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Comments on “computation of the gravity field and its gradient”

1. Introduction

In the paper of Dubey and Tiwari (2016), the method of jointly calculating gravity and gravity gradient anomalies is presented. Several regular
geological bodies are taken into consideration and also the anomaly of irregular 3D geometries is calculated with vertical rectangular prisms or
infinite cells. And at last a comparison is drawn between the forward calculation results of the described technique and open geophysical software. It
is demonstrated that the proposed method in this paper can provide reasonable modelling data. Moreover, it enables us to detect the edges and
boundaries of irregular bodies with smaller element size and higher resolution. However, after looking through the paper, including the forward
calculation formulas in the appendix (Dubey and Tiwari, 2016) and MATLAB codes in the attached file, it is noteworthy that errors exist in formulas
and codes and some descriptions about data processing and interpretation are not exact. We give a correct form of some formulas and show the
results with figures and attached codes. Comments are also made on some viewpoints of the authors.

2. Analysis of the theory

In Dubey and Tiwari's paper, the forward formulas of prism satisfies Laplace's equation, but the results of sphere and vertical cylinder do not.
After looking through equations and codes, errors exist in the codes for sphere, and the outputs of codes of prism and slab are empty. For the
vertical cylinder, the forward formulas of its gravity and gravity gradient are quite complicated in other literatures as elliptic integrals are involved.
But in their paper, formulas are simple and it is easy to prove that Laplace's equation is not supported theoretically. In the appendix (Dubey and
Tiwari, 2016), the authors provide the forward formulas of vertical cylinder referenced from Zhang's et al. (2000) paper. But formulas of sphere
instead of cylinder are found after looking through the Zhang's paper. There is no analytical formula readily available to calculate the gravity
anomaly vector and gravity tensor gradients of the cylindrical mass model. In order to make the problem unambiguous, steps below are done.

2.1. Verify the formulas of vertical cylinder

First of all, the units of the calculation results should be in agreement with gravity and spatial derivative of gravity. Taking gravity anomaly and a
component of gravity gradient tensor for example, the formulas are given (Dubey and Tiwari, 2016) as
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4 . It's the same case for the
other tensor components and we can easily find out that the above units are not correct for gravity and gravity gradient.

The second thing is that the diagonal components of the tensor should satisfy Laplace's equation, which states

Txx Tyy Tzz+ + = 0, (3)

Summing the equations of the three components, we have
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Laplace's equation is disconfirmed here. The above two points prove that errors exist in the related formulas.

2.2. Run the codes to calculate modelling response

In the attached files of Dubey and Tiwari's paper, we find that formulas of Txx andTyy of the sphere and all seven formulas of the vertical cylinder
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are not in agreement with those in Appendix A (Dubey and Tiwari, 2016). In formulas of the cylinder, the key parameter, i.e. radius (or we might say
mass) of the cylinder is missing. And the ‘for’ loop is meaningless for k = 1 to 2, because results of the second loop will cover those of the first one.
Still, the diagonal components are added and the result is not equal to zero, i.e. Laplace's equation is not supported.

2.3. Give the analytical form of forward formulas of vertical cylinder

We refer to a couple of papers about gravity forward calculation of a vertical cylinder, but no one gives a full set of formulas of gravity anomaly
and the six tensor components. A common point for the formulas is that the form is more complicated than those in the paper of Dubey and Tiwari
(2016) and complete elliptic integrals are utilized. In the paper of Zhang et al. (2000) referenced by Dubey and Tiwari in Appendix A, the main
content is about Euler deconvolution of gravity gradient data and forward formulas of prism instead of vertical cylinder are described. Nabighian
(1962) gave the analytical expressions to calculate gravity and horizontal derivatives of gravity of a vertical circular cylinder. Singh (1976) provided
an approach to calculate gravity anomaly of a vertical right circular cylinder using Lipschitz-Hankel type integral. In the papers of Veryaskin and
McRae (2008) and Chen et al. (2016), we get the formulas of Txz, Tyz and gz, Tzz, respectively. Then we unify the notations of parameters and
reorganize the formulas. Assuming that h is depth to the top of the cylinder, a is the radius, d is the length and the depth of any point of the cylinder
Z locates in the range of [h+z, h+d+z]. The coordinate of observation point is (x, y, z), z = 0 means measuring on the ground, (x0, y0) is the
coordinate of its horizontal center, and so the horizontal distance from observation point to the center is r x x y y= ( − ) + ( − )0
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In Eqs. (4)–(7), Ψ ϕ k( , ) is Heuman-Lambda function, ϕ is the Heuman-Lambda angle,K k( ), E k( ) are respectively the first kind and the second
kind complete elliptic integral, and k is the modulus. We have their calculation formulas as follows
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where k ar r a Z= 4 /(( + ) + )2 2 2 . Using the above equations, we could calculate the gravity anomaly and three gravity gradient anomalies. The other
tensor components would be obtained through the transforming equations in frequency domain (Nelson, 1988; Blakely, 1995)
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where kx, ky and k are wavenumber in x, y and radial direction, respectively.

3. Model test

To verify the proposed formulas (4)–(8), we design a model of a vertical cylinder and rewrite MATLAB codes. At the same time, anomalies of two
prisms which have similar size to the cylinder are also calculated, one is inscribed in the cylinder and the other one is circumscribed to it. The

Table 1
Parameters of the models.

Model Radius/Side (m) Thickness (m) Depth to top (m) Center (m)

Cylinder 10 30 20 (50, 50)
Prism A 10 2 30 20 (50, 50)

Prism B 20 30 20 (50, 50)
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parameters are given in Table 1, and the residual density is 1 g/cm3. As we can know, gravity anomaly or gravity gradient response of the cylinder
should be within that of the two prisms. After running the codes, we find that the results of (5) and (6) do not meet the criteria stated above
(calculation of the two components is given in the attached code), but formula (7) does. So we would use (7) as a foundation and calculate other
components with Eq. (9). Calculation results of the six tensor components are shown in Fig. 1, and the comparison between Tzz of the vertical
cylinder and two prisms is demonstrated in Fig. 2.

Fig. 1. Calculated gravity gradient tensor components of the vertical cylinder with sampling interval of 50 m in x and y direction.

Fig. 2. The component of Tzz of a vertical cylinder and two prisms, (a) the smaller prism, (b) the larger prism, (c) the cylinder.
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In Fig. 1, we also plot the horizontal location of the cylinder with a black circle which can be used to evaluate the shape of calculated anomalies.
The tensor have some shallow information of the geological body, including geometric parameters, e.g. the components Txx Tyy, identify the north-
south and east-west edges of the dome, Txz and Tyz can be used to identify the central axes of the dome, and Tzz locates the dome. As we can see the
relative location between anomalies and the black circle, the forward results provide right horizontal position of the cylinder. So the shape of the
anomalies is appropriate. When it comes to the amplitude of anomalies, in Fig. 2, sub-maps (a), (b) and (c) correspond to anomalies of the smaller
prism, the larger prism and the vertical cylinder, respectively. Also, the location and size of the model is drawn with black square and circle to
illustrate the relative position. From the color-bar on the right of each map, we can find that the amplitude of the cylinder is right between that of the
two prisms and which is reasonable. Additionally, the coverage area of the cylinder's anomaly is smaller than both prisms, i.e. the anomaly of the
cylinder is more focused. Different from prism which has right angle and sharp edges, the anomaly of vertical cylinder would be narrowed down and
concentrated more to the center, which is clear in Fig. 2(c).

Besides shape and amplitude, there are also characteristics which would reflect approximate error in calculation. The first one is that the trough
value in Fig. 2(c) is not below zero as shown in (a) and (b). Secondly, the value of four points in the middle of Fig. 2(c) is smaller than the
surrounding points, which should be larger as they are projected to the center of the cylinder. The two points could be attributed to the approximate
calculation and the rounded shape of this vertical cylinder. In formulas (7) and (8), approximation is involved in the derivation of formulas and
numerical calculation, so errors exist in the result of Tzz.

4. Discussions and conclusions

In Dubey and Tiwari's paper, a comparison is drawn between the forward results of formulas and the software IGMAS. However, this calculation
is only about a single prism and it is quite simple. So there will not be obvious difference between results with different methods. In the case of 3D
calculation, we need to divide the irregular geological body into cubes with approximate homogeneous density and forward calculation here is more
complicated and more time-consuming. So looking for an appropriate way to improve calculation efficiency seems to be more meaningful. Applying
the basic formulas of gravitation and its differentiation into different ways to do forward calculation will not help to promote accuracy obviously.

In their paper, forward response of interpretation results of real data is calculated and then compared to observed data to illustrate that the
forward method is effective. It is less convincing as the accuracy of inversion is the key point in evaluating the fitting between calculation and
observation. Actually, forward and inversion are related tightly and forward is the foundation of inversion.

Dubey and Tiwari have done a good job in calculating gravity and gravity gradient anomalies of regular and irregular bodies, which provides a
better understanding of the properties of gravity gradient tensor. However, minor errors still exist in some forward formulas and attached codes. We
try to shed light on the ambiguities and modify the formulas and codes of the vertical cylinder. Analytical formulas are given in our paper, and we
implement them with MATLAB codes. The results are reasonable and the approximation may cause error, as shown in the figures. MATLAB
function VerticalCylinder_T.m is written and attached with this paper.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.cageo.2017.06.017.
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