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a b s t r a c t

New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to
gravimetry and its application in subsurface exploration. Several efforts have been made to provide a
thorough understanding of the complex properties of the gravity gradient tensor and its mathematical
formulations to compute GGT. However, there is not much open source software available. Under-
standing of the tensor properties leads to important guidelines in the development of real three di-
mensional geological models. We present a MATLAB computational algorithm to calculate the gravity
field and full gravity gradient tensor for an undulated surface followed by regular geometries like an
infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a
rectangular lamina or conglomerations of such bodies and the results are compared with responses using
professional software based on different computational schemes. Real subsurface geometries of complex
geological structures of interest are approximated through arrangements of vertical rectangular laminas.
The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma
Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The Earth's gravity and gravity gradient anomalies provide
important information for delineating geological structures of
economic importance. The gravity gradient method is one of the
geophysical tools used successfully to detect remote occurrences
of target bodies and to define geological models with enhanced
resolution. It is frequently employed in interpretation for isolating
gravity anomalies (Murphy and Dickinson, 2009). The use of the
gravity gradient in exploration is becoming more common in re-
cent years due to the development of airborne gradiometry with
an accuracy of �2–5 eötvos unit (1E¼0.1 mGal/km) over wave-
lengths of �45 m (Dransfield and Christensen, 2013; Zuidweg and
Mumaw, 2007) or �100 km for the ongoing gradiometer satellite
mission called GOCE (Herceg et al., 2014; Godah and Krynski,
2011), which can give a potential map easily over large, highly
inaccessible undulating regions. Gravity gradiometers measure
gradients of the gravity vector components in three Cartesian di-
rections (Fig. 1) and measured components are used to produce
the nine – component tensor, Tij. Since the gravitational potential
satisfies Laplace's equation, the trace of the symmetric tensor is
equal to zero. Thus, there are only five independent elements (e.g.,
sical Research Institute, Hy-
Txx, Txy, Txz, Tyy, and Tyz) as Tij¼Tji, where i≠j. Furthermore, the Tzz
component is often displayed as it closely relates to the subsurface
geology (Pedersen and Rasmussen, 1990).

Conventional gravity data show the strength of the earth's
gravity field but are less sensitive to the edges of bodies and
contain no directional information. In contrast, gravity gradients
directly recover sharp signal over the edges of structures and are
closely related to the edges, corners, and center of mass of the
causative bodies producing complex pattern of anomalies. For a
simple positive density cube, a classic gravity map would show a
diffused circular anomaly centered over the body. In contrast, the
six gravity gradients provide a powerful tool for delineating the
shape of the body (Saad, 2006). The vertical tensor component Tzz
provides an estimate of maximum depth and predicts boundary
information directly related to the geological body and the other
components give close information related to the geometry of the
body. The Txx component effectively indicates the eastern and
western edges of a feature, whereas the Tyy component indicates
the northern and southern edges. The Txz component divides the
body into eastern and western halves approximately symme-
trically and gives the central anomaly axis towards north–south
direction; similarly Tyz component divides the body into northern
and southern halves symmetrically and gives the central anomaly
axis towards east–west direction. It also helps to show north–
south and east–west trending edges. The Txy component gives
information about the four corners of near rectangular bodies and
locates the center point of symmetrical bodies in case of alignment
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Fig. 1. Schematic diagram showing the gravity field vector Gx, Gy, Gz and full gravity gradient tensor components Txx, Txy, Txz, Tyy, Tyz and Tzz.
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of geological body with x and y directions.
2. Commutating gravity and its gradients for geological
structures

In particular, gravity and gravity gradient data explore the
subsurface geology originating from mass distribution in subsur-
face. Therefore, estimating the model parameters of causative
sources such as location, depth, thickness, size, shape, extension,
density variations etc., has a key importance in the interpretation
stage. However the well-known complex nature of the full gravity
gradient tensor (FTG) may quite complicate the interpretation
procedure compare to the gravity alone (Saad, 2006). Therefore,
for better understanding of the complex nature of FTG, it is
thought to provide a detail discussion on computational algo-
rithms of three dimensional regular shaped geometries and their
behavior for the gravity field and their gradient components due
to various geometrical shapes. Several researchers have proposed
modeling approaches for computation of gravity and gravity gra-
dient responses due to homogeneous polyhedral bodies (Okabe,
1979; Gotze and Lahmeyer, 1988; Barnet, 1976; Coggon, 1976;
Pohánka, 1988; Yao and Changli, 2007). Bhattacharya (1964), Nagy
(1966), and Plouff (1976) presented closed form mathematical
equations for prism shaped bodies, whereas Talwani and Ewing
(1960) and Talwani (1965) used numerical integration techniques
for the computation of the fields due to models of arbitrary shape
by dividing them into polygonal prisms or laminae. Some recent
studies (e.g. Tsoulis, 2012) provided a mathematical formulation
for computation of the full gravity gradient tensor from a poly-
hedral source. The present study utilizes theory of gravity and
gravity gradient effects of a rectangular prism or rectangular la-
mina (Talwani, 2011) and presents MATLAB algorithms for the
computation of the primary gravity field and their derivatives to
each coordinate direction for regular shaped geometries like the
rectangular prism, dipping fault, spherical body, vertical cylinder
body and two dimensional geometries like the semi-infinite hor-
izontal slab, and dike, all of uniform density.
2.1. Computations for regular geometries

Many geological features are approximated by 2D models like
an infinite dike or a geological contact for computational simpli-
fications. The interpretation of 2D and 2.5D potential field models
is simple but might be far from reality since the real geological
bodies are mostly three dimensional structures. Following sections
discusses both two dimensional and three dimensional geometries
with an emphasis on the three dimensional regular shaped geo-
metries used in analyzing asymmetrical three dimensional ar-
rangements in the subsurface. Each of the geometrical bodies used
is of uniform density, although in many geological situations, the
density of a particular structure may vary. This is particularly true
in sedimentary rocks where the density increases with depth as a
result of compaction. Often, this may be allowed using simple
functional forms to approximate the density variation with depth
as well as its lateral variations. However, for the purpose of this
paper, the model assumes constant density for each element of a
model and variations in density are simulated by the use of se-
parate elements.

2.2. Geometries: semi-infinite horizontal slab and vertical sheet/dike

For many exploration purposes, it is common to assume that
the body producing a gravity anomaly is two dimensional in nat-
ure. In particular, the removal of one spatial dimension allows
greater complexity to be built into the remaining two dimensions
of the model as well as making the computation of the simulation
faster. Also mineralized zones are often found over linear features
like shear zones, faults and so on that can be approximated as two
directional features. The gravity gradients in the two-dimensional
case are quite simple, since the tensor has only four components
with the off-diagonal components equal by symmetry of the ten-
sor and the diagonal elements equal in magnitude but opposite in
sign (Dransfield, 1994). The potential at a point much closer to the
center of the elongated body than its end is independent of the
distance to the ends and therefore the components of gravity and
gravity gradients in that direction are zero.

Here, we present the gravity and horizontal gradient response
for two simple geometries: the semi-infinite horizontal sheet and
the vertical sheet (Fig. 2). Their analytical expressions are



Fig. 2. Computed gravity and its horizontal gravity gradients for a 2D geometries like semi-infinite horizontal slab and vertical sheet as dike.
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presented in the Appendix A. The semi-infinite horizontal sheet
serves to approximate small faults of long strike. For such a sheet
with thickness of 1 km at the depth of 4 km and density 1.5 g/cm3,
the computation algorithm (mfile named as slab.m ) is developed to
calculate the gravity field Gz and its gradients Txz and Tzz. The
vertical and the horizontal gradient are both infinite in this case.
The maxima of the vertical component of gravity field lies at the
altitude of the measurements above the edge of the sheet (Fig. 2,
left). Further, the vertical sheet is useful for modeling dikes. For a
vertical sheet of thickness 2.5 km with density of 1.5 g/cm3 at the
depth of 4 km extended upto 14 km, the computation algorithm
(mfile named as dike.m ) is developed to calculate the gravity field
Gz and its gradients Txz and Tzz (Fig. 2, right).

2.3. 3D geometries: rectangular lamina or prism

The gravity field of an arbitrary source is simply the point
source field integrated over the volume of arbitrary source. Such
computations require different type of polyhedra to approximate
the arbitrary source. The expressions are directly useful for esti-
mating the gravity field and its full gravity gradient tensor due to
confined bodies in nature; particular examples range from thick
massive sulfide ore bodies to salt domes (Dubey et al., 2014). The
rectangular lamina or prism is a useful three dimensional body
because of the ease with which more complex bodies of arbitrary
source can be built from the sets of prism similar to toy building
blocks; in particular, regular shaped geometric models usually
consist of a volume divided by a three dimensional grid into right
rectangular prism, each assigned a fixed density. The utility of the
prism model has been long recognized, with the derivation of the
expression for the vertical component of gravity field for a right
rectangular prism published by Nagy (1966) (see also Dransfield,
1994; Talwani, 2011) and for a dipping prism by Hjelt (1974). The
formulas for the complete set of gradient components for mod-
eling in the present paper are shown in the Appendix A. Although
these expressions are complex, it is a straightforward matter to
use them in MATLAB program. Some care like step size must be
taken with singularities at points which intersect projections of
the prism sides onto the plane.

Let Q be a point with coordinate (x′, y′, z′), within a rectangular
prism of uniform density of 2.7 g/cm3 with its geometry at the
origin of coordinate system including dimensions a in the x di-
rection, b in the y direction and d in the z direction as shown in
Fig. 3.1(a). The gravity field and full gravity gradient tensor are
computed using a MATLAB computational algorithm (mfile named
as prism.m ) away from the prism, at point R, with coordinate (x, y,
z) and at distance r¼[(x�x′)2þ(y�y′)2þ(z�z′)2]1/2 from Q as
shown in Fig. 3.1(b–j). Fig. 3.1 shows the mapped gravity field and
its gradient due to a cube of positive density contrast at a plane of
constant 1000 m. The cube has its edge aligned with the axis in the
directions of the measurements and it is below the plane of
measurement. The computed map is plotted in coordinates scaled
by the distance to the top of the cube in the same scaled units with
the length of each side of cube as 8 km, 4 km, and 1 km along x, y
and z directions respectively. These maps have obvious similarities
in shape, in relative signal amplitude with those due to the sphere.
Despite these similarities, the gradient maps are clearly due to a
source with square cross sections; a fact considerably less obvious
in normal gravity maps. The advantage of each component of full
gravity gradient for a prism can be easily identified by their prism
edges. This complex behavior of gravity and gradients are shown
in view map of Fig. 3.2. Particularly striking is the mapping of the
cube edges by its invariants in the form of different combinations
of gravity gradient components (see next section) as shown in
Fig. 5. This improved spatial resolution is a natural consequence of
the greater sensitivity of the gradients to the smaller features
which control the detailed shape of the source. There is also a
disadvantage for simulation work that the regular shaped three
dimensional models constructed from right rectangular prisms
require smaller mesh widths in the constituent prism than would
be necessary for the modeling of the field. This means a greater
number of elements and a consequent increase in computation
time shows as an inevitable implication of the greater sensitivity.

For the validation, the gravity and gradient responses of the
prism are computed at all points in a space of a given grid with
sample spacing of 150 m in both x and y directions over the finite
rectangular prism with 6 rectangular face (a special case of the
homogeneous polyhedral body). The responses caused by this
model are contributed by all surfaces of cubical body extending
from x¼4 units to 12 units, y¼�2 units to 2 units and z¼1 unit to
3 units, over the region extending from x¼0 unit to 16 units,
y¼�10 units to 10 units for z¼0, i.e. at a distance of 1 unit from



Fig. 3.1. (a)A model containing a prism and (b–d): corresponding gravity vector components and (e–j) GGT components with sampling interval of 0.2 km in x and y
directions.
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Fig. 3.2. A map view of complex behavior of gravity gradients for prism model shown in Fig. 3.1(a).
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the top surface of the cuboid. For practical purposes, here 1 unit is
taken equal to 1 km. The result of rectangular prism is compared
with the GGT components calculated using 3D IGMAS (Schmidt
and Gotze, 1998). Fig. 4 shows that the GGT components calculated
using our code is as same as the IGMAS results with rms error of
0.0198 mGal, 0.0067 eötvos, 0.0151 eötvos and 0.0095 eötvos for
gravity field Gz, gravity gradient Tzx, Tzy and Tzz respectively.

2.4. Invariants of prism

Many combinations of the gravity gradient can be used to
simplify the complex pattern like mono polar, doublet, triplet, and
quadruplet. The invariants of gradients are calculated, which re-
main unchanged under the rotation of the coordinates and help in
the interpretation of the data. In the present study, three in-
variants of gradient are shown (Fig. 5) to illustrate the complex
pattern anomalies due to the prism model.

The differential curvature magnitude (DCM) which is also
known as the horizontal directive tendency is computed by a
combination of other components of tensor Txx, Txy and Tyy. It
emphasizes greatly the effects of shallower sources (Saad, 2006);
the horizontal gradient magnitude (HGM) of Gz can be computed
from the horizontal derivative components of Gz and can be used
as edge detector or to map the body outline as it verifies the prism
boundaries (Fig. 5), and the total gradient magnitude (TGM) is
computed from the three derivatives of vertical component of
gravity Gz i.e. Tzx, Tzy, and Tzz. The TGM is also known as the ana-
lytical signal of Gz, and can be used for depth interpretation (Saad,
2006). The mathematical expressions are mentioned below.

= (( − ) + )DCM Txx Tyy Txy22 2 1
2

= ( + )HGM Tzx Tzy2 2 1
2

= ( + + )TGM Tzx Tzy Tzz2 2 2 1
2

In addition to rectangular lamina or prism, we have also de-
veloped the code for a solid sphere, a vertical cylinder and a nor-
mal fault body. A MATLAB based computational algorithm (mfile
named as Sphere.m, Vcylinder.m and fault.m respectively ) is devel-
oped to analyze the gravity and full gravity gradient responses for
their geometries and their mathematical expressions are given in
Appendix A. The different type of geological structures can be
analyzed which have distinct anomaly characteristics and that can
be correlated to the structures like massive sulfide ore body, dikes,
and sedimentary faults in which homogeneous beds are not sub-
stantially offset respectively.

It is very clear from the present section that 3D model calcu-
lation of regular geometries leave an impressive footprint in un-
derstanding the behavior of complex pattern of full gravity gra-
dient tensor. From this information it is possible to build a picture
of subsurface anomalies which can then be used to more



Fig. 4. (a–d) Comparison between the results acquired by our algorithm and IGMAS for the model shown in Fig. 3.1(a).
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accurately target the anomalous structures associated with oil, gas
and mineral deposits. However, the observed data of full gravity
gradient tensor (FTG) does not seem that much easier with their
complex pattern of anomalies as gravity anomaly. Therefore, fol-
lowing section emphasizes more in demonstrating the observed
(real) FTG data with subsurface structures from different geo-
graphical areas.
3. Generation and computation of irregular shaped geometries

A MATLAB based computational algorithm (mfile named as ir-
regular.m ) is developed to generate any type of a body with ir-
regular or complicated geometries using infinite cells of vertical
rectangular prism, if provided topography and basement of a
single layer. Then it uses the three dimensional generated geo-
metry to compute the responses of normal gravity field and ver-
tical gravity gradient for the same complex geometry with
homogeneous density or this can be used in characterizing the
response due to complex geological structures of interest. How-
ever, it may be used in the computation of lateral density variation
using density function, specified by density distribution as a
function of distance in volume V of the layer. The present program
works on the assumption of fixed bottom layer and undulated
upper layer as shown in Fig. 10. The demonstration of algorithm is
shown in Fig. 6 that works on any gridded topographic data. In the
first step of computation, program creates 6 faces of prism taking
first four points A1, A2, B2, B1 as a top surface of prism fixed with
same elevation of the point A1 from the given matrix data of to-
pography and in next step it collects again four points A2, A3, B3,
B2 with two common points A2 and B2 for the interface creating a
second prism cell with elevation of the point A2 and it goes on as
shown in Fig. 6. Therefore, it produces a total number of prisms
(i�1)� (j�1) excluding end points of both vector i and j. In the
last phase of the program, it computes the gravity and gravity
gradient response of a set of infinitesimal prism cells associated
with the undulated layer (Figs. 10 and 11). It can be easily ex-
plained from the present algorithm that the highly coarser gridded
data approximates closer to the real geometry that provides the
residual gravity or gravity gradient.
4. Application over two distinct geological regions

4.1. Structural analysis of Wichita uplift using rectangular prism:
Horst Model

To illustrate the performance of our MATLAB code, an example
was taken from the published GGT data sets collected in Southern
Oklahoma Aulacogen (Keller and Baldridge, 1995). The Wichita



Fig. 5. Computed vertical gravity component Gz and three invariants map of HGM, DCM and TGM for given prism model in Fig. 3.1. HGM¼Horizontal Gradient Magnitude,
DCM¼Differential Curvature Magnitude and TGM¼Total Gradient Magnitude.
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uplift is just south of and adjacent to the Anadarko basin (Fig. 7).
The boundary between the basin and uplift is complexly faulted
and abrupt. The uplift is primarily composed of Cambrian igneous
rocks of diverse compositions and is part of a major structural
feature that extends from northeastern Texas known as the
Muenster arch, through southwestern Oklahoma to northwestern
Texas, where it is known as the Amarillo uplift. Sedimentary rocks
north of the Anadarko basin, in northern Oklahoma and into
southern Kansas, are predominantly Paleozoic in age and probably
represent facies equivalents of the sediments deposited in the
basin.

Structural relations in southeastern Oklahoma are more com-
plex. The Ardmore basin is a narrow southeast extension of the
Anadarko basin. The Arbuckle–Tishamingo uplift bounds the
Ardmore basin on the north, and granites in the eastern part of the
uplift are the oldest exposed rocks in the area, dated as approxi-
mately 1.4 Ga (Bickford and Lewis, 1979). Cambrian igneous rocks
in the western part of the uplift are similar to those in the Wichita
uplift, and Paleozoic sedimentary rocks exposed in the uplift are
similar to those in the Anadarko basin. The Marietta basin and
Muenster arch bound the Ardmore basin on the south. Strata in
the Ouachita Mountains area consist of a thick succession of folded
and faulted Paleozoic sedimentary rocks, similar in age to rocks in
the Anadarko and Ardmore basins. They are dominated, however,
by fine-grained clastic rocks and cherts and include almost no
carbonate rocks representing a deep– water environment. Late
Paleozoic deformation is in the form of a major thin–skin thrusting
to the north and west.
One profile AA′ (shown in Fig. 7) along north–south direction

from the gravity and GGT data sets is extracted from the map of
Mickus and Hinojosa (2001). This profile crosses the Wichita uplift
associated with a �35 mGal gravity anomaly shown in Fig. 8(a).
Keller and Baldridge (1995) showed that this anomaly can be
modeled by rectangular laminae. A trapezoidal body like a Horst
model is assumed from the Keller and Baldridge (1995) and its
gravity and gravity gradient responses are computed and com-
pared with the available data. In the map, latitude and longitude
are converted into kilometers by taking UTM zone 14 N (Fig. 8c).

Vertical gravity and gravity gradients responses were com-
puted using new MATLAB – based computational algorithm with
rms misfit in Gz, Tzz, and Tzx of 0.4 mGal, 6.4 eötvos, and 2.8 eötvos,
respectively as shown in Fig. 8. The gravity gradient signatures for
the Horst model show a maximum variation of Tzx at 40 km and
80 km i.e. the boundaries of the trapezoidal body representing the
horst block and maximum value of Tzz at the center of the bodies
from 40 km to 80 km. To demonstrate the computational algo-
rithm, we have utilized the available gradient data (observed) in
comparison to the calculated responses by MATLAB in Fig. 8. From
this comparison, it is seen very clearly that the result of this al-
gorithm fit well with the observed data without any other geolo-
gical or geophysical constraint (Fig. 8a, b and d). In this case,
gravity data with tensor gravity gradients may be used directly to
depict changes in lithology as well as in providing information on
structural systems and deformation style.



Fig. 6. The algorithm demonstration for the computation of three dimensional undulated layers as shown in Fig. 10 and its gravity gradient behavior.
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4.2. Analysis of irregular three dimensional geometries using vertical
rectangular prisms or infinite cells: Vredefort Dome, South Africa

The Vredefort impact structure is located in the Witwatersrand
basin of South Africa and is known as Vredefort dome (Fig. 9). The
structure is one of the largest and oldest known impact structures
on the Earth with a diameter of 300 km covered by �2.02 Ga old
rocks and which is known for its economic gold reserves (Salmi-
men et al., 2010). The geological cross section of the dome reveals
two major structures known as core and collar. The core of this
dome consists of Archean granitoids and overturned supracrustal
strata in the form of a collar pattern (Martinez and Li, 2011). Many
geophysical surveys were carried to identify the geological fea-
tures within the Vredefort dome. One of them includes the gravity
gradient data acquired by Fugro Airborne Surveys Corp. using the
FALCON Airborne Gravity Gradiometer (Dransfield, 2010).

We have computed the responses of the causative sources ap-
proximating the Vredefort dome structure through rectangular
geometry to demonstrate the application of the present compu-
tation algorithm. A total number of 6539 vertical rectangular
prisms with 110 m of element size have been used to build the
model using GEOSOFT (OASIS MONTAZ) and then the result was
computed by approximating the model with rectangular geometry
in MATLAB with model building time of 1.01903 s and CPU time of
0.0624 s. For this purpose, we described a method of approx-
imating the gravity, full gravity gradients of an irregular shaped
surface or body representing it as a polyhedron like vertical rec-
tangular prism using MATLAB computational algorithm (mfile
named as irregular.m ). With the aid of analytical formulae derived
for the field caused by a finite rectangular prism, a machine
method is developed for rapid computation of gravity and full
gravity gradient anomalies due to a body of any shape. The ex-
ample of Vredeforte is provided to demonstrate the applicability,
accuracy and speed of the method. In this method, a body is first
represented by its top irregular surfaces at different elevations,
each elevation representing the upper part of the prism. The body



Fig. 7. Major geologic features in part of study area Wichita Uplift, Oklahoma, Texas and Kansas. Line of gravity gradient profile AA′ is also shown in dark gray color from
north to south direction.

Fig. 8. (a) Calculated and measured vertical gravity component Gz and (b and d) Calculated Tzz and Txz components corresponding to the model shown in c: the horst model
representing the Wichita uplift with background density of 2.67 g/cm3.
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Fig. 9. Geology map of Vredefort impact structure in Witwatersrand basin of South Africa.
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is then approximated by a number of rectangular blocks of di-
mensions similar to top surface samples. Thus in effect, the body is
divided into a number of vertical rectangular blocks or infinite
cells of small thickness as shown in the Fig. 10. By summing the
effects of the total number of blocks, the gravity effect of the whole
body is evaluated. Conversely, the method could be utilized for
determination of physical parameters from the observed anoma-
lies by inversion process.

Fig. 11a–d illustrate observed and calculated results of Gz and
Tzz map of Vredefort Dome, South Africa (Dransfield, 2010) using
Fig. 10. Approximation of an irregular shaped surface of Vredeforte Dom
MATLAB computational algorithm. Fig. 12a and b shows the
comparison of the observed and computed gravity field and ver-
tical gravity gradient along a profile in NE–SW direction (shown in
Figs. 9 and 11) with rms misfit of 3.0845 mGal and 2.0725 mGal/
km respectively using 2D model structure of Vredefort Dome
along same profile line modeled with a 110 m thickness of rec-
tangular laminae using basement density of 2.97 g/cm3 and
background density to 2.67 g/cm3 in Fig. 12c. Fig. 12d shows three
dimensional view of Vredefort dome generated by GEOSOFT,
which was later used to compute the Gz and Tzz using rectangular
e by a number of thin vertical rectangular prisms or infinite cells.



Fig. 11. (a, b) Observed Gz and Tzz map of Vredefort Dome, (c, d) computed and observed responses of Gz and Tzz for Vredefort Dome as shown in Fig. 12(d).
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lamina. Joint modeling of gravity and gravity gradient allowed us
to provide a refined geometry of the dome using the presented
computational technique. The computational result shows that
this technique has the ability to recognize the edge and bound-
aries of Vredefort Dome with smaller element size and higher
resolution.
5. Conclusion

A pattern of complex gravity gradient anomalies is often pro-
duced even for simple geometries making difficult the inter-
pretation of observed data. It is easy to understand the complex
pattern of gravity gradients through the synthetic models and thus
the forward modeling results can be used to guide the inter-
pretation of real gravity and gravity gradient data. Similarly, var-
ious combinations of tensor components can be used to produce
coordinate independent “invariants” that are simple, easy to in-
terpret, more localized, and more related to the size and shape of
the source.

Computational results of rectangular lamina using MATLAB al-
gorithm for forward modeling of gravity and its gradients for simple
geometries are found to be same as the IGMAS results with rms error
of 0.0198 mGal, 0.0067 eötvos, 0.0151 eötvos and 0.0095 eötvos for
gravity field Gz, gravity gradient Tzx, Tzy and Tzz respectively.

Both the geological models presented in the paper indicate that
joint modeling of the gravity gradient tensor components greatly
improves the determination of the lateral boundaries of the model.
The present study is an important step towards understanding the
complex nature of gravity gradients, particularly in the view of
advent of airborne full tensor gradiometry, which allows mapping
shallow and small geological targets, important for exploration.
The MATLAB codes can be found as electronic supplementary
material.



Fig. 12. (a, b) Computed and observed responses of Gz and Tzz along a profile in northeast direction as shown in Fig. 11, (c, d) 2D model structure of Vredefort Dome along a
profile line modeled with a 110 m thickness of rectangular laminae using basement density of 2.97 g/cm3 and 2.67 g/cm3 of background density and 3D structural view of
Vredefort Dome.
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Appendix A

1. Gravity and horizontal gravity gradients of 2D geometries like
semi-infinite horizontal slab and vertical sheet/dike (Dransfield, 1994)

A) Semi-infinite horizontal slab
The semi-infinite horizontal slab (bottom left of Fig. 2) is useful

for approximating vertical faults. The gravity anomaly and hor-
izontal gradients for such a slab can be calculated by

ρ π ɸ ɸ= + +( + − ) −( − )
⎛
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B) Vertical sheet/dike
The vertical sheet is useful for modeling dikes. For a vertical

sheet (bottom right of Fig. 2) of thickness t and density ρ, the
gravity anomaly and its gradients can be calculated by-

= ρ
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ρ= − ( + − ) − ( − )⎛
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⎞
⎠⎟T G t

d l y
r

d y
r

2zz
b t
2 2

( )= +( − )r x d yt
2 2

( )= +( + − )r x d l yb
2 2

2. Gravity and gravity gradients of spherical body and vertical cy-
liNDER (Zhang et al., 2000)

A) Spherical body
The attraction of sphere/point mass buried below earth's sur-

face can be viewed in much the same as the attraction of the entire
earth from some distance in space; the formula of gravity and
gravity gradients at surface point (upper left of Figs. 3.1 and 3.2) is
described below:

where:
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R¼radius of sphere (m)
r¼ + +x y z2 2 2

x, y¼horizontal distance from the center (m)
z¼depth of sphere (m)

B) Vertical cylinder
The formula of gravity and gravity gradients of a finite vertical

cylindrical body at surface point (upper left of Fig. 4) is described
below:

ρπ= ∆ R
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where,
R¼radius of vertical cylinder (m)
r¼ + +x y z2 2 2

x, y¼horizontal distance from the center (m)
z¼depth of vertical cylinder (m)

3. Gravity and gravity gradients of rectangular lamina

To compute the effects of rectangular laminas that extends
from x¼x1 to x¼x2, y¼y1 to y¼y2, and z¼z1 to z¼z2, triple in-
tegration is performed with appropriate limits (Upper left of
Fig. 5). This has been carried out by numerous authors including
Jung (1961), Nagy (1966), Plouff (1976), Barton (1929) and Forsberg
(1984). Gravity field can be written as:

{ }
{ }

∑ ∑ ∑
∑ ∑ ∑
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1

where
1. G is Gravitational Constant, ρ is Density,
2. i, j, and k are indices labeling the corners of the rectangular

lamina along x, y, and z axis respectively
3. s¼1, if iþ jþk is even and s¼�1, if iþ jþk is odd
4. rijk¼sqrt( + +x y zi j k

2 2 2),

After differentiating the Gx, Gy, and Gz in x, y, and z direction
respectively (Talwani, 1965) gravity gradient components can be
obtained as shown below in compact forms:
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Appendix B. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2015.12.007.
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