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Microtomography provides detailed 3D internal structures of materials in micro- to tens of nano-meter
resolution and is quickly turning into a new technology for studying petrophysical properties of rocks. An
important step is the upscaling of these properties as micron or sub-micron resolution can only be
achieved on the sample-scale of millimeters or even less than a millimeter. We have developed a
computational workflow for the analysis of microstructures including the upscaling of material prop-
erties. Computations of properties are first performed using conventional material science simulations at
micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization
procedure based on percolation theory. In this paper we discuss the computational challenges arising
from the workflow, which include: 1) characterization of microtomography for extremely large data sets;
2) computational fluid dynamics simulations at pore-scale for permeability estimation; 3) solid me-
chanical computations at pore-scale for estimating elasto-plastic properties; 4) Extracting critical ex-
ponents from derivative models for scaling laws. We conclude that significant progress in each of these
challenges is necessary to transform microtomography from the current research problem into a robust
computational big data tool for multi-scale scientific and engineering problems.
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1. Introduction

Microtomography provides detailed 3D internal structures of
materials in micro- to tens of nano-meter resolution and is quickly
turning into a new technology for studying petrophysical proper-
ties of rocks. Such high resolution can only be achieved on the
sample-scale of millimeters or even less than a millimeter, thus to
scale up the properties from micro-scale to macro-scale is essen-
tial. Consequently this problem is the subject of many micro-
tomography studies (Arns et al., 2001, 2002; Knackstedt et al.,
2006; Fredrich et al., 2006; Chai et al., 2010; Derzhi et al., 2010;
Grader et al., 2010; Liu and Regenauer-Lieb, 2011; Liu et al., 2014,
2015; Dernaika et al., 2015). The available literature has provided
an in-depth account of the basic theory and methodology under-
pinning the upscaling workflows. However, computational issues
arising from big data of microtomography, intensive computations
of petrophysics and upscaling, and appropriate strategies for
dealing with this challenge have not been discussed yet.

These computational issues include (but are not limited to): 1)
characterization of microstructures of very large data – how to
characterize, how large are the data sets we can handle, and how
fast is the procedure; 2) determination of the size of a re-
presentative volume element (RVE) – the size of RVE sets the
quanta of computations of properties and the procedure of de-
termination may be very time consuming itself, thus the reliability,
complexity and computing costs of the methods must be con-
sidered; 3) computations of petrophysical properties – the key
problems are which method is used, how accurate the method is
and how much it costs in computing resources; 4) extracting cri-
tical exponents for upscaling based on percolation theory – there
are similar problems to the computations of properties and some
additional problems related to the critical model of percolation
where the connectivity, such as the width of the channel for fluid
flow, is very small. The determination of the size of RVE is a re-
latively important issue related to the methodology and theory. As
we are concerned here with the computational aspects we refer to
the cited literature and focus on the problems related to the
computations of properties and upscaling. We will also give a brief
description about current capability of the characterization of
microstructures. Readers that are interested in the topic of RVE
size can refer to relevant contributions (Kanit et al., 2003; Terada
et al., 2000; Liu et al., 2009; Regenauer-Lieb et al., 2013a). We refer
to the same literature for the discussion of the upscaling meth-
odologies which is a complex and much debated issue. It is beyond
the scope of this paper, which restricts itself to the important
computational problems related to the percolation theory.

While the process described is generic we will discuss deriva-
tion of upscaled properties such as permeability, elastic modulus
and Poisson’s ratio, plastic yielding stress, electrical conductivity.
More efforts have been focussed on the analyses of permeability
and elastic properties, and less on plastic properties.

Fluid transport and elastic properties have been studied with
respect to consideration of microtomographic characterization
(Roberts and Garboczi, 2002; Arns et al., 2002, 2005; Knackstedt
et al., 2006; Moreno-Atanasio et al., 2010; Lopez et al., 2012;
Dvorkin et al., 2012; Shulakova et al., 2013). Numerical methods
such as the finite element method (FEM) (Arns et al., 2002; Shu-
lakova et al., 2013), random walk methods, network models (Blunt
et al., 2002; Pereira, 1999), smoothed particle hydrodynamics
(SPH) (Pereira et al., 2011,2012) and Lattice–Boltzmann (LB)
methods (Chai et al., 2010; Narvaez et al., 2010; Ahrenholz et al.,
2008; Pan et al., 2006) have been used in the past. Numerical
computations on microtomographic data have shown good
agreement, to some extent, with experimental data for fluid flow
and elastic properties (Arns et al., 2001, 2002, 2005; Knackstedt
et al., 2006; Fredrich et al., 2006). New methods have been pre-
sented for the derivation of scaling relationships of plastic prop-
erties based on percolation theory as well as entropic uncertainty
principles which provide sound theoretical bounds for the up-
scaling of properties from microtomographic data (Liu et al., 2012,
2015; Regenauer-Lieb et al., 2013a, 2013b).

Scientific and technical applications were fully discussed in
these publications. Computational and technical aspects have,
however, not yet been described. In this contribution, we are
concerned with the challenges related to the computations in
studying petrophysics and upscaling from microtomographic data.
Computational challenges primarily stem from the enormous data
size of microtomography. Highly configured computers and par-
allelized computing are essential but not enough. We introduce
here the problems/difficulties and the computational solutions/
expectancy based on our practical experience.

An important prerequisite in our approach is that the suggested
solutions need to be fully scalable as we anticipate a dramatic
increase in computational challenge for future developments.
These include amongst others − time-lapse X-Ray micro-
tomography data, significantly larger cameras, data fusion with
state-of-the-art equipment such as Focus Ion Beam Scanning
Electron Microscope FIB-SEM, Transmission Electron Microscope
TEM, Saturated Excitation SAX Microscope, Electron Microscope
EMP, more images from nano- to centimeter scales are available. In
addition, the computational workflows should be designed as
modules for a cyber-infrastructure including data assimilation
techniques through mathematical forward and inverse modelling
for the upscaling from nano- to reservoir scale. The following
workflow and computational approach is designed to tackle cur-
rent challenges as a preparation for future developments.
2. Workflow and computational methods

Before going into the description of the computational ap-
proach we need to summarise the workflow and associated
computational method used (Fig. 1). For a complete description
and worked examples we refer to the literature (Liu and Re-
genauer-Lieb, 2011; Regenauer-Lieb et al., 2013a, 2013b; Liu et al.,
2014, 2015). A prerequisite to all X-Ray microtomography is seg-
mentation, which in the discussed examples resolves a binary
spatial database of pores and solid from gray-scale micro-
tomography images. Andrä et al. (2013a) gave a through in-
troduction and comparison of the techniques of image processing
and segmentation. After segmentation is performed the starting
model for the following analysis is a digital rock equivalent. This
digital rock equivalent is then analyzed in three main components
of the workflow. The processing of the segmented binary data is
grouped in the left, middle and right columns.

The left column deals with a geometrical analysis, which ac-
complishes the characterization of geometry (of pores) of the
model. Stochastic analyses are also carried out and its outputs are
probabilities of porosity, percolation and anisotropy of different
sized samples (Liu et al., 2009). The size of a representative volume



Fig. 1. Workflow of analyzing petrophysics and upscaling from microtomography.
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element (RVE) can be determined when the probabilities converge
(while the size of the analyzed volume is increasing). Permeability
is simulated on RVEs by using computational fluid dynamics (CFD).

The middle column deals with the mechanical analysis. We
determine the size of a mechanical RVE by detecting the me-
chanical responses of maximum and minimum (upper and lower
bounds) entropy production on models of different size (Terada
et al., 2000; Regenauer-Lieb et al., 2010). Elastic properties, in-
cluding elastic modulus, shear modules and Poisson’s ratio, are
detected at the same time. Plastic properties, such as yield stress,
cohesion and the angle of friction, can be defined further over the
mechanical RVEs.

The right column is concerned with the extraction of critical
exponents for scaling laws. Based on percolation theory, para-
meters such as permeability K, elastic modulus E and yield stress
σy are predicted to change exponentially as the porosity ap-
proaches the percolation threshold with the form of = ( − ) χK p pc ,

= ( − )E p pc
f , σ =( − )p py c

Tf , where p is volume fraction and pc is the
percolation threshold (Sieradzki and Li, 1986; Benguigui et al.,
1987; Stauffer and Aharony, 1994; Sahimi, 1998). The exponential
indicies χ , f and Tf describing this limiting behavior are called
critical exponents. We use a shrinking/expanding algorithm (Liu
and Regenauer-Lieb, 2011) to create a series of derivative models
with different volume fractions p and to detect the percolation
threshold pc. Corresponding parameters of the derivative models
close to the percolation threshold are computed, and the critical
exponents are fitted. These critical exponents describe the scale-
independent features of properties that are changing with volume
fraction. With any two critical exponents and/or the fractal di-
mension, scaling laws are defined.

The nine steps of implementations in the workflow are all
computationally intensive. We will discuss steps 2, 3, 6 and 8 in
this paper, where computations fall into three categories.

The first category is the characterization of microstructures, or
the way to describe microstructures. There are different ways to
describe microstructures. Some parameters are commonly used in
characterization, such as porosity, connectivity, specific surface
area, and orientations. Some specific structures or parameters
need special methods to characterize, such as tortuosity
(Ghanbarian, et al., 2013) and network model (Dong, 2007; Blunt
et al., 2013).

The second category is the simulation of fluid flow at the pore-
scale. There are many methods available to use, including lattice-
Boltzmann (LB) method, finite difference method (FDM), finite
volume method (FVM), smoothed particle hydrodynamics (SPH)
method, finite element method (FEM) (Gingold and Monaghan,
1977; Anderson, 1995; Martys and Chen, 1996; Chen and Doolen,
1998; Kandhai et al., 1998; Versteeg and Malalasekera, 2007;
Meakin and Tartakovsky, 2009). Among these methods, the finite
element method is not frequently used for fluid flow problems, LB
method is the most popular method used for fluid flow at pore-
scale. As a new technique, the SPH method attracts a lot of inter-
ests with important progress in recent year (Tartakovsky et al.,
2007; Meakin and Tartakovsky, 2009). The SPH calculations are
aimed at characterizing the microphysical processes with pore-
scale fluid flow simulations. In the implementations 3 and 8 (see
Fig. 1), the simulations of computational fluid dynamics (CFD) are
carried out for RVEs of original models and the derivative models
by shrinking or expanding structures in RVEs.

For the third category – the computations of mechanical
properties, there are different methods available to compute
elastic properties, including the finite element method (Garboczi
et al., 2001), finite difference method (Andrä et al., 2013b), the
dynamic pulse propagation approach (Saenger, 2008), and an
elastic solver based on the Lippmann- Schwinger
equation (Moulinec and Suquet, 1998). To compute plastic para-
meters, the former two methods are commonly used and the finite
element method is preferred. Calculations are carried out for RVEs
of the original digital rock model as well as for derivative models
by shrinking or expanding the microstructures contained within
the RVEs. The generation of the finite element mesh is a challen-
ging task for the finite element method.
3. Computational challenges

The computational challenges contained in the workflow
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(Fig. 1) are a consequence of the large quantity of data and the file
size of the high resolution tomograms. The size of microtomo-
graphic data can be in the order of (1–9)�10003 voxels. Assuming
one voxel corresponds to one hexahedral element, there would be
tens of millions to tens of billions of elements. Furthermore, the
microstructure of porous rock is by default extremely complex.
Efficiently dealing with the complexity of the material is the main
computational challenge.

3.1. Characterization of microstructures

There is no standard in the characterization of the micro-
structure as the software development has been driven by a pro-
blem oriented approach which led to the development of custom
solutions for different applications. Various methods and software
packages have been developed, including open sourced programs
and commercial packages such as 3DMA-rock, ImageJ (or FIJI),
scanIP, Blob3D (and the family), Avizo1 and more. The most pop-
ular parameters of characterization are: volume fraction (poros-
ity), specific surface area (SSA), the connectivity of the network (or
percolation), the size, shape and orientation of individual struc-
tures (aspect ratio can be derived), pore size distribution or par-
ticle size distribution (PSD).

Among these available tools, Avizos, a commercial software
package originally developed as a data analysis tool for life and
material sciences at the Zuse Institute Berlin, is currently the most
popular tool to process microtomographic images of rock speci-
mens. In addition to the advanced capabilities of image processing
and visualization, Avizos also has the capability of characteriza-
tion providing parameters such as porosity, connectivity, size and
shape of individual structures. However, the design focus of the
package is for industrial use and, it is consequently not suitable for
extremely large data sets. Large volumes, i.e. 410003 voxels are
extremely challenging for Avizos. Our experience is that we could
not use the package for characteristic parameters for volumes
larger than 10003, no matter how powerful the computer is.

At present, a standard dataset of synchrotron microtomography
is 20483. It is therefore not practical to use Avizos to analyze the
full dataset of the high resolution tomograms. Moreover, we have
recently begun the analysis of 4D data, comprising a series of high
resolution scans of three-dimensions (3D) over time. For example,
a gypsum sample was heated and scanned in-situ in synchrotron
and we got 7 steps of images. In another synchrotron experience,
we heated a granite sample to 395 °C and scanned it in every
15 °C, thus we got 26 steps of images. To characterize these 4D
data is extremely challenging. As a quickly developing technology,
the resolution of microtomography and scanning scope are both
increasing. It is anticipated that in the near future a standard da-
taset of microtomography will be 40963. It will be a big challenge
to characterize a series, even for just ten steps, of 4D data of this
volume.

We have developed an in-house Fortran program, CTSTA (Liu
et al., 2013), which addresses the characterization challenge.
CTSTA can extract parameters of the characteristics of a full dataset
quickly, i.e., in roughly half an hour for a volume of 20483. Using
this specific tool, we have analyzed the characterization of the
heated gypsum sample and granite sample. The results of gypsum
sample were reported in Fusseis et al. (2012a). Some results of
granite sample were reported in an EGU poster (Fusseis et al.,
2012b). We illustrate the original CT images and created micro-
1 3DMA-rock (http://www.ams.sunysb.edu/� lindquis/3dma/3dma_rock/
3dma_rock.html), ImageJ (or FIJI, http://fiji.sc/Fiji),

scanIP (https://www.simpleware.com/software/scanip/),
Blob3D (and the family, http://www.ctlab.geo.utexas.edu/software/),
Avizo (http://www.fei.com/software/avizo3d/)
cracks after heating in Fig. 2 and show the statistical results for the
frequency of isotropy index of pores and cracks in Fig.3.

The strategy to tackle the challenge of characterization and
interpretation at this scale is to perform the analysis without the
use of a graphical interface. CTSTA program can run on an ordinary
PC, workstation or supercomputer. Its present performance is very
fast so that there is no requirement to parallelize it yet. The
amount of shared memory of the machine constrains the size of
the volume that can be analyzed. We estimate for volumes of
40963 a memory need of 96 GB RAM or more. The code of CTSTA is
available in (https://github.com/Liujie-SYSU/CTSTA) and an ex-
ample is provided.

3.2. Simulations of fluid flow

The ability to model fluid passing through a pore-network is
the key parameter for reservoir engineering as it leads to the es-
timation of permeability and is therefore one of the most frequent
engineering objectives of microtomographic studies. The ad-
vantage of a microtomography technique over the standard la-
boratory technique is the additional insight gained by the possi-
bility of studying the scaling relationship between the detailed
microstructure of pores and permeability. For the simulation of
fluid flow at pore-scale, the governing equations are the Navier-
Stokes equations. Considering cases where the flow is very slow
the simplified Stokes equation can be used as well (Acheson, 1990;
Chai et al., 2010; Blunt et al., 2013). Using microtomographic data,
generally we compute the velocity of fluid in the pore network,
and then the permeability K is calculated from Darcy's equation

η= − ( ∆ )∙K L p u/ , where η is the viscosity of the fluid, L is the
length of the model in the analyzed direction, ∆p is the hydraulic
pressure difference along L, and u is the average superficial velo-
city in this direction.

Various methods can be used to compute the fluid flow velocity
in pore networks as mentioned in Section 2. A full comparison of
all different methods has not been done yet. In the following we
summarise results from the Lattice–Boltzmann (LB) method and
the Smooth-Particle-Hydrodynamics (SPH) method.

3.2.1. Computing cost and accuracy
For a model comprised of voxels, the LB method directly uses

vertices of voxels of microtomographic images to define lattice
sites; while SPH fills the fluid domain with SPH particles – the
more particles per unit volume the higher the accuracy which will
be obtained. For SPH the required goal of one particle per voxel has
steep computational costs. Pereira et al. (2012) have compared the
computing cost of the LB and SPH methods. In testing a model of
1003 voxels, there are 1013 lattice sites and �0.5 million particles
were used. The CPU-time of the LB method was around 15 minutes
and SPH was 3 days. Apparently, the LB method is much more
efficient than the SPH method. The authors also compared the
accuracy of the two methods, results are shown in Table 1. There
are 3 different structures created by arbitrarily distributed sphe-
rical grains, and each of the 3 models was split into 2 resolutions,
forming models of 1003 and 2003 voxels. We see that the values of
permeability computed by using LB method and SPH method are
quite different. For the models of 1003 voxels, it seems values from
the LB method is greater than those from SPH, while for the
models of 2003 voxels, it is reverse. Thus we cannot say which
method overestimates and which one underestimates
permeability.

Considering the Table 1 comparison in computing speed, we
selected the LB method to carry out the computations of fluid flow
at pore-scale for our carbonate samples (Liu et al., 2014). Two
samples with image porosity of 17.56% and 19.60% were analyzed,
and the sizes of RVEs are 2503 to 5003 voxels, respectively. These

http://https://github.com/Liujie-SYSU/CTSTA
http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html
http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html
http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html
http://https://www.simpleware.com/software/scanip/
http://www.ctlab.geo.utexas.edu/software/
http://www.fei.com/software/avizo3d/


Fig. 2. The same slide of microtomography before (left, 25 °C) and after (right, 335 °C) heating.

Fig. 3. Histogram of isotropy index of pores and cracks in different temperatures. Isotropy index is defined as the ratio of the minimum and maximum length of a structure.
Only a part of the series is presented in figure. The statistical results for frequency of isotropy index after 300 °C shows isotropy index decreasing, representing the
development of cracks.

Table 1
Comparison of permeability computed by two methods.

Case Porosity 1003 model K (10-8 m2) 2003 model K (10-8 m2)

by LB by SPH by LB by SPH

50 mono-
disperse
spheres

0.31 1.04 0.25 0.88 1.69

50 mono-
disperse
spheres

0.38 0.96 0.08 0.75 0.91

25 poly-dis-
perse
spheres

0.37 1.51 0.36 1.29 2.51

(Data from Pereira et al., 2012).
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two datasets are available via GITHUB (https://github.com/Liujie-
SISU/CTdata). The computational time to reach steady state con-
ditions was of the order of a few days (obviously faster for the 2503

simulations compared to the 5003 simulations) by using 96 cores.
Objectively, 5003 is not a small volume to compute but is far away
from the maximum volume we need to consider. The LB method is
recognized as one of fastest CFD tools and has a reputation of very
good parallelization. To fulfil computations of larger volumes
(410003 voxels) in an acceptable time period, it requires massive
parallel computing using thousands or more cores on super-
computers. Computations are achievable, but the computing cost
is very high.

3.2.2. Factors affect accuracy
The computed permeability values are 381.5 and 224.9 mD

while the laboratory-measured permeability is 62.1 and 25.6 mD,
respectively. The computed permeabilities are larger than labora-
tory measurement, this situation was also reported by Andrä et al.
(2013b). The differences between computed values and measured
values are significant but acceptable considering the possible er-
rors both from experiments and simulations (Manwart et al.,
2002). The factors that may cause the difference were analyzed
(Liu et al., 2014) as: 1) scale – sample sizes used in computing are
generally less than 1 mm3 (2503 to 5003 voxels with resolution

http://https://github.com/Liujie-SISU/CTdata
http://https://github.com/Liujie-SISU/CTdata
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around 1.8 μm), while sample sizes used in laboratory are 2 to
3 cm in diameter; 2) heterogeneity – we might have selected high
permeability areas to carry out microtomography scan and com-
pute; 3) segmentation – segmentation may not correctly resolve
pores and grains for very complex structures.

3.2.3. Requirements for extracting the critical exponent of
permeability

For computations to obtain the critical exponent of perme-
ability, the main idea is: based on the RVE, which is the original
model, we create a series of models by shrinking or expanding the
pore-structure, thus to get derivative models with similar struc-
ture but different porosities. From these derivative models, we can
detect the percolation threshold pc, which is the lowest porosity
value that exists in a percolating pore-structure (Liu and Re-
genauer-Lieb, 2011). Here percolating means a pore-structure that
connects at least two opposite boundaries of the model. Leaving
the critical model (the model with the porosity of pc) aside, we
compute permeability values of the models which are close to and
larger than pc. The group of simulated permeability K values and
the porosities p of the models are used to fit χ in = ( − ) χK p pc ,
which is the critical exponent of permeability. It was suggested
that the difference of the porosity from pc should be less than 0.15;
otherwise, the model is not “close to” the percolation threshold
(Sahimi, 1998). We can hypothesise that these models have so-
phisticated channels – as they are close to the critical model, and
they do not differ very much from model to model for structure
and porosity. This implies that we not only need to compute a
series of models, but also need to obtain very accurate results from
the series of models with subtle structures. Obviously the de-
mands of computing speed and accuracy for such a task are ex-
tremely high.

Our results showed that five derivative models close to the
percolation threshold do not give a very good linear relationship of
K and ( − )p pc in log–log plots, see in Liu et al. (2014, Fig. 12). Here
we show the result of another similar sample in Fig. 4. Five models
that are close to the percolation threshold were computed. We
used the four points showing good linearity excluding the first one
of the smallest ( − )p pc to fit the critical exponent of permeability.
Apparently in Fig. 4 the results show correct tendency that per-
meability increases with porosity. However, the fitted critical ex-
ponent of permeability is 0.654, which is quite different from the
previous studies based on “bond-shrinkage models” (Wong et al.,
1984) and Swiss-cheese models (Halperin et al., 1985). In addition
to the difference of models and the strong heterogeneity of our
carbonate samples, numerical errors may also cause the difference
from the previous studies, to some extent, as the fitted critical
exponent is very sensitive to the computed permeability values.

A thorough study needs to compare different models and for
Fig. 4. Fitting the critical exponent of permeability from a series of models with
difference porosity.
each model using different methods. It will be a big investment of
research time and computing cost, but definitely worth doing. We
expect to see some progress on this problem in near future.

In summary, for computations of fluid flow at pore-scale to
calculate permeability and extract the critical exponent of per-
meability, current CFD tools and computing facilities are available
but the computing cost is rather high. At the same time the ac-
curacy of the computing method is crucial to get reliable critical
exponents of permeability for the analysis of upscaling. We are
still seeking powerful tools with very high efficiency and accuracy
to improve this area of research. Compared to the LB codes which
have been around for decades this is a new area of research and
huge progress is expected.

3.3. Computations of mechanical properties

The finite element method (FEM) has been used to study the
mechanical parameters of rocks. As the most basic mechanical
parameters, elastic properties have been studied for over 10 year
(Arns et al., 2002; Roberts and Garboczi, 2002; Derzhi et al., 2010;
Almqvist et al., 2011; Dvorkin et al., 2012), the study is relatively
thorough; while the study of plastic properties has just started (Liu
et al., 2012, 2015). The computations of plastic parameters, is still
in its infancy and offers huge room for improvements.

3.3.1. General information in plastic computing
To study the plastic properties of rock, we start from the most

popular plastic criterion for rocks, Drucker–Prager plasticity. Dif-
ferent from elastic analysis, plastic analysis needs to reach a cer-
tain strain value, which generally should be over 0.5%, before the
yield stress can be detected. As the yield stress is pressure de-
pendent for Drucker–Prager plasticity, two independent para-
meters, cohesion and the angle of internal friction, are more
commonly used. Cohesion and the angle of friction can be calcu-
lated by running two computations of different pressures for the
same microstructural model, and based on the linear relationship
of Drucker–Prager plasticity σ σ β= +ctany n , where σy is the yield
stress, σn is pressure (or mean stress), c is cohesion, and β is the
angle of internal friction. c and β can be determined with two
groups of σy and σn.

In the computations, we assume the parameters of solid part
(referring to parameters of minerals) in the microstructural model,
and pore-space is treated as void. Averaged stress and strain of all
elements of the porous structure are calculated from finite ele-
ment simulations under certain boundary conditions and used to
detect the cohesion and the angle of friction of the microstructural
model. We selected the commercial Abaquss package to perform
the finite element computations.

3.3.2. Meshing issues
The first problem we want to discuss is meshing. It is easy to

estimate that a model with 2003 voxels and 20% porosity, there are
64,000,000 elements if one voxel is defined as one hexahedral
element. For elastic computations, this number is not a problem
with current high performance computing facilities. For plastic
computations, it perhaps needs hundreds or even thousands of
increments to reach the strain of 0.5%, thus it definitely demands
us to reduce elements and speed up computations. Using tetra-
hedral elements should be an appropriate option. However, it is a
challenge to create tetrahedral meshes for very complex
microstructures.

Avizos Fire package was selected to create tetrahedral meshes
in our study, which was also used for visualization of micro-
tomography. It can define the maximum length of elements (in
voxel side-length), thus define the density of mesh and accuracy of
the structure. The package can only create uniform distributed



Table 2
Comparison of models using different meshes and their results.

Element shape Hexahedron Tetrahedron Tetrahedron

Element size 1 2.2 3.26
Number of elements 774,313 1,691,300 522,061
Number of nodes 849,710 312,909 100,760
Distorted elements 0 14 34
Elastic modulus (MPa) 37.72 36.60 36.94
Computing time (s*CPU) 2791*4 338*4 68*4
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elements – all elements have similar sizes. Non-uniformly dis-
tributed elements – adaptive mesh refinement on the areas of
complicated structures and mesh coarsening on the less compli-
cated areas – are not achievable in Avizos. With complex internal
structures, some elements are of very poor quality. Avizos pro-
vides functionalities to improve the quality of individual elements,
however, it is not possible to improve all elements to high stan-
dards. What we can do is to trade-off of the accuracy of the
structure with the number of nodes.

Here we show a comparison of a model of 1003 voxels, using
hexahedral and tetrahedral elements, in computing speed and
results of elastic analysis, see Table 2. In fact we have three models
of different meshes, one uses hexahedral elements, the other two
use tetrahedral elements but with different element sizes (aver-
aged side-length of all elements). Fig. 5 presents two meshes in
Table 2, the one using hexahedral elements and the one using
tetrahedral elements with the averaged element size of 3.26.
Distorted elements are those elements with a bad shape, defined
as with a minimum angle between 5° and 12° or maximum angle
up to 165°. The computed values of elastic modulus of the three
models are very close to each other. Since hexahedral mesh does
not modify the model (from images based on voxels), we propose
that this model gives us the most accurate result. The models
using tetrahedral elements also give very accurate elastic moduli,
with errors less than 3%; the computing time decreases dramati-
cally when using tetrahedral elements. It is interesting that the
model with the element size of 3.26 gives almost the same result
of elastic modulus as the one with the element size of 2.2 – a little
higher value does not mean it is more accurate, but should be
attributed to computing error. These results indicate that using
tetrahedral elements is a satisfactory practice.
Fig. 5. Comparison of meshes, the one using hexahedral elements (left) and the o
3.3.3. Convergence issues
The second problem we want to discuss is the convergence of

plastic computation. The computation of plasticity is a static pro-
blem (time-independent) from the concept of physics. Therefore
the implicit module Abaquss Standard should be used and the
static stress analysis selected. An example of our models is the RVE
size of 3003 voxels. We coarsened the mesh by controlling the
maximum length of element to 5.0 voxels and created 2,818,504
tetrahedral elements and 543,914 nodes. Theoretically, Abaquss

Standard can compute a model of this size and using multi-cores
can speed up the computation. The reality is, however, that the
computing is not only extremely slow, but also not convergent
and the computation failed before (much smaller than) the strain
of 0.5%.

To overcome the problem of computing speed and con-
vergence, we were forced to use the explicit method of Abaquss

Explicit. The computation completed successfully to the strain of
0.5%. It ran for 4 h and 25 min on 8 cores. We have computed
several samples and found that the computing speeds of different
models with a similar number of nodes can be quite different. This
should be related to the number of the distorted elements and the
extent of distortion. It appears that Abaquss Explicit is a sa-
tisfactory tool to perform the plasticity computations of rocks with
complex structures based on microtomographic data.

3.3.4. Difficulties in extracting the critical exponent of yield stress
For computations that aim at deriving the critical exponent of

yield stress, the main idea is similar to that of the critical exponent
of permeability. Based on the mechanical RVE, which is the ori-
ginal model, we create a series of models by shrinking the solid-
structure. From these derivative models we detect the percolation
threshold pc of the solid. Then we compute the yield stress values
of the models close to and larger than pc. The group of yield stress
and corresponding volume fractions are used to fit Tf in
σ =( − )p py c

Tf , which is the critical exponent of yield stress.
In these computations, we encountered again meshing pro-

blems. When a model is close to the percolation threshold, the key
links are normally very thin. By creating tetrahedral elements the
thinnest links are broken, thus a percolating model becomes non-
percolating, see Fig. 6.

In this situation, we had to therefore use hexahedral elements
where each voxel is equivalent to an element. Accordingly, the
ne using tetrahedral element with the averaged element size of 3.26 (right).



Fig. 6. A percolating model with thin links (left) becomes non-percolating after meshing by tetrahedral elements (right) and thin links are broken.
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number of elements and nodes is significant for the computations.
There is no limit to the degree of freedom for Abaquss Standard,
but for Abaquss Explicit, the maximum number of nodes that can
be computed is 8 million. The volume fractions of solid of the
derivative models close to percolation threshold are generally in
the range of 6–26% for our analyzed samples. These derivative
models were generated from RVE sizes of 2003 to 3003 voxels, thus
the number of nodes may exceed the capability of Abaquss Ex-
plicit and some models could not be computed. The maximum
number of nodes is of 7,465,946 for our computed model. The
computing time is acceptable – using around 35 h on 4 CPUs. The
limitation of 8 million-node of Abaquss Explicit may be outdated
for its most recent version.

The performance and accuracy of both the finite element
method and finite difference method ensure that the computa-
tions related to the critical exponent of yield stress are robust. The
obtained exponent and discussions can be found in Liu et al.
(2015) and not present here.

3.3.5. Post-processing issues
The next problem is about post-processing of the output data.

For the maximum model we analyzed, the output file is about
82 GB, which contains only 20 output steps in 1000 computed
steps. It means a large amount of detailed information is not re-
corded after computing. For the recorded basic information, it is
very time consuming to do even simple post-processing of this
size. For example, we used a Python script to calculate the average
stress and strain values over all elements for the 20 output steps –
it took 43.5 h on a single CPU as the script was not parallelized. It
is also very hard to open an output file of this size using Abaqus/
CAE. On specially configured computers, it can be opened but the
processing was too slow to implement and refresh the visualizing
steps.

Furthermore, the 3D visualizing capability of the viewer of the
finite element package is limited, for example, the internal de-
formation and distribution of variables can only be seen by slices.
Using volume rendering techniques to visualize the output files is
an interesting solution. Parallel visualization would help to process
very large data sets. Fig. 7 shows a comparison of 3D visualization
of plastic strain using Abaquss/CAE and Paraview. To achieve the
visualization, a Python script is written to convert Abaqus ODB file
to VTK format that is acceptable for Paraview.

In summary, for computations of mechanical parameters from
microtomography and extracting the critical exponent of yield
stress, current tools can help us to achieve the analysis but the
procedures are not satisfying. To make every step perfect, we are
looking for more powerful tools including: 1) good meshing
package – to create meshes with much fewer nodes (and degrees
of freedom) and keep the subtle structure at the same time; 2)
open sourced computing software (finite element or other meth-
ods) instead of commercial software – to reduce computing cost;
3) computing software with very good parallelization – to speed
up the numerical implementations; 4) huge storage – to store
large amount of data; 5) powerful visualization facilities (software
and hardware) – to do post-processing and visualization. In ad-
dition, for the same reason as for the extraction of the critical
exponent of permeability, the computing software must be of very
high accuracy to obtain reliable estimates of the critical exponents
of yield stress for the analysis of upscaling.
4. Discussion and conclusions

A computational workflow has been developed for the analysis
of petrophysics and upscaling by using microtomographic data.
Almost every step in the workflow is computing intensive. In this
paper we focus on computational challenges involved in the
workflow rather than scientific problem of petrophysics and up-
scaling for the purpose of sharing experience to peers with the
same interests, and also calling attention to developing techniques
related to these studies. This is an intensive research area in its
own right. In addition to our own custom made models for the
characterization and statistical evaluation of mictomographic data
we have identified areas where codes are mature (LB) and areas
where significant improvements are still needed (FEM).

For the characterization of microtomography, our in-house
code can analyze parameters such as porosity, connectivity or
percolation, specific surface area, particle size distribution or pore
size distribution. For each independent structure, its position, size,
orientation and dimensions in 3 principal directions can be de-
termined. The advantage of our in-house code is that it can deal
with large data quickly, say around half an hour for a 20483 full
dataset. The maximum volume that can be processed is only
limited by the configuration of computer used to run the analyses.

For the computations of fluid dynamics at pore-scale, currently
the most popular method is the LB method, which is reputed to
have good computing speed and generally reliable precision.
However, in spite of the maturity of the codes there is still a strong
need for LB with very good parallelization to perform computa-
tions of very large volumes, such as 10003 voxels (and over), in an



Fig. 7. Visualization using Abaqus/CEA (left) and Paraview (right). High plastic strain values are located inside of the model and volume rendering in Paraview reveals it.
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acceptable computing time. These implementations also cannot
compromise on very good precision to get more reliable computed
permeability. In the case of extracting the critical exponent of
permeability, the precision is much more important, because
models close to the percolation threshold are delicate and a small
change of the computed permeability of each model affects the
fitted critical exponent seriously.

For the computations of solid mechanics at pore-scale, the fi-
nite element method is commonly used. Meshing algorithms for
FEM still need to improve significantly. Based on our analysis, for a
low porosity model (lower than 30%) using tetrahedral elements
instead of hexahedral elements does not change the computed
mechanical parameters much. For example, using tetrahedral
elements the error of elastic modulus is less than 5% while com-
puting speed increased 40 times. However, for a high porosity
model, such as models close to the percolation threshold of solid,
using tetrahedral elements instead of hexahedral elements may
cause broken key links and a percolating model becomes non-
percolating – the difference between percolating and non-perco-
lating models is vast and cannot be described by errors.

The requirement of meshing is to be able to create meshes with
much fewer nodes – to reduce computing cost, and at the same
time to keep the subtle structure – to ensure the precision and
meaningfulness of the computations. Using uniform hexahedral
elements equivalent to voxels keeps the structure exactly but is
too expensive for computing; using tetrahedral elements can re-
duce nodes dramatically but changes the structure. Using non-
uniform hexahedral elements should be a solution that could be
based on modern graphics approaches such as octree. To the best
of our knowledge, there is no suitable meshing package available
yet to create non-uniform hexahedral elements automatically for
big models with extremely irregular and complex internal struc-
tures like porous rocks.

We have used a commercial finite element package to perform
the mechanical computations. Difficulties were encountered be-
cause of the complicated structures, perhaps also because of the
distorted elements, while using a static solver. A dynamic solver
resolved the problem and we have reached suitable quasi-static
results. To fulfil analyses of a large number of samples, and also
consider very large volumes, we require well-parallelized, open
sourced programs to perform finite element computations. The
same applies to the critical exponent of permeability. Fitting the
critical exponent of yield stress needs crucially high precision in
the computing of mechanical response. In addition, in order to
match the physical concept, a static solver is preferred although a
dynamic solver is acceptable.

Related to big data of microtomography, the size of the output
files of the CFD and mechanical computations is another challenge.
Huge storage is necessary to keep detailed output data. Powerful
visualization facilities and software are also necessary to illustrate
the distributions of the computed variables.

With high resolution, the sizes of rock samples of micro-
tomography are at the scale of �1 mm. Petrophysical properties at
macro-scale may be different from those derived from this size. Thus
the upscaling of properties from microtomography is an issue which
must be considered. Some popular methods of upscaling include ef-
fective medium theory, computational homogenization, and percola-
tion theory (Guéguen et al., 2006; Regenauer-Lieb et al., 2013a). Ef-
fective medium theory is suitable only to predict the properties of
statistically homogeneous media at macro-scale (Guéguen et al.,
2006). Computational homogenization utilizes numerical methods to
derive equivalent values of properties through defining equivalence
criteria. This method is adopted in our workflow and embodied in the
step 5 “upper/lower bound dissipation FEM computing” (Liu et al.,
2012, 2015; Regenauer-Lieb et al., 2013). Percolation theory was ori-
ginally proposed in statistical physics to describe the global
connectivity of randomly heterogeneous systems. It comprises various
scaling ideas such as fractal, finite-size scaling, renormalization, and
scaling laws. Percolation theory is used to estimate the critical por-
osity to derive the percolation threshold from natural data and to
derive critical exponents and the fractal dimension of the percolating
network (Liu and Regenauer-Lieb, 2011; Liu et al., 2012, 2014, 2015). It
is relatively well known that the fractal dimension is scale invariant.
Critical exponents are similar scale invariants describing scale-in-
dependent characteristic of physical properties, including perme-
ability, elastic modulus and yield stress. They are describing the sta-
tistical properties of a percolating structure and therefore differ from
the classical fractal dimension of a microstructure itself. We would
like to point out that: i) the derivation of critical exponents from di-
gital rock images has only become available recently (Liu and Re-
genauer-Lieb, 2011); ii) they are still at an early stage of investigation,
only limited parameters/properties of specific structures have been
studied; iii) to extract critical exponents is computationally expensive,
as the corresponding property need to be simulated, and computa-
tional challenges may be encountered in the simulations.

In conclusion, the analyses of microtomography for petrophysics
and upscaling are young fields of research and strong ongoing re-
search topics in computational geosciences. There are some major
challenges/problems to overcome. Significant progress in each of
these challenges is necessary to transformmicrotomography from the
current research problem into a robust computational big data tool for
multi-scale scientific and engineering problems.
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