is the
correction to the a priori receiver clock delay and NIF is the iono-
sphere-free ambiguity term for the satellites.

3. Alternative method

As previously mentioned, the main problem for the sequential batch
solution of the system equations, is the amount of computer time it
consumes, especially in computing A A( )T −1 as the number of equations
increases. The basis for the time reduction begins with the known
expression for matrix inversion (Strang and Borre, 1997):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

T U
U W

L M
N P=T

−1

(10)

This block diagonal condition is true if the inverse matrix is the one
needed to solve the least square PPP method (Eq. (5))

The method for obtaining this inverse is:

L T T UPU T= + T−1 −1 −1

M T UP= − −1

N PU T
P W U T U

= −
= ( − )

T

T

−1

−1 −1 (11)

If, in the U block, only parts of the normal equations coming from a
new epoch are considered (i.e., clock delay; new troposphere delay, if it
is necessary; or a new ambiguity term for any new satellites), the
inverse can be obtained quickly from the inverse of the T block, which
is known from the previous epoch.

For the first epoch (ep1), matrix T will be the usual system of
normal equations Tep1=(A Aep

T
ep1 1).

For the second epoch (ep2), the matrix (A Aep
T

ep2 2) of normal
equations, includes only the observations for this new epoch. Some
of the unknown parameters are repeated from the previous epoch (i.e.,
receiver coordinates; troposphere delay, if this is the case; and
ambiguity terms for repeated satellites), but the new unknown para-
meters define the U matrix. The differential elements introduced for
the new observations (epoch 2) in the system of normal equations
defined in the first epoch, can be considered the sum of two matrices
with the same columns (Shen and Xu, 2013),

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A A A A

A A

A A
A A A A( ) = ( ) = = ( + )T

ep ep
T

ep ep
ep
T

ep

ep
T

ep
ep
T

ep ep
T

ep
−1

1 2 1 2
−1 1 1

2 2

−1

1 1 2 2
−1

(12)

where the following expression can be used to solve the inverse:

D ECB D D EKBD

K C BD E

( + ) = −

= ( + )

−1 −1 −1 −1

−1 −1 −1
(13)

In this expression, C is the normal equation matrix generated for
the second epoch, that isC A A=( )ep

T
ep2 2 , D is the normal equations matrix

from the previous epoch, that is D A A=( )ep
T

ep1 1 , and E and B are defined
such that they can be added to D. The only condition for this method is
that C and D should be invertible matrices.

Obviously, T block for the second epoch is T D ECB=( + ).
With this procedure, to solve the inverse of the normal equa-

tions matrix considering both epochs, it is necessary the inverted
matrix of the normal equations computed in the previous epoch,
which is known, and the inversion of the normal equation matrix
generated only considering the observations of the second epoch,
which is a small matrix.

For the third (and subsequent) epochs, the new matrix D to add to
the new matrix C for the third epoch is the block matrix
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⎡
⎣⎢

⎤
⎦⎥

T U
U W

,T obtained from the computation of the second epoch.

4. Matrix design

The main problem of this method is defining the design matrix A
and matrix B. In this section an example of the construction of the
design matrix for the proposed method is described: imagine a matrix
A with for 4 epochs, 3 satellites and a change in the troposphere
column, it will have the following simpified form (where only phase
equations are considered for simplicity):

Station
coordinates

Troposphere Receiver
clock

Satellite
ambiguities

ΔX ΔY ΔZ Tr1 0 1 0 0 0 1 0 0
ΔX ΔY ΔZ Tr1 0 1 0 0 0 0 1 0
ΔX ΔY ΔZ Tr1 0 1 0 0 0 0 0 1
ΔX ΔY ΔZ Tr1 0 0 1 0 0 1 0 0
ΔX ΔY ΔZ Tr1 0 0 1 0 0 0 1 0
ΔX ΔY ΔZ Tr1 0 0 1 0 0 0 0 1
ΔX ΔY ΔZ 0 Tr2 0 0 1 0 1 0 0
ΔX ΔY ΔZ 0 Tr2 0 0 1 0 0 1 0
ΔX ΔY ΔZ 0 Tr2 0 0 1 0 0 0 1
ΔX ΔY ΔZ 0 Tr2 0 0 0 1 1 0 0
ΔX ΔY ΔZ 0 Tr2 0 0 0 1 0 1 0
ΔX ΔY ΔZ 0 Tr2 0 0 0 1 0 0 1

However, the order in our method is different: new columns with the
new parameters to be adjusted are added at the end of the matrix for every

epoch, so, the same example will produce the following matrix:

Station
coordinates

Tropo R.
Clock

Ambiguit. R.
Clock

Tropo R.
Clock

R.
Clock

ΔX ΔY ΔZ Tr1 1 1 0 0 0 0 0 0
ΔX ΔY ΔZ Tr1 1 0 1 0 0 0 0 0
ΔX ΔY ΔZ Tr1 1 0 0 1 0 0 0 0
ΔX ΔY ΔZ Tr1 0 1 0 0 1 0 0 0
ΔX ΔY ΔZ Tr1 0 0 1 0 1 0 0 0
ΔX ΔY ΔZ Tr1 0 0 0 1 1 0 0 0
ΔX ΔY ΔZ 0 0 1 0 0 0 Tr2 1 0
ΔX ΔY ΔZ 0 0 0 1 0 0 Tr2 1 0
ΔX ΔY ΔZ 0 0 0 0 1 0 Tr2 1 0
ΔX ΔY ΔZ 0 0 1 0 0 0 Tr2 0 1
ΔX ΔY ΔZ 0 0 0 1 0 0 Tr2 0 1
ΔX ΔY ΔZ 0 0 0 0 1 0 Tr2 0 1

where the original block structure disappears and becomes sequen-
tial, and a new column is added if a new satellite, epoch or troposphere
parameter appears.

The following example is used to explain the new matrix design process:
imagine a first epoch with five satellites (satellites 1–5) and a second epoch
with only two observed satellites: satellite 1 from the previous epoch and a
new input, satellite 6. The proposed design matrix A, considering only
carrier-phase observations and one troposphere column, is:

where the subscript is the epoch and the superscript is the satellite. Weight
parameters are not included for simplicity, although the matrix design
process is the same, per Eq. (5).

In block form:

where the first block corresponds to the equations and parameters of
the first epoch, and the remaining three blocks to the second epoch (the
new receiver clock and ambiguity unknown for the satellite 6, which are
reflected in the last two columns of the matrix).

The normal system of equations is:

Thus, this is the matrix to invert per Eq. (10):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥N T U

U W
L M
O P= =T

−1

Block T is formed by the elements of the first epoch and the
elements of the second epoch with the same unknowns, blocks U andW
correspond to the two new unknowns columns (receiver clock epoch
and ambiguity for satellite 6, respectively). To solve this inversion, only
the inverse of the T block is needed, as in Eq. (11).

T can be divided in two different matrices, one including only the
elements of the first epoch and the second with elements of the second
epoch with the same unknowns (the remaining elements are zero):

(15)

(14a)

(14b)
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Eq. (13) can be used to solve the inverse, in this case:

L T T= ( + )1 2
−1

L T BCE T T BKE T

K C E T B

= ( + ) = ( ) − ( ) ( )

= ( + ( ) )
1

−1
1

−1
1

−1
1

−1

−1
1

−1 −1
(17)

where C is the normal equations generated in the second epoch and
matrices B and E are defined so that the multiplication BCE generates
T2. The only limitation is that T1 and C should be invertible matrices.

Following our example, matrix C is:

⎛
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(18)

Thus, the design of matrices E and B are simple in this example:

and matrix B is simply:

B E= T

To clarify, the first three columns and rows of matrix E (a columns and
rows of Eq. (19)) correspond to the station coordinates, so the position of the
ones will be always the same; the fourth column and row represents the
troposphere, (b column and row of Eq. (19)). When a new column for the
troposphere is considered (every two hours), this column is populated with
zeros and a new column appears. The position of the new column is
determined by the position of the new troposphere column in design matrix
A, Eq. (14), (at the end of the matrix in our design). The next column and
row is filled with zero and corresponds to the previous epoch (c column and
row of Eq. (19)), corresponding with the receiver clock parameter of the first
epoch; for the next epochs, because new parameters are added at the end of
the system of equations, a new column of zeros is added at the end of matrix
E. The last columns reference the satellites that appear in the observed
epoch, if the satellite is repeated from previous observation (and no cycle slip
has been determined) a column with a one in the corresponding row is
introduced (d column and row of Eq. (19)) and for the rest of the satellites,
the same number of columns as satellites are included, where the columns
are full of zeros, but only one row is included (e columns and row of Eq.
(19)). In this example, is easy to confirm that multiplying the defined
matrices B, C and E generates matrix T2.

A12 and A21 from Eq. (14b) can be easily obtained from matrix C if we
consider only the position of the new columns from the new epoch and
satellite (the marked columns in matrix C, Eq. (20), repeated below for
clarity). Finally, A22 from Eq. (14b) is obtained using the intersecting
elements of the columns and rows marked with a rectangle in matrix C of
Eq. (20).

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

T T T

X X Y X Z X Tr X X X X X X

X Y Y Y Z Y Tr Y Y Y Y y Y

X Z Y Z Z Z Tr Z Z Z Z Z Z
X Tr Y Tr Z Tr Tr Tr Tr Tr Tr Tr Tr
X Y Z Tr

X Y Z Tr
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X Y Z Tr
X y Z Tr

X Y Z Tr
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Therefore, the inverted matrix T1 is needed to solve the inversion of
Eq. (15), but this inversion has been done in the solution of the
previous epoch in a sequential procedure. The inverse of C and K (Eq.
(17)) must also be computed, but these are low-dimensional matrices
(they contains only the satellites observed in the corresponding new
epoch), so their inverse is not time consuming to compute.

5. Tests

The method described in the previous section has been implemen-
ted in the MATLAB source code of our PPP software.

In order to test the methodology, seven permanent IGS GNSS
stations in North America (Fig. 2a) and four in Europe (Fig. 2b) were
used, Table 1. Obervation occurred during 6 h (from 00:00 to 6:00) on
October 3, 2013, with a sample rate of 30 s. The experiments involve
comparing the time required to reach a PPP sequential solution with
the traditional and proposed methodologies.

The same receiver coordinates, troposphere, receiver clock and
ambiguities parameters were obtained for every epoch in each compar-
ison between the traditional and proposed methodologies and all IGS
stations. This indicate good numerical performance of the proposed
methodology in comparison with the traditional one.

The mean reduction in computational time is 46%, where the
minimum is for SPT0 station with 36%, and the maximum for ALGO
with 54%. The differences in the reduction time are related with the
matrix dimension, a station with more observed satellites in compar-
ison with another station, will produce a greater percentage of
reduction in computational time.

6. Conclusions

A method to reduce the time required to compute a sequential
batch solution for static PPP was developed in this study. Our research
is focused on the reduction of computation time in calculating the
inverse matrix of the system of equations needed in the least-square
solution. After theoretical development, the main difficulties occured in
coding the method. The order of the columns, depending on new or
previous parameters that arise, is the main factor to be considered in
the matrix design process.

Finally, the developed method and software produce the same
results as the traditional PPP method, but with a mean reduction in the
computation time of 46%. The method was tested using 11 IGS GNSS
permanent stations.

This reduction in computational time can be used too if the interest
are troposphere parameters for meteorogical purposes or receiver clock
parameters for time transfer.
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