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Cluster analysis can be used to group samples and to develop ideas about the multivariate
geochemistry of the data set at hand. Due to the complex nature of regional geochemical
data (neither normal nor log-normal, strongly skewed, often multi-modal data distribu-
tions, data closure), cluster analysis results often strongly depend on the preparation of
the data (e.g. choice of the transformation) and on the clustering algorithm selected. Differ-
ent variants of cluster analysis can lead to surprisingly different cluster centroids, cluster
sizes and classifications even when using exactly the same input data. Cluster analysis
should not be misused as a statistical ‘‘proof” of certain relationships in the data. The
use of cluster analysis as an exploratory data analysis tool requires a powerful program
system to test different data preparation, processing and clustering methods, including
the ability to present the results in a number of easy to grasp graphics. Such a tool has been
developed as a package for the R statistical software. Two example data sets from geo-
chemistry are used to demonstrate how the results change with different data preparation
and clustering methods. A data set from S-Norway with a known number of clusters and
cluster membership is used to test the performance of different clustering and data prep-
aration techniques. For a complex data set from the Kola Peninsula, cluster analysis is
applied to explore regional data structures.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The principal aim of cluster analysis is to partition mul-
tivariate observations into a number of meaningful multi-
variate homogeneous groups, i.e. to map the observations
into a few centres called centroids. These centroids summa-
rise the group information which allows getting a better
overview of the data structure. A good outcome of cluster
analysis will result in a number of clusters where the obser-
vations within a cluster are as similar as possible while the
differences between the clusters are as large as possible.
. All rights reserved.
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Cluster analysis must thus determine the number of classes
as well as the memberships of the observations to the
groups. The outcome of most cluster algorithms are mem-
berships of 1 or 0, where 1 means that an observation has
been assigned to a specific cluster and 0 otherwise. Fuzzy
clustering methods allow for partial assignment, and thus
the membership coefficients are in the interval [0,1]. To
determine the group membership most clustering methods
use a measure of similarity between the observations. Dis-
tances between the observations in the data space are gen-
erally used to express the similarity.

Cluster analysis was developed in taxonomy. The aim
was originally to get away from the high degree of subjec-
tivity when single taxonomists performed a grouping. Since
the introduction of cluster analysis techniques there has
been controversy about its merits (Davis, 1973 or Rock,
1988). It was soon discovered that diverse techniques can
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yield different groupings, even when using exactly the
same data. Furthermore the addition (or deletion) of just
one variable in a cluster analysis can lead to completely dif-
ferent results. Workers may thus be tempted to experiment
with different techniques and the selection of variables en-
tered until the result of a cluster analysis fits their precon-
ceived ideas. Readers should be very aware of the problems
– cluster analysis can be applied as an ‘‘exploratory data
analysis tool” to better understand the multivariate behav-
iour of a data set. Alternatively, principal component anal-
ysis and factor analysis (Reimann et al., 2002) use the
correlation matrix for extracting ‘‘components” or ‘‘factors”
from a given data set, most cluster analysis techniques use
distance measures to assign observations to a number of
groups. The use of correlation coefficients requires not only
a normal, but even a multivariate normal distribution for all
the input data (Reimann et al., 2002). This condition is al-
most never fulfilled when working with geochemical data
(Reimann and Filzmoser, 2000). The use of distance coeffi-
cients does a priori not make any statistical assumptions
about the data (except if the data are of categorical order),
theoretically an ideal situation when working with geo-
chemical data. However, geochemical data are ‘‘closed”
data (compositional data expressed in units like wt.% or
mg/kg, summing up to a constant) and multivariate statis-
tical methods may thus deliver biased results (Le Maitre,
1982; Aitchison, 1986,2003). Therefore prior to performing
cluster analysis appropriate data transformations have to
be considered to ‘‘open” the data (Aitchison, 1986).

Distance measures will also be essential for cluster val-
idation, i.e. measuring the quality of a clustering. In theory,
it should be ideal to first use cluster analysis on a large geo-
chemical dataset to extract more homogenous data subsets
(groups) and to then perform factor analysis or discrimi-
nant analysis on these homogenous data subsets to study
their multivariate data structure (Frapporti et al.,1996).
Especially for data sets with many variables, it has been
suggested (Everitt, 1974) to first use principal component
analysis to reduce the dimensionality of the data and to
then perform cluster analysis on the first few principal
components. This approach has been criticised because
clusters embedded in a high-dimensional space will not
be properly represented by a smaller number of orthogonal
components (e.g. Yeung and Ruzzo, 2001).

There are also clustering methods that are not based on
distance measures, like model-based clustering (Fraley and
Raftery, 1998). These techniques usually find the clusters
by optimising a maximum likelihood function. The implicit
assumption is that the data points forming the single clus-
ters are multivariate normally distributed, and the algo-
rithm tries to estimate the parameters from the normal
distribution as well as the membership of each observation
to each cluster.

With geochemical data, cluster analysis can be used in
different ways: it can be used to cluster the variables
(e.g. to detect geochemical relations between the vari-
ables) and it can be used to cluster the observations (e.g.
to assign samples to certain types) to come to more
homogenous data subsets for further data analysis. Fur-
thermore, there are methods that try to group the data
by simultaneously clustering objects and variables (see Ji
et al., 1995,2007; Leisch, 1999; Raftery and Dean, 2004;
Friedman and Meulman, 2004).

Here a variety of different methods of cluster analysis
will be applied to geochemical data from a small dataset
from the Oslo area, southern Norway, where 9 different
plant materials (e.g., different species or leaves, wood, bark
of birch and spruce) were collected at 40 sites along a
120 km long transect (Reimann et al., 2006, 2007a,b) and
analysed for 25 elements. This dataset will be used as a test
dataset, because for the 9 clusters corresponding to the
nine materials the cluster membership is known. The sec-
ond dataset is a large regional scale geochemical dataset
containing 617 observations and 40 variables the KOLA
dataset, (Reimann et al., 1998). Here, neither the number
of clusters nor the group memberships are known. The
objective of using the OSLO data set and the Kola data set
for cluster analysis is to give an overview of popular cluster
methods for geochemistry, to give a practical guide to ap-
ply cluster analysis in geochemistry and to investigate the
following specific questions:

– Which transformations are most suitable for such com-
positional data and what are the effects on cluster
results?
– Which distance measures are most suitable for distance
based clustering methods?
– What is the influence of the actual method used and is
there an ideal method for regional geochemical data?
– Is there an objective way to determine the optimum
number of clusters extracted?
– Is there a graphical way to evaluate the stability or
validity of clusters?
– Is an objective decision on the number and choice of ele-
ments entered into the cluster analysis possible?

Furthermore this paper will provide an overview of the
implemented open source code for cluster analysis in R and
provide a guideline for optimising the procedure for geo-
chemical data.
2. Materials and methods

2.1. Oslo dataset

During the fall of 2005 a variety of different sample mate-
rials was collected at 3 km sampling intervals along a 120 km
long transect crossing the city of Oslo. At 40 sample sites 9
different plant materials were collected leading to 360 sam-
ples. The plant materials were: terrestrial moss, fern, Euro-
pean mountain ash leaves, birch leaves, bark and wood and
spruce needles, twigs and wood. Details about sampling,
sample preparation, analysis and quality control can be
found in (Reimann et al., 2006, 2007a,b). For 25 (out of 37)
variables all analytical values were above detection for all 9
plant materials. This dataset is used here to test the perfor-
mance of the different cluster methods and data preparation
techniques. It is ideally suited for this purpose because differ-
ent plants have very different element uptake characteristics
and in addition distribute the elements differently between
the wood, leaves and bark. The ‘‘logical result” of cluster anal-
ysis are thus 9 clusters, one for each plant material.



2200 M. Templ et al. / Applied Geochemistry 23 (2008) 2198–2213
2.2. The Kola O-horizon data set

From 1992–1998 the Geological Surveys of Finland
(GTK) and Norway (NGU) and Central Kola Expedition
(CKE), Russia, carried out a large, international multi-
media, multi-element geochemical mapping project, cov-
ering 188,000 km2 north of the Arctic Circle. The entire
area between 24� and 35.5�E up to the Barents Sea coast
(Fig. 1) was sampled during the summer of 1995. Results
of the ‘‘Kola Ecogeochemistry” project are documented on
a web site (http://www.ngu.no/Kola) and in a geochemi-
cal atlas (Reimann et al., 1998). This atlas also provides
information about sample collection, sample preparation,
analysis and quality control as well as a topographical
map, a geological map, a map of the vegetation zones,
the location of industry and mines in the area and mete-
orological maps. Here only a simplified map showing the
survey area and locations discussed in the text is provided
in Fig. 1.

The Kola Project collected samples of terrestrial moss
and 5 genetic layers of podzol profiles throughout the sur-
vey area. For testing cluster analysis on a complex regional
dataset where the number of clusters is not a-priori
known, as one possible example the O-horizon soil sam-
ples from the Kola Project are used here. The O-horizon
was collected at 617 sites. A summary of the elements ana-
lysed in the O-horizon and used for cluster analysis is pro-
vided in Table 1.
Fig. 1. General location map of the study area fo
3. Practical data set problems in the context of cluster
analysis

3.1. Mixing major, minor and trace elements

In multi-element analysis of geological materials one
usually deals with elements occurring in very different
concentrations. In rock geochemistry, the chemical ele-
ments are divided into ‘‘major”, ‘‘minor” and ‘‘trace” ele-
ments. Major elements are measured in % or tens of %,
minor elements are measured in about 1% amounts, and
trace elements are measured in ppm, or even ppb. This
may become a problem in multivariate techniques that
are based on distance coefficients because the variable
with the greatest magnitude will have the greatest influ-
ence on the outcome. Therefore, one should not mix vari-
ables quoted in different units in such a multivariate
analysis (Rock, 1988). Transferring all elements to just
one unit (e.g. mg/kg) is not a solution to this problem, as
the major elements occur in much greater amounts than
the trace elements. The data matrix will thus need to be
‘‘prepared” for cluster analysis using appropriate data
transformation and standardisation techniques.

3.2. Data outliers

Regional geochemical datasets practically always con-
tain outliers. The outliers should not simply be ignored
r the Kola Project (Reimann et al., 1998).

http://www.ngu.no/Kola


Table 1
Elements and summary statistics (minimum (MIN), median (MED), max-
imum (MAX) and spread (expressed as median absolute deviation – MAD)
for the Kola O-horizon data set used here (from Reimann et al., 1998)

Element DL % <DL MIN MED MAX MAD

Ag 0.02 0 0.025 0.2 4.79 0.16
Al 0.2 0 372 1890 20600 1201
As 0.05 0 0.364 1.16 43.5 0.46
B 0.8 0.2 <0.8 2.15 13 0.7
Ba 0.05 0 13.9 76 290 30.3
Be 0.02 25.1 <0.02 0.04 1.87 0.04
Bi 0.02 0 0.029 0.159 1.12 0.08
C 1000 0 153000 450000 508000 3710
Ca 5 0 460 2960 25400 786
Cd 0.02 0 0.07 0.3 1.39 0.11
Co 0.03 0 0.21 1.57 96 1.11
Cr 0.4 0 0.39 2.91 109 1.75
Cu 0.01 0 2.7 9.7 4080 5.14
Fe 10 0 430 1970 44800 1245
H 1000 0 22000 61000 71000 444
Hg 0.04 0 0.094 0.227 0.974 0.05
K 200 0 300 1000 5700 297
La 0.7 4.5 <0.7 2.3 139 1.78
Mg 10 0 240 750 23800 297
Mn 1 0 11.1 126 5470 108
Mo 0.01 0 0.086 0.258 5.45 0.1
N 1000 0 5000 13000 20000 300
Na 10 3.4 <10 60 2350 29.7
Ni 0.3 0 1.5 9.2 2880 7.74
P 15 0 192 930 9280 208
Pb 0.04 0 4.1 19 1110 7.41
Rb 0.5 0 0.68 5.8 33 2.76
S 15 0 400 1530 3830 297
Sb 0.01 0 0.016 0.183 0.962 0.08
Sc 0.1 0.5 <0.1 0.5 4.1 0.3
Si 20 0 290 530 940 74.1
Sr 0.2 0 6.1 29 1430 13.6
Th 0.04 0 0.06 0.35 15.4 0.25
Tl 0.01 0 0.02 0.09 0.56 0.05
U 0.004 0 0.008 0.099 14.3 0.07
V 0.02 0 1.1 4.9 49 2.39
Y 0.1 0 0.2 0.9 69 0.59
Zn 0.4 0 12 46 198 15.1

Other parameters
pH 0.1 0 3.2 3.85 5.6 0.22
LOI 0.1 0 33.5 89.8 98.8 6.52

In addition the detection limit (DL) and the number of samples below
detection (expressed in %) are given. The element Se is excluded from
analysis due to the high amount of values below detection limit.
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but they have to be accommodated because they contain
important information about data quality and unexpected
behaviour in the region of interest. In fact, finding data out-
liers that may be indicative of mineralisation (in explora-
tion geochemistry) or of contamination (in environmental
geochemistry) is one of the major aims of geochemical sur-
veys. Outliers can have a severe influence on cluster anal-
ysis, because they can disturb homogeneous clusters or fall
into single clusters, depending on the clustering method
used. This has to be taken into account for cluster analysis
and a simple possibility would be to delete the outliers in
advance or to increase the desired number of clusters.
However, finding data outliers is not a trivial task, espe-
cially in high dimensions. One way of identifying such out-
liers is to compute robust Mahalanobis distances, i.e.
Mahalanobis distances on the basis of robust estimates of
location and scatter (Filzmoser et al., 2005). In the case of
compositional data, outlier detection requires an appropri-
ate transformation (Filzmoser and Hron, 2008).

3.3. Censored data

Observations below the detection limit can form a sig-
nificant proportion of a variable in geochemical data sets.
For statistical analysis these results are often set to a value
of ½ the detection limit. However, a sizeable proportion of
all data with an identical value can seriously influence any
cluster analysis procedure. For the study datasets several
variables had more than 25% of the data below detection
limit. It is very questionable as to whether or not such ele-
ments should be included at all in a cluster analysis. Unfor-
tunately it is often the elements of greatest interest that
contain the highest number of censored data (e.g., Se) –
the temptation to include these in a cluster analysis is thus
high. Here all elements with more than 5% of all values be-
low detection limit have been omitted from cluster analy-
sis. (Helsel, 1990, 2004), (Cohen, 1991) and (Sanford et al.,
1993) have studied possibilities for estimating censored
data. It is, however, doubtful whether a cluster analysis
should be built on estimated values.

3.4. Data distribution and data scale

Cluster analysis based on distance coefficient in general
does not require that the data be normally distributed.
However, it is advisable that heavily skewed data are first
transformed to a more symmetric distribution. If a good
cluster structure exists for a variable, a distribution can
be expected which has two or more modes. A transforma-
tion to more symmetry will preserve the modes but re-
move large skewness and thus improve the cluster
results. In many cases the log-transformation can be suc-
cessfully used to approach symmetry. A more universal
choice is the Box–Cox transformation (Box and Cox,
1964). Here, for each variable the optimal parameter for
the Box–Cox transformation has to be determined which
is a time consuming procedure with large datasets.

An additional standardisation is needed if the variables
show a striking difference in the amount of variability (see
discussion above, major, minor and trace elements). Differ-
ent methods, all having advantages and disadvantages, ex-
ist to accommodate this requirement. The most universal
method is the z-transformation, in which the raw data
are subtracted with the mean and then divided by the
standard deviation of the data. When working with geo-
chemical data a robustified version, using median and
the median absolute deviation (MAD) instead of the mean
and the standard deviation respectively may be preferred.

3.5. Closed number systems

A data set is considered as ‘‘closed”, when the individual
variables are not independent of each other but are related,
e.g. by being expressed as a percentage (or ppm, mg/kg).
They sum up to a constant, e.g. 100% or 1.

The problem of undertaking statistical analyses with
‘‘closed number systems” has been much discussed in the
literature (e.g., Butler, 1976; Aitchison, 1986,1992,2000,
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2003; Barcelo-Vidal et al., 1996; Aitchison et al., 2000; Buc-
cianti et al., 2006). Neglecting closure can have serious
consequences for data analysis. Different data transforma-
tions like the additive logratio (alr) and the centered logra-
tio (clr) transformation (Aitchison, 1986) or the isometric
logratio (ilr) transformation (Egozcue et al., 2003) are sug-
gested in the literature to open the data and destroy the ef-
fects of closure. For the additive logratio transformation
one variable in the dataset must be chosen to open the
data, this selected variable is subsequently ‘‘lost” for fur-
ther data analysis. The centered logratio transformation
does not depend on the results of one single other variable
but uses the average of all variables. While the centered
logratio transformation results in collinear data the iso-
metric logratio transformation avoids collinearity (Egozcue
et al., 2003). The computed distances between the observa-
tions of the opened data will in general be different to
those coming from a simple log-transformation or from a
Box–Cox transformation.
4. Distance measures

A key issue in most cluster analysis techniques is how
best to measure distance between the observations (or
variables). Note that ‘‘distance” in cluster analysis has
nothing to do with geographical distance between two
observations but is rather a measure of similarity between
observations in the multivariate space defined by the en-
tered variables. Many different distance measures exist
(Bandemer and Näther, 1992).

For clustering the observations the Euclidean distance
or the Manhattan distance is the most frequent choice.
The latter measures the distance along the variable axes,
rather than directly (Euclidean), and the cluster results
are sometimes more stable (Kaufman and Rousseeuw,
1990). Usually both distance measures lead to comparable
results. Other distance measures like the Gower distance
(Gower, 1966), the Canberra distance , correlation based
distance measures or a distance measure based on the ran-
dom forest (RFTM) proximity measure (Breiman, 2001) can
give completely different cluster results (see, e.g., Table 2).
5. Clustering observations

One of the main problems with cluster analysis is that a
multitude of different clustering methods exists. The
observations need to be grouped into classes (clusters). If
Table 2
Results of clustering the OLSO data with 9 clusters and different clustering algorit
and dealing with different distance measures are summarized in the form of the

Ward k

Eucl Manh Gower Canberra RF E

no 30 11 7 103 26 1
log 1 0 3 55 22
clr 23 5 2 139 12 1
alr 17 22 4 87 32 2
ilr 14 2 2 109 1

Since the conventional k-means algorithm is based on random initialisation, the
each observation is allocated into only one (of several pos-
sible) cluster(s) this is called ‘‘partitioning”. Partitioning
will result in a pre-defined (user defined) number of clus-
ters. It is also possible to construct a hierarchy of parti-
tions, i.e. group the n observations into several clusters.
This is called hierarchical clustering.

A principally different observation allocation procedure
to hard clustering, where an observation is allocated to just
one cluster, is to allocate the observations to several clus-
ters (fuzzy clustering). Fuzzy clustering allows that one
observation belongs to a certain degree to several groups.
In terms of applied geochemistry this procedure will often
deliver the more interesting results because it reveals if an
observation is influenced by several factors. The cluster
solution will then show to what degree the observations
are influenced by the different factors. Here the factors or
processes are represented by observations that are clus-
tered together in the data space.

5.1. Hierarchical methods

Input to most hierarchical clustering algorithms is a dis-
tance matrix (between the observations). The widely used
agglomerative procedure starts with single object clusters
(each observation forms its own cluster) and aggregate
observations to enlarge the clusters stepwise. The compu-
tationally more intensive reverse procedure starts with
one cluster containing all observations and splits the
groups step by step, this procedure is called divisive
clustering.

At the beginning of an agglomerative algorithm each
observation forms its own class, leading to n single object
clusters. The number of clusters is reduced by combining
(linking) the most similar classes at each step of the algo-
rithm. The similarity of the combined pair, a new class,
can be measured to all other classes, and the next two most
similar classes linked, and so on. At the end of the process
there is only one single cluster left, containing all observa-
tions. A number of different methods are available for link-
ing two clusters. Best known are complete linkage
(maximum distance), single linkage (minimum distance),
and average linkage (average distance). The method of
Ward (Ward, 1963) merges clusters with a minimum infor-
mation loss criteria based on sums of squares.

The cluster results are often displayed in a graphic
called the dendrogram (see Fig. 6 for clustering variables).
Horizontal lines indicate the linkage of two objects or clus-
ters, and thus the vertical axis shows the associated height
hms applied on data which are transformed with different transformations
number of misclassifications

-means (best results after 10 starts) Mclust

ucl Manh Gower Canberra RF

4 47 13 96 34 35
7 16 9 54 23 8
3 25 8 8 9 15
2 49 35 15 30 11
4 7 26 10 4 0

best solution after 10 random initialisations was taken.
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or similarity as a measure of distance. Cutting the dendro-
gram at the height corresponding to this visible number of
clusters allows assigning the objects to the clusters. Visual
inspection of a dendrogram is often helpful in obtaining an
initial idea of the number of clusters which is needed by a
partitioning method.

5.2. Partitioning methods

In contrast to hierarchical clustering methods partition-
ing methods require that the number of resulting clusters
be pre-determined. As noted above, when nothing is
known about the observations it can be useful to first carry
out a hierarchical clustering. The other possibility is to par-
tition the data into different numbers of clusters and then
evaluate the results by some method (see below). For
regionalized data a more subjective but still reasonable
evaluating approach is to visually inspect the location of
the resulting clusters in a map. This exploratory approach
can often reveal interesting data structures.

A very popular partitioning algorithm is the k-means
algorithm. It attempts to minimise the average squared
distance between the observations and their cluster cen-
tres or centroids. Starting from k initial cluster centroids
(e.g. random initialisation by k observations), the algo-
rithm assigns the observations to their closest centroids
(using e.g. Euclidean distances), recomputes the cluster
centres, and iteratively reallocates the data points to the
closest centroid. Several algorithms exist for this purpose,
those of Hartigan (1975) and MacQueen (1967) are the
most popular. There are also some modifications of the
k-means algorithm. Manhattan distances are used for k-
medians and the centroids are the medians of each clus-
ter. Hard competitive learning works by randomly draw-
ing an observation from the data and moving the closest
centre towards that point (e.g., Ripley, 1996). Martinetz
et al. (1993) have introduced ‘‘neuralgas”, this method is
similar to hard competitive learning, but in addition to
the closest centroid also the second closest centroid is
moved at each iteration. A new high extensible toolbox
for centroid clustering was recently implemented in R
(Leisch, 2006). Here the user can easily try out almost
any arbitrary distance measure and centroid computations
for data partitioning.

Kaufman and Rousseeuw (1990) proposed several clus-
tering methods which are implemented in a number of
software packages. The partitioning method PAM (Parti-
tioning around medoids) minimises the average distances
to the cluster medians. It is thus similar to the k-medians
method but allows the use of different distance measures.
A similar method called CLARA (Clustering Large Applica-
tions) is based on random sampling. It saves computation
time and is particularly appropriate for larger datasets.

The result of all these algorithms depends on the initial
k cluster centres, which are often the k samples randomly
selected from n observations. If bad initial cluster centres
are selected, the iterative partitioning algorithms can lead
to a local optimum that can be far away from the global
optimum. This can be avoided by applying the algorithms
with different random initialisations, and then selecting
the best or most stable result.
Another way to approximate the global optimum is
bootstrap aggregation, called bagging (Breiman, 1996).
This bootstrap method generates new datasets from the
available dataset of the same size by a random selection
of observations with replacement from the dataset. The
central idea of the bagged clustering algorithm bclust is
to repeatedly apply a clustering algorithm (e.g. k-means)
on bootstrap datasets, combine the resulting centroids to
a new dataset, run a hierarchical clustering algorithm on
this new dataset and cut the resulting dendrogram to get
a partition into k clusters. The observations are then as-
signed to the closest centre.

5.3. Model-based methods

A method that is not based on distances between the
observations but on certain models describing the shape
of the clusters is called model-based clustering (Fraley and
Raftery, 2002). Each cluster is described by the density of a
multivariate normal distribution with a certain mean and
covariance. The choice of the covariance matrix will deter-
mine the cluster shape. The Mclust algorithm selects the
cluster models (e.g. elliptical cluster shape) and the number
of clusters and determines the cluster memberships for all
observations. The estimation of the cluster models is
achieved using the Expectation–Maximization (EM) algo-
rithm (Dempster et al., 1977). The EM algorithm is executed
on several numbers of clusters and with several sets of con-
straints on the covariance matrices of the clusters. Finally,
the combination of model and number of groups that leads
to the highest BIC (Bayesian Information Criterion) value
can be chosen as the optimal model (Fraley and Raftery,
1998). The BIC measure is based on the likelihood function
and penalizes the complexity of the model. It is therefore
better suited to determine the ‘‘optimal” model and the
‘‘optimal number of clusters”. The BIC value can also be
computed for each cluster separately. As a further result,
Mclust computes uncertainties for the assignment of each
object to the clusters. This indicates how well the objects fall
into the clusters. Objects with high uncertainty could be
treated as outliers and not assigned to any of the clusters.

5.4. Fuzzy methods

In fuzzy clustering, the observations are not clearly allo-
cated to one of the clusters, but they are ‘‘distributed” in
certain degree among all clusters. Thus, for each observa-
tion a membership coefficient to all clusters is determined,
providing information on how strong the observation is
associated with each cluster. The membership coefficients
are usually transformed to the interval [0,1], and they can
be visualised for example by using a grey scale. A popular
fuzzy clustering algorithm is the fuzzy c-means (FCM)
algorithm, developed by Dunn (1973) and improved by
Bezdek (1981), which calculates the prototypes (most typ-
ical group characteristics) of the clusters and membership
coefficients for each observation to the clusters. Another
fuzzy clustering algorithm is the Gustafson–Kessel (GK)
algorithm (Gustafson and Kessel, 1979). While FCM identi-
fies clusters that tend to be rather spherical, GK is able to
detect elliptically shaped clusters. The Gath–Geva (GG)
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algorithm (Gath and Geva, 1989), also called the Gaussian
mixture decomposition algorithm, is even more flexible. It
is an extension of the GK algorithm which can also deal
with different cluster sizes and densities. The GK and the
GG algorithms are freely available at http://www.fuzzy-
clustering.de. Just as for partitioning methods, the number
of clusters resulting from fuzzy clustering needs to be cho-
sen by the user.
6. Clustering variables

Instead of clustering the observations it is also possible
to cluster the variables in order to find groups of variables
that show similar behaviour. All of the methods discussed
above can be used for clustering the variables. One of the
best methods to display the results of clustering variables
is the dendrogram (for an example see Fig. 6), calling for
hierarchical clustering.

7. Evaluation of cluster validity

Because there is no universal definition of clustering,
there is no universal measure with which to compare clus-
tering results. However, evaluating cluster quality is essen-
tial since any clustering algorithm will produce several
different results for every dataset. Validity measures
should support the decision as to the number of natural
clusters, and they should also be helpful for evaluating
the quality of the individual clusters. Therefore, validity
measures should provide a value for each single cluster (lo-
cal validity measures), and they should also return a value
for judging the quality of the overall clustering result (glo-
bal validity measures).

When working with geochemical data, a rather simple
method to evaluate the quality of clustering is to check
the distribution of the resulting clusters on a map. The dis-
tribution of the clusters can then be evaluated against
known properties of the survey area. It is also likely that
clusters resulting in geographically homogeneous sub-
groups are more likely to have a meaning than clusters
resulting in ‘‘geographical noise”.

There are many different statistical cluster validity
measures. Two different concepts of validity criteria –
external and internal criteria – need to be considered.

External criteria compare the partitioning found with
clustering with a partitioning that is known a priori. The
most popular external cluster validity indices are Rand,
Jaccard, Folkes and Mallows, and the Hubert indices (see
e.g., Gordon, 1999, or Haldiki et al., 2002; Hubert and Ara-
bie, 1985).

Internal criteria evaluate the clustering result of an
algorithm by using only quantities and features inherent
in the dataset. Most of the internal validity criteria are
based on within cluster sum of squares and between clus-
ter sum of squares. Well known indices are the Calinski–
Harabasz index (Calinski and Harabasz, 1974), Hartigan’s
indices (Hartigan, 1975), or the Average Silhouette Width
of Kaufman and Rousseeuw (1990).

From a practical point of view, an optimal value of the
validity measure does not imply that the resulting clusters
are meaningful. Some of these criteria evaluate only the
allocation of the data to the clusters. Other criteria evalu-
ate the form of the clusters or how well the clusters are
separated. The resulting clusters only correspond to the
best partition according to the validity measure selected.
The measures deliver good results when a very clear clus-
ter structure exists in the data. Unfortunately, when work-
ing with geochemical data such good clusters are rare.
Thus cluster quality measures fail time and again when
working with such data and the best approach to evaluat-
ing cluster quality is often to just look at the results on a
map. This somewhat subjective approach can be forma-
lised by using validity measures for each single cluster.

8. Selection of variables for cluster analysis

When using a multivariate technique, variable selection
is often employed in order to reduce the dimensionality of
a dataset or to learn something about the internal structure
between the variables and/or observations. Often it may
appear desirable to perform cluster analysis with all avail-
able observations and variables. However, the addition of
only one or two irrelevant variables can have a drastic
influence in identifying the clusters. The inclusion of only
one irrelevant variable may be enough to hide the real
clustering in the data (Gordon, 1999). The selection of
the variables to enter into a cluster analysis is thus of con-
siderable importance when working with applied earth
science datasets containing a multitude of variables.

Another reason for variable selection may be a desire to
focus the analysis on a specific geochemical process. Such a
process is usually expressed by a combination of variables,
and using these variables for clustering permits identifying
those observations or areas where the process is either
present or non-existent. The variables could simply be cho-
sen based on expert knowledge. It is also possible to apply
variable clustering (see above) and select variables which
are in close relation (one branch of the cluster tree) to
highlight a certain process. Variable clustering can of
course also be used to select single key variables from each
important cluster to simply reduce dimensionality for clus-
tering observations.
9. Testing clustering with geochemical data

As described above, cluster analysis requires the analyst
to make a choice on various different options like data
preparation and transformation, clustering method, dis-
tance measure, cluster validity measure, etc. In the follow-
ing an attempt is made to investigate the effect of some of
these choices on a geochemical dataset, the OSLO data. Dif-
ferent selections will lead to different cluster results, and
in this case the results can be easily evaluated because
the membership of the observations to the nine plant
materials is known.

9.1. Transformation, distance measure, clustering algorithm

The 25 variables of the OSLO dataset generally have a
right-skewed distribution. This is a very common property

http://www.fuzzy-clustering.de
http://www.fuzzy-clustering.de
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of geochemical data. For testing the effect of the transfor-
mation on the cluster results, the original data as well as
the log-transformed data were taken. Moreover, the addi-
tive, centred and isometric logratio transformations were
considered because of the compositional nature of the
data. Note that for the additive logratio transformation a
choice on the ratioing variable has to be made (here, Sc
was chosen), and that a different choice will give a differ-
ent result. The resulting data were then standardised to
mean zero and variance one to ensure equal influence of
the variables on the clustering method.

The effect of the distance measure used internally in the
clustering algorithm is also tested. Euclidean (Eucl), Man-
hattan (Manh), Gower, Canberra, and Random Forest (RF)
distance are used for this purpose. These distance mea-
sures are taken for the partitioning methods of Ward and
for k-means clustering. Also partitioning with Mclust is
considered which, however, does not depend on a distance
measure. The different clustering methods are run with a
predetermined number of nine clusters. These are ex-
pected to correspond to the nine plant materials. An eval-
uation of the results is then made by comparing the
number of observations that have been assigned to a
wrong plant material (with respect to the most dominant
plant material of the observations in a cluster).

9.2. Discussion of cluster performance on the Oslo data set

Table 2 presents the results of this experiment in terms of
the number of misclassified observations. (Table 2) does not
favour one transformation, distance measure or clustering
algorithm, but some conclusions can be drawn: No data
transformation (no) or additive logratio transformation
(alr) leads to poor results in almost all cases. The centred log-
ratio transformation (clr) leads to somewhat better results.
Log-transformation (log) and isometric logratio transforma-
tion (ilr) appear to be preferable options. An interesting
observation is that the Ward method in combination with
the Gower distance delivers relatively reliable and stable re-
sults independent of data transformation. The numbers of
misclassified observations for the hierarchical procedures
single, complete and average linkage were also computed
(results not shown here), but the Ward procedure performs
best. k-means clustering leads to generally high misclassifi-
cation rates. k-means clustering works well with spherical
symmetric clusters but fails for other cluster structures. It
is not very likely that geochemical data form spherical clus-
ters. Mclust looks for elliptically symmetric clusters. Here
data transformation plays an important role and the ilr-
transformation clearly delivers the best result. The reason
is that the ilr transformation results in the best geometrical
representation of compositional data. In addition to that, it
can be seen that Canberra method did not perform well.

9.3. Validity measure

Fig. 2 shows a plot of validity measures resulting from
clustering the scaled OSLO data, using different algorithms
and various transformations. The performance evaluation
of the results was made with the most simple validity mea-
sure, the average within cluster sum of squares divided by
the average between cluster sum of squares. Fig. 2 shows
plots of this measure against the number of clusters. Small
values are preferable because this indicates homogeneous
and well separated clusters. Typically, the optimal number
of clusters is indicated by a knee in the plot. One should se-
lect the cluster number right before the knee occurs. For
the OSLO dataset 9 clusters are expected and thus the knee
should be at 9. Fig. 2 shows the validity measures for sev-
eral different situations (cluster algorithms and distance
measures), however, the expected ‘‘significant” change
(knee effect) is usually not visible.

It is obvious that the graphs in Fig. 2 do not provide any
real help in determining the optimal number of clusters.
Some of the curves showing the best knee effect at the ex-
pected number of 9 clusters are methods with a very high
number of misclassifications (compare Table 2). Thus nei-
ther the best cluster method nor the correct number of
clusters can be selected based on this graphic. None of
the other (global) internal validity measures mentioned
above delivered better results. As a result the unfortunate
situation is that an optimal number of clusters cannot be
chosen based on these methods.
10. A tool for the exploratory use of cluster analysis

It has been shown above that the cluster results can be
changed dramatically with the choice of the data transfor-
mation, the clustering method, and the distance measure.
Moreover, depending on the selected validity measure, dif-
ferent solutions result for the optimal number of clusters.
Despite the variety of cluster results, each partition could
still be informative and valuable. The results can give an
interesting insight into the multivariate data structure,
even if the validity measure does not suggest the chosen
number of clusters is optimal. Thus, it is desirable to per-
form cluster analysis in an exploratory context, by being
able to easily change the cluster parameters and visually
inspecting the results.

For this purpose, a statistical tool has been developed in
R (R Development Core Team (2006), freely available at
http://cran.r-project.org) as the contributed package clust-
Tool. (Fig. 3) shows the main menu of the tool clustTool
where the desired settings can be made easily. Besides
the selection of data, a background map (optional), vari-
ables and coordinates, different parameters, like the dis-
tance measure, the transformation and standardisation,
the clustering method, the number of clusters, and the
validity measure can be selected. Depending on the selec-
tion, the clusters are presented in maps (for an example
see Fig. 4) and plots of the cluster centres are provided
(for an example see Fig. 5). Additionally, a summary is pro-
vided and information about the clustering is saved in an
object in the R workspace.

11. Results for the example data sets and graphical
presentation

The experience of the tests made in Section 9 for the
OLSO data can now be used for analysing the complex Kola
O-horizon dataset. The clustering tool presented in Section

http://cran.r-project.org
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10 allows application of different choices of clustering
methods and a fast comparison of the results in an explor-
atory way.

11.1. Kola O-horizon data set clustering with Mclust

Since the algorithm Mclust worked very well for the
standardised isometric log-ratio transformed OSLO data
set, the same procedure was applied to the 40 elements
of the Kola O-horizon data set. The optimal number of clus-
ters is obviously difficult to choose. Because the validity
measures did not provide a constructive indication about
the number of clusters the new package was used to pres-
ent results in maps and the desired number of clusters was
increased step-wise from 3 to 9. The first result delivering
informative clusters was received for 6 clusters. With high-
er cluster numbers, no significant new information was ob-
tained and the clustering results could even get worse.
Using other variables or applying other clustering algo-
rithms could, however, require a different optimal number
of clusters.

The validity measure BIC was used for evaluating each
individual cluster. Higher values of the BIC indicate more
informative clusters. Therefore, the BIC value is used for
assigning grey scales to the observations in the maps.
(Fig. 4) shows the resulting clusters in 6 maps from cluster
1 to 6. Cluster 5 shows low BIC values, therefore the
observations are visualised as light grey points. Cluster 3
shows the input of sea spray along the Norwegian coast.
Cluster 4 identifies the core areas of contamination sur-
rounding Monchegorsk and Nikel/Zapoljarnij. Cluster 2
shows the alkaline intrusions near Apatity. Clusters 1, 5
and 6 are less informative. However, they still display clear
regional patterns. Cluster 6, for example, shows the outer
rim of contamination surrounding Nikel/Zapoljarnij and
Monchegorsk.



Fig. 3. Main menu of the tool clustTool for an exploratory use of cluster analysis.
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In general, not only the location of the single clusters on
the maps is interesting but also the geochemical composi-
tion of the clusters. For this purpose, a plot of the cluster
centres is presented in Fig. 5, which aids the interpretation
of the processes behind the clusters. The cluster centre is
the element-wise mean of all observations of a cluster.
Therefore, for each cluster all elements used for clustering
are presented. In (Fig. 5) the resulting means for all 6 clus-
ters presented in Fig. 4 are horizontally arranged. Since the
variables used for clustering were standardised, each of
them make the same contribution to the cluster analysis.
If single elements show very high or low means for a clus-
ter, they are highly influential for that cluster. For example,
(Fig. 5) shows high means of the elements Co, Ni, As, Cu
and Mo for cluster 4, identifying the Russian Ni industry.

11.2. Influence of data transformation and clustering method

The new R-package was then used to perform cluster
analysis on the Kola O-horizon data using log-transforma-
tion, additive, centered and isometric logratio transforma-
tion and different clustering methods and distance
measures in an exploratory way. For the additive logratio
transformation the choice of the ratioing variable turned
out to have a major influence on the results. The centred
logratio transformation led to somewhat unstable results
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when the number of clusters was varied. Log-transforma-
tion and isometric logratio transformation leads to compa-
rable results.

Choice of cluster method and distance measure had a
major influence on the results. Mclust delivered the best
interpretable clusters, showing clear geographical pat-
terns. For geochemical data geographically defined groups
are a logical result. The appearance of the clusters in maps
can thus be used as a subjective quality measure. It is also
possible to calculate a compactness measure of the groups
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in the map which could than be compared to other validity
measures.

Results with k-means clustering were less clear than
those obtained with Mclust. Some main clusters stayed
the same but did not show as clear regional patterns. In
addition some other clusters were identified that could
not be interpreted and did not show any regional structure.

Fuzzy clustering with all variables failed with the com-
plex Kola dataset because the algorithm converges to equal
or almost equal group memberships for all observations.

In general partitioning methods worked better than
hierarchical methods. The hierarchical methods resulted
in biased results with several very small clusters and some
very large clusters. An exception was the method of Ward
where clear and interpretable groups emerged, however,
the Mclust results were still better interpretable.

With the exception of Mclust all considered methods
are based on a distance measure. The Euclidean and Man-
hattan distance gave comparable results, the Canberra and
random forest distance gave both poor results, with ran-
dom forest occasionally delivering better results. The Gow-
er distance resulted in very small clusters, which is not
desirable because these will often be driven by outliers
and not by larger scale geochemical processes. Several fur-
ther distance measures were tested, none provided better
results than Euclidean or Manhattan distance.

11.3. Variable clustering and variable selection

As an example for variable clustering the 40 elements of
the Kola O-horizon data set were clustered. For variable
clustering the isometric logratio transformation is not a
viable choice because the direct relationship to the original
variables is lost. The new artificial variables are no longer
directly related to the chemical elements. Since centred
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Ward method based on the Euclidean distances between
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Fig. 6. Variables that are in close relation form a branch
in the dendrogram. Thus, when focusing on certain pro-
cesses, variables in a branch can be selected for the further
clustering of observations. For example, the elements Cu
and Ni, followed by Co are the 3 main elements emitted
by the Russian smelters. Traces of Bi, Pb, Cd, As and Mo
are also emitted and a sizable Bi, As, Cd and Mo-anomaly
surrounds Monchegorsk (Reimann et al., 1998). The regio-
nal distribution of Na, B, Mg, Ca, Sr and the pH is domi-
nated by the input of sea spray along the coast of the
Barents Sea, while C, H, LOI, S and N are all related to the
amount of organic material in the sample. The Th, U, La,
Y, Al and Be branch is a geogenic dust indicator, the linked
Cr, V, Fe and Sc is another dust branch but these elements
may rather indicate the input of anthropogenic dust. Some
of these dendrogram branches show a direct relationship
to the element plot shown in Fig. 5. Thus clusters of vari-
ables are related to clusters of observations.

Some variables may not be ideally suited for cluster
analysis because they do not show groups. To include such
variables in cluster analysis can obscure the result. Further-
more fuzzy clustering cannot be used with too many vari-
ables. It is thus often desirable to reduce the number of
variables with which cluster analysis is entered. For reduc-
ing the number of elements entered in cluster analysis one
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jor branches of a dendrogram, or select the elements on just
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geochemical arguments for the selection of variables.
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11.4. Fuzzy clustering with selected variables

In a final example the results of fuzzy clustering on se-
lected elements of the Kola O-horizon data are shown. The
variables B, Ca, Co, Cu, Mg, Na, Ni, Sr and pH indicative of
two of the main processes in the survey area (sea spray
and industry – see Fig. 6) were isometric logratio-trans-
formed and standardised. Based on the Euclidean dis-
tances, the FCM algorithm with 4 clusters is applied.
With a higher number of clusters no interesting new geo-
chemical processes could be detected. The resulting mem-
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Fig. 7. Results of fuzzy clustering (FCM algorithm based on Euclidean distances)
Kola O-horizon data (isometric logratio transformed, standardised). The member
scale in the maps.
bership coefficients are shown in grey scales in Fig. 7:
higher membership coefficient of an observation to a par-
ticular cluster is visualised by a darker point in the corre-
sponding map. The plot in Fig. 8 with the cluster centres
allows a better understanding of the resulting clusters:
Cluster 1 is a ‘‘sea spray” cluster, and Cluster 4 is a contam-
ination cluster. Cluster 2 appears to indicate an outer rim
of contamination, while all background observations accu-
mulate in Cluster 3.

Hence with proper variable selection FCM can provide
added value in analysing geochemical datasets.
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When working with few elements one needs to be
aware that the choice of elements and adding or deleting
just one element can have a drastic effect on the results
of cluster analysis.

Further clustering results for the Kola Project data as
well as for other geochemical data sets can be found in
Templ (2003). This thesis also investigates and demon-
strates the sensitivity of cluster analysis methods to data
preparation and variable selection.

12. Conclusions

Like many other multivariate statistical methods,
cluster analysis can be helpful in obtaining an overview
of data sets with many observations and variables. It can
be used to both structure the variables and to group the
observations.

Of all tested data transformations simple log-transfor-
mation and isometric logratio transformation delivered
the most reliable results. Because geochemical data are al-
ways compositional data the isometric logratio transfor-
mation is preferable, it can, however, not be used for
variable clustering because the direct relationship to the
elements is lost.

If the data show very different magnitude for the differ-
ent variables (e.g., major, minor and trace elements mixed)
the variables need to be standardised to mean 0 and vari-
ance 1. Following standardisation all variables will have
the same influence on the results of cluster analysis. A high
proportion of censored data in a variable can weaken the
clustering structure. Censored variables should thus be
excluded.
Euclidean and Manhattan distance performed best of
the many available distance measures. Mclust does not
need a distance measure.

Partitioning methods perform in general better than
hierarchical methods when clustering a high number of
observations. Mclust provided the most reliable and best
interpretable results. Fuzzy clustering did not work with
a high number of variables because of computational prob-
lems, but with a selected few variables it delivered infor-
mative results.

The global validity measures, which are aimed at assist-
ing with the critical decision on the number of clusters,
were not helpful in the actual problem. For geochemical
data it turned out that mapping the location of clusters
provides a good idea about the quality of clusters. The ex-
pected results with spatial data are regional clusters on the
map. Too few clusters will not show clear regional pat-
terns. When using too many clusters regional patterns tend
to disappear. It is thus preferable and possible to provide a
good estimate on the optimal number(s) of clusters via
studying their regional distribution on a map. The rather
subjective evaluation of single clusters on the map can be
assisted via local validity measures.

Variable selection can be used to improve the results of
cluster analysis. Variable selection can be based on expert
knowledge or on the dendrogram obtained from variable
clustering. Hierarchical clustering is ideal for variable clus-
tering because the relationships between groups of vari-
ables become well visible in the dendrogram. The
method of Ward is the best performing hierarchical clus-
tering method, and even performs well for observation
clustering. When performing cluster analysis with only a
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few selected variables it is necessary to be aware that the
addition or deletion of just one variable can change the re-
sults of cluster analysis drastically.

Overall, Mclust is an attractive method when working
with geochemical data. It does not require the choice of a
distance measure and computed cluster results for a whole
range of numbers of clusters. The best result is then se-
lected according to the BIC value which seems to be a sen-
sible validity measure. Furthermore, the uncertainties of
the assignment of each object to the clusters are returned
and give valuable information on how well each observa-
tion fits to the clusters.

In general a powerful tool to plot the results in graphics
and maps is needed in cluster analysis. A combination of
maps and the plot of the cluster centres (and dendrograms
for variable clustering) provide good insight into the
results. The local validity measures can be displayed on
the maps using different shades of grey. Different grey val-
ues on maps, representing the membership coefficient to a
certain cluster, can be used to display the results of fuzzy
clustering. Fuzzy clustering allows visualisation of the
changing degree of membership of each observation to
all clusters and is thus especially well suited to study the
regional distribution of the clusters.

In general it is recommended to use cluster analysis as
an exploratory method. For this purpose, the software
package clustTool that runs under R has been developed.
It is freely available and easy to handle via a graphical
user interface. The user can choose data, coordinates,
background maps, variables, different transformations,
different distance measures, various cluster algorithms,
determine the number of clusters, and look at the results
in plots in a flexible way. The visual impression of the re-
sults, together with a pre-chosen validity measure is then
helpful for deciding on the parameter selection for
clustering the data. Informative results are not necessar-
ily obtained by tuning the parameters for cluster analysis
in a statistically optimal way. Expert knowledge should
also be used for this purpose, e.g. for variable selection
or cluster evaluation. This flexible software tool used
by experts in an exploratory way can combine both
strategies.
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