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A B S T R A C T

Newly presented machine learning methods based on Deep Belief Networks like autoencoders have opened a
new window on anomaly identification in different fields of the science. They reconstruct the normal probability
distribution pattern of the input data using stacks of Continuous Restricted Boltzmann Machines (CRBM) and
thus determining the outliers. Therefore using this machine on geochemical samples taken in regional ex-
ploration scale, might be an acceptable way to delineate the multivariate anomalies and propose the next targets
for detailed exploration. On the other hand, due to compositional nature of geochemical data, compositional
data analysis (CoDa) has been developed to identify multivariate outliers or anomalies in recent years.

A comparison between both methods has been made applying them on lithogeochemical samples of Hamich
area in Southern Khorasan, East of Iran. The area was explored in details some years ago and veinlets of galena-
sphalerite-pyrite at depth, based on the outcrops of Cu-Pb, were verified by additional core drillings. We used its
final report to validate the results of both methods. They showed that the two completely different methods
could get the same acceptable targets. However the CoDa approach needs less parameters and shows which
elements are responsible for the anomalies.

1. Introduction

Anomaly recognition is one of the main goals in regional geo-
chemical exploration and the first step in making decisions for locating
the next stage targets. Therefore to reduce the risk and uncertainties of
exploration and costs of drilling, it demands applying precise analysis
methods. The multivariate methods usually require multivariate geo-
chemical data satisfying a known statistical distribution, such as a
multivariate normal distribution (Xiong and Zuo, 2016).

Deep learning methods aim at learning feature hierarchies with
features from higher levels of the hierarchy formed by the composition
of lower level features. Depth of architecture refers to the number of
levels of composition of non-linear operations in the function learned.
In 2006 Hinton et al. at University of Toronto introduced Deep Belief
Networks (DBNs) (Hinton et al., 2006), with a learning algorithm that
greedily trains one layer at a time, exploiting an unsupervised learning
algorithm for each layer, a Restricted Boltzmann Machine (RBM)
(Freund and Haussler, 1994). Shortly after, related algorithms based on
auto-encoders were proposed (Bengio et al., 2007), apparently ex-
ploiting the same principle: guiding the training of intermediate levels
of representation using unsupervised learning, which can be performed
locally at each level (Bengio, 2009).

Since 2006, deep networks have been applied with success not only
in classification tasks (Ahmed et al., 2008; Bengio et al., 2007; Boureau
et al., 2008; Larochelle et al., 2007; Lee et al., 2009; Poultney et al.,
2006; Vincent et al., 2008), but also in regression (Hinton and
Salakhutdinov, 2008), dimensionality reduction (Hinton and
Salakhutdinov, 2006; Salakhutdinov and Hinton, 2007) and geochem-
ical anomaly recognition (Xiong and Zuo, 2016). Although auto-en-
coders, RBMs and DBNs can be trained with unlabeled data, in many of
the above applications, they have been successfully used to initialize
deep supervised feedforward neural networks applied to a specific task
(Bengio, 2009).

On the other hand, in the convenient geochemical researches, da-
tasets of samples taken of an environment (litho, sediment, soil, gas or
water) and analyzed for constituent elements are often compositional
data which have long been of concern in the geochemical field
(Aitchison, 1982; Buccianti, 2011; Buccianti et al., 2006; Carranza,
2011; Chayes and Trochimczyk, 1978; Rollinson, 1992). It is an ex-
ample of a closed number system because it contains compositional
variables that are parts of a whole (Carranza, 2011). The statistical
analysis of compositional multivariate data is a much discussed topic in
the field of multivariate statistics (Filzmoser et al., 2005). In practice,
log-ratio transformations are commonly employed in geochemical data
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processing to open closed systems for better understanding of realistic
relationships among compositions (Filzmoser et al., 2012; Gallo and
Buccianti, 2013).

In present case study to identify exploratory target areas in Hamich
area located in east of Iran, we compared two completely different
approaches in multivariate outlier detection. The first is the composi-
tional method of Filzmoser (Filzmoser et al., 2012) and the second is
using autoencoder networks which are based on Boltzmann machines
structures. They are a kind of Deep Belief Networks that have been
recently developed and are well known for anomaly detection appli-
cations. Although we used both ilr-transformed and raw data as input of
the network, the results were almost the same. It should be noted that
the compositional approach is much more interpretable since the
anomalous variables causing the multivariate anomaly also could be
detected.

2. Methodology

Among the regional geochemical data processing, there are a variety
of statistical and data mining approaches as well as different mapping
techniques which serve as presentations of the outputs (Fletcher, 2013).
They include convenient methods such as statistical distribution
thresholds of a gaussian distribution tails or extremes (Reimann et al.,
2005). Extreme values are of interest in investigations where data are
gathered under controlled conditions. In contrast, geochemists are ty-
pically interested in outliers as indicators of rare geochemical processes
(Filzmoser et al., 2005).

2.1. Deep autoencoders

Deep Learning is used for unsupervised feature learning or more
specifically, nonlinear dimensionality reduction. Deep Belief Network
(DBN) is a probabilistic generative model composed of stacked
Restricted Boltzmann Machines (RBMs). A DBN can recognize high
level features of the inputs with the RBMs using a greedy layer-wise
unsupervised training algorithm. The deep autoencoder network based
on DBN is trained by minimizing the difference between the input and
the output data. Hinton and Salakhutdinov suggested the use of RBMs
for deep autoencoder networks with binary inputs and outputs (Hinton
and Salakhutdinov, 2006). Furthermore, it is possible to use continuous
RBMs (CRBMs), rather than RBMs as the unsupervised building block of
the autoencoder network (Xiong and Zuo, 2016).

Stacks of CRBMs are in fact multi-layer feedforward neural net-
works without any inter-layer connections consisting many layers of
interconnected neuron units (as shown in Fig. 1), starting with an input
layer to match the feature space, followed by multiple hidden layers of

nonlinearity, and ending with reverse copies of encoder layers to match
the output space in a decoding structure. The inputs and outputs of the
model's units follow the basic logic of the single real neuron (Candel
et al., 2016).

Bias units are included in each non-output layer of the network. The
weights linking neurons and biases with other neurons fully determine
the output of the entire network. Learning occurs when these weights
are adapted to minimize the error on the labeled training data. More
specifically, for each training example j, the objective is to minimize a
loss function, L(W,B|j).

Here, W is the collection {Wi} 1:N−1, where Wi denotes the weight
matrix connecting layers i and i+1 for a network of N layers. Similarly
B is the collection {bi} 1:N−1, where bi denotes the column vector of
biases for layer i+1. This basic framework of multi-layer neural net-
works can be used to accomplish Deep Learning tasks. Deep Learning
architectures are models of hierarchical feature extraction, typically
involving multiple levels of nonlinearity (Candel et al., 2016).

If the input data is treated as labeled with the same input values,
then the network is forced to learn the identity via a nonlinear, reduced
representation of the original data. The most convenient activation
function f is a sigmoid function or tanh defined as Eq. (1) (Candel et al.,
2016).
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xi and wi represent the firing neuron's input values and their weights,
respectively; α denotes the weighted combination. In fact the tanh
function is a rescaled and shifted logistic function; its symmetry around
0 allows the training algorithm to converge faster (Candel et al., 2016).

H2O's Deep Learning framework interface in R supports regular-
ization techniques to prevent overfitting. ℓ1(L1: Lasso) is a regulariza-
tion method that constrains the absolute value of the weights and has
the net effect of dropping some weights (setting them to zero) from a
model to reduce complexity and avoid overfitting. H2O's Deep Learning
preprocesses the data to standardize it for compatibility with the acti-
vation functions. Since the activation function generally does not map
into the full spectrum of real numbers, ℝ, the algorithm first standar-
dize the data to be drawn from N (0, 1). Although for autoencoding,
the data is normalized (instead of standardized) to the compact interval
ofU −( 0.5, 0.5) to allow bounded activation functions like tanh to better
reconstruct the data. The stopping rules are convergence-based or time-
based that can be set in training the model. There is no general rule for
setting the number of hidden layers, their sizes or the number of
epochs. Experimenting by building Deep Learning models using dif-
ferent network topologies and different datasets will lead to insights
about these parameters (Candel et al., 2016).

Fig. 1. A simplified architecture of an autoencoder network (Xiong
and Zuo, 2016).
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In other words an autoencoder network is designed to minimize the
difference between the input and output. The main difference between
an autoencoder network and a traditional network is the size of the
output layer. The size of an autoencoder's output layer is always the
same as the input layer. An autoencoder network is composed of an
encoder and a decoder. The encoder network transforms the input data
into new code, and the decoder network recovers the data from the
code. Then if an anomalous test point does not match the learned
pattern, the autoencoder will likely have a high error rate in re-
constructing this data, indicating anomalous data. This framework is
used to develop an anomaly detection demonstration using a deep au-
toencoder (Xiong and Zuo, 2016).

2.2. Compositional data multivariate outlier detection

The geochemical data have an intrinsic compositional property.
They are multivariate observations that describe quantitatively the
parts of some whole. Thus, their components carry exclusively relative
information about the parts (Aitchison, 1982). Typically these ob-
servations are expressed as data with a constant sum constraint such as
proportions, percentages, or mg/kg, i.e:
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The D-dimensional space defined in Eq. (2) is called a Simplex. Due to
the fact that geochemical data follow the simplex geometry, classical
statistical methods that rely mostly on the euclidean geometry produce
spurious results when they are applied to raw compositional data
(Filzmoser and Hron, 2008; Filzmoser et al., 2009a). Whether or not the
data follow a normal distribution is of no importance at all (Filzmoser
and Gschwandtner, 2012). In order to work with these data there has
been proposed three log-ratio transformations that open the data and
define some new coordinates in euclidean vector space. They are named
as: clr: centered logratio, ilr: isometric logratio and alr: additive logratio.

Due to the definition of compositional data, all the relevant in-
formation about x1 is contained in the ratios to each of the remaining
parts …x x, , D2 . Accordingly, this relative information for all remaining
parts needs to be considered also for univariate data analysis (Filzmoser
et al., 2009b). The ilr transformation of the elements of the simplex
allows more effective handling of compositional data and preserves all
metric properties so that it can be analyzed as a standard multivariate
dataset in real space. Therefore the ilr variable:
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contains all the relative information between x1 and …x x, , D2 , because
none of … −z z, , D2 1 includes x1. In this way, each compositional part can
be expressed by a single ilr variable as defined in Eq. (3) which here is
used for univariate analysis of global outliers (Filzmoser et al., 2009b).

For all logratio transformations, the problem of missing or zero
values should be solved prior to any analysis. Fortunately there have
been proposed many solutions and tools to impute them in the best
way. One of them is zCompositions package written and developed by
Javier Palarea-Albaladejo and Josep Antoni Martín-Fernández that
provides principled methods to deal with zeros and nondetects in
compositional datasets (Palarea-Albaladejo and Martín-Fernández,
2015).

In contrast to univariate outliers, multivariate outliers are not ne-
cessarily extreme along single coordinates. Rather, they could deviate
from the multivariate data structure formed by the majority of ob-
servations (Filzmoser et al., 2009b). The estimated covariance structure
is used to assign a distance to each observation indicating how far the
observation is from the center of the data cloud with respect to the
covariance structure (Filzmoser et al., 2012). This distance measure is

the well-known Mahalanobis distance, defined for a sample …x x, , n1 of
n observations in the d-dimensional real space RD as

= − − = …′ −MD x x x( ) [( T)C ( T)] for i  1, ,ni i i
1 1/2 (4)

T and C in Eq. (4) are location and spread estimators, respectively. In
the case of multivariate normally distributed data, the arithmetic mean
and the sample covariance matrix are the best choices, leading to the
best statistical efficiency (Filzmoser et al., 2012). In this case, the
squared Mahalanobis distances approximate a chi-square distribution
χd

2 with d degrees of freedom. A certain cut-off value like the 97.5%
quantile of χd

2 can be taken as an indication of extremeness: data points
with higher (squared) Mahalanobis distance than the cut-off value are
considered as potential outliers (Rosseeuw and Van Zomeren, 1990).

Both the arithmetic mean and the sample covariance matrix are
highly sensitive to outlying observations. A number of robust estimators
of covariance have been proposed in the literature, like the MCD1 es-
timator (Maronna et al., 2006). It looks for a subset h out of n ob-
servations with the smallest determinant of their sample covariance
matrix. The subset size h can vary between half the sample size and n,
and it will determine not only the robustness of the estimates, but also
their efficiency. It is common to use the same cut-off value from the χd

2

distribution (Rosseeuw and Van Zomeren, 1990). Filzmoser introduced
a more advanced approach to the cut-off value that could lead to more
accurate values. This method called “adaptive outlier detection”, ac-
counts for the actual numbers of observations and variables in the da-
taset, and it tries to distinguish among extremes of the data distribution
and outliers coming from a different distribution (Filzmoser et al.,
2005).

Several methods have been proposed for the identification of mul-
tivariate outliers, making use of robust statistics (Maronna et al., 2006).
Such tools have also been developed in the context of compositional
data (Filzmoser and Hron, 2008). The package mvoutlier in R software
presented by Filzmoser and Gschwandtner is a free and precious tool to
deal with outliers especially in compositional data. It is designed on a
comprehensive mathematical basis that detects, maps and plots the
global outliers in a multivariate dataset. This is done by computing for
each observation the robust squared Mahalanobis distances to the
medians along the single ilr variables. The distances are computed and
split by four values: the quantiles 0.25, 0.5, 0.75 and the aforemen-
tioned adaptive outlier cutoff, i.e., an outlier with a high value means
that most univariate parts have higher values than the average. The
maps used in this study are marked by only the values above median
that is coloured light green. This characterization helps to interpret
multivariate outliers (Filzmoser et al., 2012).

3. Study area

The sampled area (Fig. 2) is situated within the eastern part of the
so-called Lut block of eastern Iran. Eastern Iran and particularly the Lut
block, has a great potential for different types of mineralization as a
result of its past subduction zone tectonic setting, which lead to ex-
tensive magmatic activities forming igneous rocks of different geo-
chemical compositions. The Lut block is characterized by extensive
exposure tertiary volcanic and subvolcanic rocks formed due to the
subduction prior to the collision of the Arabian and Asian plates (Camp
and Griffis, 1982; Tirrul et al., 1983). Most of the study area is covered
by upper Eocene-Oligocene altered volcanic rocks including andesite,
dacite, tuff and ignimbrite. These rocks are intruded by felsic to inter-
mediate intrusive porphyritic rocks consisting of monzonite, diorite and
microgranodiorite porphyry stocks. Sedimentary rocks in this area
consist of conglomerates, minor middle Eocene to upper Eocene tuf-
faceous marls in the southeastern to eastern area and Quaternary se-
diments. The prospect area is similar to low-sulfidation epithermal

1 Minimum Covariance Determinant.
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systems. The rocks are dominantly altered andesite and dacite. Argil-
lization, sericitization and silicification are common hydrothermal al-
terations in this area. Mineralization is not seen at surface (Karimpour
and Mazaheri, 2009).

The area comprises the moderately folded Tertiary volcanic zone of
Kuh-e-Shah in the north, a zone of strongly tectonized and partly
Eocene andesites and dacite-andesites. It is a zone of gently warped and
tilted Upper Tertiary andesitic formations belonging to the Lut block.
The tuff in the center of the area grades laterally and upwards into thick
volcanic breccia and locally, conglomerate with pebbles of alveolina
and nummulitic limestones of Paleocene-early Eocene age. These clastic
rocks are overlain by widespread dacites and dacite tuffs which because
of the gradational contact relations with the underlying beds are
thought to be also of Paleocene age. The rocks tentatively attributed to
Neogene are mainly various types of andesite. In the present area the
andesites seem to be genetically related to a characteristic formation of
microdiorites which protrude through the Paleogene volcanics
(Vassighi et al., 1975). The volcanic breccias underlying the dacites
extend eastward where they are again associated with dacitic rocks, but
also with abundant, strongly altered andesitic material. The Neogene
andesites have been divided into several petrographic varieties, which
seem to belong to different extrusive centers and also differ slightly in
age. Most widespread are pyroxene andesites. Some ancient workings
for copper are found in the south of this area, apparently related to the
aplitic intrusions in the area. Traces of malachite and chalcopyrite
occur in several small ancient workings south and southeast of Hamich
in dacitic and andesitic volcanic rocks of the Paleogene. Minor lead-zinc
mineralisations with galena, cerussite and smithsonite are found in
dacite and pyroxene andesite units south of this area (Vassighi et al.,
1975).

4. Data process and results

The dataset used in this research is taken from a part of an ex-
ploration project carried out in southwestern of Birjand, South

Khorasan by industry, mine and trade (IMT) organization. The data
consists of 396 lithogeochemical samples and 20 duplicate samples
analyzed for 44 trace elements with ICP-MS method in Australia's

Amdel lab. Maximum accepted analytical error = ∑
−

+( )e, , , ,n
x y
x y

2 | |i i
i i

for

the analysis was 20%. According to Table 1, Au, Cr and Ni with about
54%, 33% and 36% of error respectively, had low to moderate accuracy
probably due to their behaviour in the dispersion environment. Other
elements were in acceptable ranges (Consulting Engineers Co., 2009).
The study area covers a 40 km2 rectangle with Hamich, a village and
the only populated area, located at the west. Geographically it is an arid
region with an almost hill and creek topography. The samples locations
are shown in Fig. 2.

Out of all the variables, Ag, B, Bi, Cd, Hg, Sn, Te were left out be-
cause they had more than about 60% of missing values. 37 remained
variables were used in imputation process. 53 samples of Au had zero
values and 1 of As, 6 of Co, 185 of Cr, 20 of Mo, 28 of Sb, 33 of Tl, 15 of
W were below detection limit (BDL). These missing values were re-
placed using recent technique of ilr-Em imputation in zCompositions
package in R (Palarea-Albaladejo and Martín-Fernández, 2015).

Then a subcomposition of variables was selected based on their
geological relations and paragenetical properties. It included 12 ele-
ments of Au, As, Cu, Mo, Fe, Mg, Pb, Zn, Ni, Co, Cr, W. First using
mvoutlier package in R (Filzmoser and Gschwandtner, 2012), the matrix
of the selected variables was ilr-transformed and univariate outliers
were determined and plotted (Fig. 3). The global multivariate outliers
were identified and mapped (Fig. 4) too. It shows the outliers that are
out of the 0.975 quantile of the multivariate chi-square distributed
Mahalanobis distance (MD) based on minimum covariance determinant
(MCD) estimator. Comparing Figs. 3 and 4 gives us some clue that in-
dices 1 to 12 and 73 in the southern part show anomalies of Cu, Fe, Pb,
Zn, Au and indices 28, 32, 34, 39, 42, 43 show anomalies of Ni, Co, Cr,
Pb, Zn. Index 56 shows a strong anomalies of As and Ni.

At the next step, using H2O R interface,2 different structures for
autoencoder network with different parameters were designed and
tried. In order to consider the closed nature of geochemical data, two

Fig. 2. Lithological map of the study area and litho-geochemical sampling locations.
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groups of data were prepared for the network as input:(1) raw data
without any transformations, and (2) ilr-transformed data using Eq. (3).
For each group, the performances of different autoencoder models were
compared after training on all the 396 samples and the best model was
selected for anomaly detection (Table 2).

In geochemical exploration, the multivariate geochemical back-
ground and anomaly values are separated by the samples with large and
small probability respectively. If the model is trained on all the multi-
variate geochemical samples in a study area, the trained model will be
able to identify the multivariate geochemical anomaly samples from the
training geochemical sample population (Chen et al., 2014).

The parameters of the model are: activation function = “Sigmoid”,
number of hidden units in 3 layers = (100,80,60,80,100), L1
= 1e−3, number of iterations over the training dataset = 500. The
rest of the parameters were left to defaults. A 90th percentile was se-
lected as the threshold to indicate the outliers of errors. The location of
multivariate outliers as geochemical anomalies are shown in Fig. 5.

5. Discussion

Geochemical data analysis in a regional scale leads to definition of
anomaly locations or detailed exploration targets. A detailed explora-
tion project was planned and conducted by IMTO of South Khorasan.
After remote sensing the potential alteration zones in a large scale en-
folding this area, lithogeochemical sampling and detailed geological
mapping were done. However there existed some mineralized outcrops
of veins and veinlets (mostly pyrite-quartz-malachite with silicic al-
teration and sphalerite-galena) and ancient diggings in eastern and
southern parts of the area. After geochemical analysis, the altered da-
cite-andesite units were recognized as a potential zone and 9 points in
the west-southern part of the area were marked for core drillings.

In brief, the most significant boreholes were BH1, BH3 and BH6
with 20, 125.5 and 158 m depths respectively. The other boreholes
were near these and showed almost the same results.

BH1 mineralized zone was from surface to about 5 m in a fault zone
with quartz veins and Fe-oxides in altered dacite-andesite. BH3 was
drilled about 20 m far from hanging wall of a galena-sphalerite-pyrite
vein outcrop. The vein direction was the same as strike-slip faults. The
mineralized zones were in depths of 45–55 m and 75 m with

remarkable values of Au in quartz veinlets and Pb-Zn in sulfides. Their
host rock was latite-monzonite. BH6 cores were mostly tectonized
pyrite with quartz veinlets. Au in all samples of this core was below
detection limit of the lab. The host rocks through the core were altered
sub-volcanics, andesite-dacites. The high value of Zn in analyzed sam-
ples was considerable. However the report concluded that after com-
bining all the results of the cores, geophysics, geochemistry, geology
and mineralography, there seemed to be no evidence of an accountable
mineral reserve in the area and there exists just some minor veinlets of
galena and sphalerite that have been formed along the faults.

Locations of the major proposed boreholes for identified anomalies
and the mineralized Pb-Cu indexes of ancient minings in this area are
shown in Fig. 6. The blue circles and squares are anomalies detected by
autoencoder network on raw data and its ilr-transformed and hollow
circles are anomalies detected by compositional data multivariate
outlier detection. In western and southwestern parts, the detected
anomalies are the same. Comparing the anomalies with the outcrops
near boreholes and mineral indexes suggests the acceptable accuracy of
their detection.

6. Conclusion

Anomaly detection is one of the first and most important stages in
mineral exploration. Usually it is done in regional scale so as the
prospected local points for drillings or further detailed exploration are
determined. In this paper, the autoencoder network together with
compositional data multivariate outlier detection were applied on an
explored area to compare them as recognition tools. Although they are
completely different in methodology, their aim is the same.

In this study, the parameters of the network defined within H2O-R
interface, such as the number of iterations, the size of each hidden layer
were changed and activation function, adaptive learning, standardiza-
tion rule, regularization techniques (to prevent overfitting) remained as
default. The reconstruction error of the optimal network with the least
MSE, were used as a useful indicator of multivariate geochemical
anomalies. Their corresponding samples were mapped.

The results from the autoencoder network performed on raw and ilr-
transformed data were compared with the results from multivariate
analysis of compositional data. In the latter method after defining a
distance criteria in simplex, a robust identification is performed using
an adaptive threshold and multivariate global outliers are detected and
mapped.

Table 1
Analyzed elements and measurement errors (Consulting Engineers Co., 2009).

Element Au Al Ca Co Cr Cu Fe K Mg Mn Na Ni P S

Detection limit (ppm) 1(ppb) 10(%) 10(%) 0.2 2 0.2 100(%) 10 10(%) 2 10(%) 2 5 50
Error percentage (%) 54.79 3.17 2.23 13.7 33.02 8.11 3.7 3.81 2.78 3.96 5.08 36.36 4.5 9.47
Below 10 DL (%) 58.2 3.2 2.23 13.7 32.2 8.11 3.7 3.81 2.78 3.96 4.53 38.1 4.5 9.47
Up 10 DL (%) 24.0 – – – 48.6 – – – – – 4.4 3.9 – –
Number of below 10 DL 18 20 20 20 19 20 20 20 20 20 12 19 20 20
Number of up 10 DL 2 – – – 1 – – – – – 8 1 – –
Element Ti V Zn Ag As Ba Be Bi Cd Ce Cs La Li Mo
Detection limit (ppm) 10(%) 0.1 0.2 0.01 0.5 0.2 0.2 0.1 0.1 0.5 0.1 10 0.5 0.1
Error percentage (%) 4.36 3.94 5.52 4.76 8.58 6.39 9.65 0.77 0 5.65 4.69 5.24 7.19 23.00
Below 10 DL (%) 4.36 3.94 5.52 4.76 9.12 6.58 9.65 0.77 0 5.65 4.69 5.24 7.19 24.2
Up 10 DL (%) – – – – 5.51 4.6 – – – – – – – 0.0
Number of below 10 DL 20 20 20 20 17 18 20 20 20 20 20 20 20 19
Number of up 10 DL – – – – 3 2 – – – – – – – 1
Element Nb Pb Rb Sb Sc Sn Sr Te Th Tl U W Y Zr
Detection limit (ppm) 0.5 0.2 0.1 0.1 1 0.2 0.1 0.2 0.02 0.1 0.02 0.1 0.05 5
Error percentage (%) 6.06 24.05 5.8 8.88 4.98 2.86 4.55 6.76 5.89 3.43 4.09 7.43 5.99 9.82
Below 10 DL (%) 6.06 25.2 5.8 18.1 4.98 2.86 4.55 6.76 5.89 3.43 4.09 7.43 5.99 9.82
Up 10 DL (%) – 3.11 – 4.93 – – – – – – – – – –
Number of below 10 DL 20 19 20 6 20 20 20 20 20 20 20 20 20 20
Number of up 10 DL – 1 – 14 – – – – – – – – – –

2 http://h2o.ai/.

H. Moeini, F.M. Torab Journal of Geochemical Exploration 180 (2017) 15–23

19

http://h2o.ai/


The spatial distribution of the geochemical anomalies obtained by
both methods was similar in the study area. Although compositional
data analysis method has slight preferences over autoencoder as it can
show univariately which elements are responsible for the anomaly too.
Performance of the autoencoder model on ilr-transformed data was
lower and showed more noise after decoding than on raw data. This led
to wider anomaly regions and lower accuracy. However from practical
point of view, compositional data outlier detection needs less para-
meters than autoencoder and is closer to the nature of the geochemical
simplex space.

Table 2
Performances of the network.

MSE RMSE

Raw data 0.008855246 0.09410232
ilr-Transformed data 0.02741058 0.1655614

Fig. 4. Global outliers map of the study area indicating the locations
of the outlying samples.

Fig. 3. Univariate ilr-transformed data showing outliers.
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There was a strong correlation between the known Cu-Pb indexes,
vein outcrops and the anomalous samples, indicating that the methods
used in this study are powerful tools for recognition of multivariate
geochemical anomalies. It is also considerable that all three anomaly

maps in this study (Fig. 5) showed an anomaly region in the northeast
of Hamich area that was not referred to in the exploration report and it
needs further studies in the future. This highlights the preference of
novel over conventional methods that will require reconsidering the old

Fig. 5. Maps representing the location of anomalies or high errors in Hamich area.
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exploration projects.
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