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Resource estimation for metals in mine tailings and ore deposits requires many samples, usually in the form of
drill cores. In order to detect zones of metal enrichment or depletion as well as different lithological zones in
such cores, two different core scanning methods were tested on three drill core metres from tailings of a former
Pb–Znmine to obtain chemical information. The results provide an objective basis for further sub-sampling of the
taken drill cores and help reduce the amount of samples and therefore the costs for further investigations.
For the determination of element concentrations a prototype of a core scanner working with laser-induced
breakdown spectroscopy (LIBS)was tested and the results were compared to data from a commercially available
ITRAX core scanner, working with energy-dispersive X-ray fluorescence (EDXRF). Apart from a smooth surface,
no complex sample preparation was necessary. Peak intensities of selected elements determined by the two
scanners were calibrated by means of linear regression (LR) and partial least squares (PLS) regression with re-
spect to bulk geochemical wavelength-dispersive XRF (WDXRF) analysis results of representative core samples.
The application of PLS compensates for matrix effects in LIBS and EDXRF and improves prediction accuracy for
most elements, compared to LR. In general, prediction ability of PLS models is slightly higher for EDXRF results
than for LIBS. The advantage of the LIBS core scanner is the high spatial resolution and the ability to create
two-dimensional (2D) element distribution images as well as phase or mineral distribution maps of the drill
core at larger scales. Within the analysed tailing cores metal-rich layers with concentrations up to a maximum
of 2.2% Pb + Zn + Cu, could be detected by both core scanning methods. Since these layers are not visible by
the human eye, the used core scanning methods are appropriate methods for mineral exploration.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Recovery of metals fromminewaste gets more andmore important.
The lower energy consumption compared to primary mining and
the additional usage of residues like quartz could make a recovery
profitable. Furthermore, from an ecological point of view, mine waste
remediation costs could be minimised.

Tailings are residues from ore processing which includes size reduc-
tion as well as a mineral separation by flotation. The layered tailing
ponds show grain sizes from sand to clay. Tailings are characterised by
a strong heterogeneity due to separation processes during deposition,
due to different rock sources during ore processing, periodicallymoving
spigot points, as well as alteration processes after deposition.

Therefore, the metal distribution also is vertically and laterally
heterogeneous within the tailing material and a set of drill cores is
necessary to characterise a pond. Statistical sub-sampling of these drill
cores for geochemical and mineralogical investigations will create a
huge amount of samples which will cost a lot of time and money.

An element screening method for fast detection of zones with
element enrichment or depletionwill reduce the amount of subsamples
and generate a basis for selective sampling. With such a method it is
possible to detect and choose end-members, rather than mixtures, of
different zones within a tailing site for further analysis.

Current core logging techniques include porosity logging (bulk den-
sity), multi-sensor core logging (gamma ray attenuation, P-wave veloc-
ity, magnetic susceptibility, electrical resistivity, spectrophotometry,
natural gamma), digital imaging and non-imaging optical systems, X-
ray computed tomography (3D X-radiography of sediments), magnetic
resonance imaging, and confocalmacro-/microscopywith laser imagery
(Rothwell and Rack, 2006; St-Onge et al., 2007).

For element mapping there are only a few techniques, such as
natural gamma radiation (Blumet al., 1997), X-rayfluorescence spectral
scanning (Croudace et al., 2006; Jansen et al., 1998; Rodriguez et al.,
2012), imaging spectroscopy (Clark, 1999; Clark and Roush, 1984;
Goetz and Wellman, 1984), as well as laser-induced breakdown
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spectroscopy (Bolger, 2000).Whereas natural gamma-ray spectrometry
allows estimation of K, U and Th concentrations (Blum et al., 1997;
St-Onge et al., 2007), X-ray fluorescence is able to detect a wide range
of elements from Al to U (St-Onge et al., 2007). Especially for element
screening of marine and lacustrine sediment cores X-ray fluorescence
core scanning is very common (Francus et al., 2009; Ohlendorf et al.,
2014; Rothwell et al., 2006; St-Onge et al., 2007; Thomson et al.,
2006). There are also some commercial EDXRF devices on the
market, which perform 2D chemical mapping (Melcher et al., 2006;
Rammlmair et al., 2001; Rammlmair et al., 2006; Rodriguez et al.,
2012; Shanahan et al., 2008). However, we are not aware of any device,
which can analyse metre-long cores. Investigations of base and trace
metal mineralisation in rocks by EDXRF were published e.g. by
Melcher et al. (2006); Rammlmair et al. (2006); Rodriguez et al.
(2012), and Zuo (2013). LIBS is able to detect almost all elements,
depending on the experimental setup. It is often used in material
science, but relatively unknown in geosciences (Harmon et al., 2009).
Chemical mapping with LIBS is reported from only a few research
groups (e.g. Bolger, 2000; McMillan et al., 2014; Novontý et al., 2008;
Yoon et al., 1997).

Within this study, we generate two-dimensional element maps of
three drill core metres, from a Pb–Zn-tailing of the Maubacher Bleiberg
deposit by a prototype of a LIBS core scanner. Results are comparedwith
one-dimensional element profiles generated with an ITRAX™ core
scanner using the X-ray fluorescence technique.

Due tomatrix effects, influencing the LIBS and EDXRF intensities, the
results of both core scanning methods are semi-quantitative (Croudace
et al., 2006; Harmon et al., 2009; Krasniker et al., 2001; Rothwell and
Rack, 2006; Tucker et al., 2010). Chemical matrix effects can occur in
the LIBS plasma, when a species, present in the sample, inhibits the ion-
ization of another species of much lower ionization potential (Eppler
et al., 1996; Harmon et al., 2009). Physical matrix effects, caused by
changing material properties like crystallinity and transmissibility of
theminerals, grain size, surface texture, water content, aswell as textur-
al and porosity changes, coherence, and indurations, or presence of
organic matter, will have a direct effect on the degree of laser energy
coupling (Harmon et al., 2009; Miziolek et al., 2006) or have an impact
on the production and detection of fluorescent radiation (Loewemark
et al., 2011; Rothwell and Rack, 2006; St-Onge et al., 2007).

Therefore, the emission intensity of one element measured in two
different matrixes does not necessarily represent the real element
concentration, and a simple linear correlation of element intensity and
real element concentration is not possible. Standard univariate calibra-
tion techniques are not adequate, since many calibration curves, one
for each matrix, are necessary (Harmon et al., 2009; Tucker et al.,
2010). Thus, the multivariate PLS regression algorithm was used in
this study for quantification of element concentration for all materials.
PLS is often used for calibration of chemical and geophysical parameters
of spectra and a variety of studies have successfully applied PLS to LIBS
spectral data (Amador-Hernández et al., 2000; Clegg et al., 2009; Labbé
et al., 2008; Luque-García et al., 2002; Martin et al., 2005; McMillan
et al., 2014; Ortiz et al., 2004; Tucker et al., 2010; Yaroshchyk et al.,
2012). Quantitative ITRAX X-ray microanalysis of natural samples are
usually done by “XRF fundamental parameters” calculations, but this
assumes compositional and physical homogeneity for the measured
samples (Croudace et al., 2006). Semi-quantitative results, with certain
errors referring to the application to heterogeneous samples, appear to
be acceptable for many users, since they are mainly interested in
distribution patterns. Multivariate analyses for quantification of EDXRF
core scanner data are not very common.

For application in mineral resource exploration, element concentra-
tions should be determined as precisely as possible. In this context we
investigate, whether a supplementary multivariate calibration on basis
of calibration samples can improve the accuracy of quantification.

We choose PLS, since it is an appropriate method that can cope with
numerous X-variables, which are often correlated and simultaneously
model several response variables, Y (Wold et al., 2001). Like other mul-
tivariate methods, it is less sensitive to noise, can cope with spectral
interferences and can model non linear behaviours. Since PLS uses the
information contained in both, X and Y variables to fit the model, by
switching between both matrices iteratively to find the relevant PLS
components (latent variables), it often needs fewer components then
other methods to reach an optimal solution. Detailed information of
the PLS regression and its applications are given in Geladi and
Kowalski (1986), Höskuldsson (1988), Naes and Martens (1985),
Sirven et al. (2006); Wold et al. (1984, 2001), and Yaroshchyk et al.
(2012).

The goal of this study is to evaluate advantages as well as disadvan-
tages of the LIBS and ITRAX core scanners for resource exploration.
To document this, zones of metal enrichment (Pb, Zn, Cu, Ni, Co) are
determined and information about the texture of the mineralisation
and the lithological structure of the layered material shall be gained.

2. Materials and methods

2.1. Samples

The investigated drill cores were derived from a 43-year-old Pb–Zn-
tailing site, called Beythal (Fig. 1). The tailing site is located about 20 km
east of Aachen (Germany) and contains flotation residues from the now
inactive open castmineMaubacher Bleiberg. The deposit wasmined for
lead (about 2.5%) and zinc (about 0.8%, Schachner, 1961). The flotation
residues were deposited in the time interval 1950 to 1969. Beythal
covers an area of about 45 ha and contains about 3.7 Mio m3 of mine
waste (Reicherter and Klitzsch, 2010).

The tailing material is characterised by layers of sand as well as
mixtures of silt and clay. It mainly consists of quartz and phyllosilicates
with an illite–muscovite composition. Also minor amounts of carbon-
ates such as dolomite, Mn–Fe-dolomite, ankerite, and siderite as well
as a variety of accessory minerals were detected.

For this study, three consecutive drill core metres were analysed,
each of them with a length of 1 m and a diameter of 5 cm. The cores
were taken from a depth of about 7 to 9 m below surface. The plastic
liners were split into halves and the sediment was allowed to dry at
room temperature. If necessary, the surface was smoothed.

2.2. LIBS experiments

2.2.1. LIBS fundamentals
In LIBS, a very short duration laser pulse is optically focused to a

small spot on the sample surface generating a plasma that vaporizes a
small amount of sample material. Initially, ionization is high and the
optical plasma emission is characterised by an intense continuous
background and emissions from ions (Cremers and Radziemski, 2006).
As electron–ion recombination proceeds, neutral atoms, and then
molecules form. The plasma expands and cools and the atoms and
molecules emit light at their characteristic wavelengths. The obtained
emission spectrum is, therefore, characteristic for the elemental compo-
sition of the sample. Delaying the spectral acquisition a few μs after the
laser pulse allows the broadband emission to subside and the elemental
fluorescence to be observed (Body and Chadwick, 2001). Each firing of
the laser produces a single LIBS measurement. Usually the signals
from many laser plasmas are added or averaged to increase accuracy
and precision and to average out non-uniformities in sample composi-
tion (Miziolek et al., 2006).

2.2.2. LIBS core scanner measurements
Element mapping of the drill core sections was performed by a

prototype LIBS core scanner manufactured by LTB Berlin, which is
operated in our working group. It is applicable for point measurements,
1D profiles and 2D scans. Fig. 2 shows the experimental LIBS set-up used
in this work.



Fig. 1. Picture of the studied tailing Beythal (source: Bündnis 90 die Grünen). The tailing pond is located in western Germany, near Aachen (red circle in small picture, source:
www.worldofmaps.net). The location of the analysed drill core is marked by a red star.
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The specifications of the used LIBS core scanner are summarized in
Table 1. During mapping, the laser is moved over the sample via a
computer-controlled biaxial translation stage. The translation stage is
driven automatically via a steppermotor controlled by the LIBS software
“Sophi” and is stopped for every measurement. The LIBS core scanner is
able to map an area of 1 m by 2.5 cm with a user-defined step size. In
order to reduce the duration of the measurements and the amount of
spectra, the studied cores were mapped within an area of about 1 m
by1 cmandwith a step size of 400 μm. Themeasurement grid consisted
of 25 spectra along the y-direction and according to the length of the
core metre, between 2478 and 2490 spectra along the x-direction. At
each grid point five laser shots were fired and emission intensities
were accumulated in one spectrum. This resulted in approximately
62,000 spectra per core metre.
Fig. 2. Picture and schematic diagram of the experimental setup of the used LIBS core sc
Measurements were run directly on the dried core surface under
ambient atmosphere at atmospheric pressure. To prevent the produc-
tion of bigger particle clouds, an exhaust system was installed close to
the sample surface. This prevented plasma formation inside the cloud
as well as sediment deposition on the rest of the sample.

The splitted cores show some surface morphology in the range of
2 mm. Furthermore, deep shrinkage cracks occur in the clay, which
are caused by drying of the material. However, since the laser focal
length covers a large zone, the plasma is generated even beyond the
optimal focus point.

For every element there is an optimal experimental set-up for LIBS
analysis. The main parameters for adjusting measurements are the
delay time between laser pulse and the read out of the CCD, the number
of laser shots that are accumulated for one measurement, and the laser
anner. Original LIBS spectrum with 36,400 support points between 285 and 964 nm.



Table 1
Specifications of the LIBS core scanner.

Laser Nd:YAG Q-switched laser
Wavelength 1064 nm
Pulse width 11 ns
Energy maximum of 55 mJ/pulse
Repetition rate 20 Hz
Spot size 200 μm

Spectrometer Echelle spectrometer
Spectral range 285–964 nm
Spectral resolution R = 10,000 (resolution: 0.29–0.96 nm)

Detector CCD
Resolution 1024 × 256 pixel

Table 2
Wavelengths of the used LIBS emission lines.

Element
Spectral line (nm)

Pb 405.7807, 363.9568, 368.3462
Zn 481.053, 472.215, 330.258
Cu 327.396, 324.754
Ni 352.454, 351.505, 345.847
Co 340.512, 352.981, 351.264
S 921.2865, 922.8092, 923.7538
Ba 614.1713, 553.5481, 712.0331
Si 390.5523, 288.158, 298.7645
Ti 364.268, 365.35, 308.802
Al 394.40058, 309.28386, 396.152
Fe 404.5813, 385.9911, 358.119
Mn 403.076, 403.449, 322.809
Mg 382.93549, 517.268, 383.8292
Ca 430.253, 647.166, 649.378
Na 819.4824, 588.995, 589.5924
K 693.877, 404.414, 404.721
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energy. Tests for optimising the measurement parameters were done
on homogenized, pressed and loose materials from the same tailing.
The results showed, that a delay time of 1.5 to 1.7 μs worked best for
most elements and for the clay- and the sand-sized material. For the
core mapping a delay time of 1.5 μs was chosen. The best compromise
between high LIBS intensities and a crater depth in the loose sand of
not more than 2 mm were reached with five laser shots accumulated.
Laser energy was set to 55 mJ, which is the highest energy that can be
reached with our system.

2.3. EDXRF experiments

For verification of the LIBS data, the results are compared with data
obtained by EDXRF. For these measurements an ITRAX™ XRF core
scanner (Cox analytical systems) operated at GEOPOLAR (University
of Bremen) was used. The ITRAX™ XRF core scanner is a flat-beam X-
ray fluorescence scanner that uses an intense non-destructive micro
X-ray beam for scanning core surfaces. According to the used flat-
beam optical system, 1D element profiles with a spatial resolution in
x-direction of 50, 100 or 200 μm are generated (Croudace et al., 2006;
Rammlmair et al., 2001; St-Onge et al., 2007). Standard systems operate
with a resolution of 100 or 200 μm.

Element profiles can be obtained for a maximum core length of
180 cm. Croudace et al. (2006) gives a detailed description of the
technical details of the ITRAX™ core scanner.

EDXRF scanning of the 1m cores fromBeythal was performedwith a
3 kW molybdenum target tube operating at 30 kV and 40 mA. The X-
rays are focused bymeans of a proprietary flat-beamoptical device gen-
erating a 20× 0.2mmrectangular beamwith its long axis perpendicular
to the sample main axis x (Croudace et al., 2006). However, the used
evacuable cone in front of the detector has an entrance window of
8 × 0.2 mm and therefore the real sampling area is slightly larger than
8 × 0.2 mm. Step size in the x-direction was set to 200 μm with a
count time per step of 7 s plus 1.7 s deadtime. X-ray fluorescence was
detected with a 1024 channel silicon drift detector (SDD) with a resolu-
tion of 140 eV for Mn Kα.

2.4. Bulk chemical analyses

The results of the two scanning methods were compared and
validated to 78 bulk quantitative chemical analyses. Element concentra-
tions were obtained by wave length dispersive X-ray fluorescence
(WDXRF). The analyses were performed by means of two wavelength
dispersive sequential spectrometers (Philips PW1480 and PW2400)
with a Cr and Rh tube, respectively. Measurements were done on
fused glass discs, which were produced from subsamples of optically
homogeneous zones of the cores (each 2 to 6 cm3).

The total sulphur content of the samples was analysed by combus-
tion Infrared Detection analysis with a LECO CS 230 analyser. Thereto,
the samples were heated to 2000 °C and the released sulphur dioxide
was measured by an IR detection system.
2.5. Quantitative analyses

2.5.1. Data processing
For all of the approximately 62,000 LIBS spectra per core metre, a

background subtraction was done by the LIBS software “Sophi”.
Within this study the elements Pb, Zn, Cu, Ni, Co, Si, Al, K, Na, Ca, Mg,

Fe, Mn, Ti, Ba, and S were investigated. Out of the large number of
emission lines characterising LIBS spectra of heterogeneous rock and
sediment samples, several lines were chosen, that are not disturbed by
interferences with other element emission lines. Furthermore, the
shape of these element peakswas checked for the two differentmatrix-
es (sand, silt to clay) in order to get an indication, whether they might
be influenced by saturation phenomena at high element concentrations
or by background noise at low concentrations. A good verification of the
chosen emission lines for each element was given by the produced 2D
maps, since maps of the same element but from different emission
lines, should strongly correlate to each other. For every element, two
to three emission lines, meeting all demands, were chosen for this
study (Table 2).

For chemical mapping all original spectra were reduced to these
wavelengths, by calculating peak area integrals, with peak widths of
0.1 nm, from each of the 47 emission lines. Further data processing
includes individual normalisation of each wavelength channel to the
integrated total energy of that spectrum. This normalisation to total in-
tensity shall compensate for subtle variations in laser power (Body and
Chadwick, 2001; Tucker et al., 2010). Additionally, spectra with total
spectral energies greater or smaller than two standard deviations from
the mean total energy of all spectra, referring to the same calibration
or validation sample, were considered as outliers and excluded from
the spectral data set. Investigations of rejected spectra indicated that
they originate from deep shrinkage cracks in silt and clay or from failure
measurements with no signals apart from the background. Prior to the
quantification, the spectral data were centred to the mean value.

For visualization of the pre-processed data, the peak area values
were transformed into 8 bit grey value images each representing a 2D
mapping of one element.

The EDXRF scanning with the ITRAX core scanner resulted in about
5000 spectra per core metre. By the aid of standard fitting procedures
implemented in the Q-Spec spectral analysis software, individual
elemental peak areas were extracted from the spectrum. Thereto, the
sum-spectrum was fitted to a XRF fundamental parameters model and
the fit was optimized by minimising the mean square error. With the
optimized fit, the individual EDXRF raw-spectra for each iteration
process were re-evaluated with a maximum of 100 iterations per spec-
trum in an automated batch procedure. Element data are expressed as
counts (cts) and were calculated from peak area integrals of element
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specific regions of interest. Themultivariate PLS Regressionwas applied
to mean-centred data, as it was done for the LIBS results.

In order to check the necessity of a multivariate calibration, linear
regression analyses were carried out.
2.5.2. Partial least squares (PLS) regression
In our application, the X-variables of the predictor matrix consist

of average peak areas from either optical element emission intensi-
ties (LIBS) or fluorescence radiation (EDXRF). For that purpose, aver-
age spectra were calculated from all LIBS or EDXRF spectra (reduced
to 47 and 14 element-characteristic wavelengths, respectively)
obtained from the same regions where the subsamples for WDXRF
measurements were taken from (rectangles of about 1 to 2 cm by
1 cm). Depending on the size of these subsamples, each average
spectrum was calculated from about 625 to 1250 single LIBS spectra,
or 50 to 150 single EDXRF spectra. The Y-variables of the response
block include element concentrations of the same sample area,
measured by WDXRF.

Please note, since Na and Mg cannot be detected under ambient at-
mosphere by the used ITRAX core scanner (Mo-tube, Rothwell and
Rack, 2006), only intensities from the other 14 elements were used for
the X-matrix. Nevertheless, the Y-matrix consists of 16 element concen-
trations, including Na and Mg. Sodium and Mg concentrations are
predicted based on inter-element correlations. However, due to other
mineral phases or alteration processes, these correlations might be
disturbed for some layers and therefore predicted concentrations have
to be considered with caution. The selection of appropriate training
samples for the PLS model is therefore essential.

Altogether 78 average spectra (described as samples further on in
the text) with correspondingWDXRF element concentrations distribut-
ed over all three drill cores were used to calibrate and validate the PLS
models for LIBS and EDXRF. In order to test the prediction capability of
the PLS model, the sample set was split into a training set and a test
set. Thereto, a principal component analysis (PCA) was done on the X-
matrix and several sampleswith the highest, lowest, aswell as interme-
diate scores for the most important principle components (PC) were
selected. These samples span the concentration range and were taken
for model calibration (training set, n = 39) using the leave-one-out
cross-validation method. The rest of the dataset has been utilized for
validation of the PLS model by a regression and contained 39 samples,
too (test set).

Calibration of the PLS model and prediction of element concentra-
tionswas performed by the software packageUnscrambler (CAMOSoft-
ware) using the NIPALS PLSR algorithm (Nonlinear Iterative Partial
Least Square Regression).

According to the results of Tucker et al. (2010), compositions of the
WDXRF training and test samples for the main rock forming elements,
bound to oxides, were input as weight % oxides and not as atomic
fractions. Only the investigated base metals and the trace element Ba,
as well as S (measured with LECO) remain as atomic fractions. Accord-
ingly, all predicted concentrations of the major rock components are
returned as wt.% oxide.

The selection of the number of latent variables, required for the
construction of a calibrationmodel,was done by selecting the localmin-
ima of RMSEP (root-mean-square error of prediction) for the training
set and the test set. Additionally, the prediction performance for all indi-
vidual spectra of the drill cores was taken into consideration. In order to
avoid sub- or overfitting of the model for some elements, the Y-
variables were split and 11 different PLS models were calibrated.
While for elements like Pb, Zn, Cu, Si, Fe, Mn, S, and Ba a PLS model
with only that single Y-variable reveals best results (PLS type I), other
correlating elements can be combined to groups (PLS type II) without
increasing RMSEP or decreasing R2 (square of correlation coefficient
for validation). These three groups consist of Ni + Co,
Al2O3 + TiO2 + K2O + Na2O, and MgO + CaO.
2.5.3. Spatially resolved analyses
Finally, the PLS regression models, which were calibrated by aver-

aged spectra of larger areas were used to predict element concentra-
tions for all pre-processed LIBS and EDXRF spectra of the drill core.
The generated spatially resolved data sets with predicted concentra-
tions instead of intensities, were then transformed into grey value pic-
tures, or plotted as a graph. Of course, the predicted concentrations
have to be regarded with care, since single spectra of a heterogeneous
material are used. Compared to the averaged spectra, which were
used for calibrating the PLS, single spectra are characterised by a stron-
ger variability of element concentrations (higher number of extreme
values). Therefore, prediction of element concentrations, which are
higher or lower than concentrations of the calibration samples, implies
more uncertainties, since for these concentration levels the model
extrapolates.

2.6. Classification methods

On basis of the 2D spatially resolved element images generated by
the LIBS scanner, a classification with the focus on the lithological com-
position of the tailings was performed. The spectral angle mapper
(SAM) algorithm is a supervised classificationmethod for hyperspectral
images that determines the spectral similarity between two spectra by
calculating the angle between the spectra and treating them as vectors
in a space. Classification is based on end member spectra, which were
extracted from the images. For further information please refer to
Kruse et al. (1993). Classification analyses were done by the
hyperspectral image processing and analysis software package ENVI.

Furthermore, the post-classification approachmajority analyses was
applied on the classification image produced by SAM.With thismethod,
spurious pixels within a large single class are changed to the respective
class.

3. Results and discussion

3.1. Quantitative analyses by linear regression

Quantitative PLS analyses were done on the basis of internal refer-
ence samples, taken from the tailing cores, and measured by WDXRF.
A statistic compendium of the bulk chemical WDXRF analysis can be
found in Table 3.

As already mentioned before, LIBS spectra are influenced by matrix
effects. For the investigated tailings, most of the elements are strongly
influenced by thematrix of the tailingmaterial. Only for Cu these effects
seem to be minor important. Thus, simple linear regression (LR) of Cu
intensities shows a coefficient of linear regression (r2 = 0.71) which is
much higher than most other elements (r2 = 0.07 to 0.51, Table 4).
Themost substantialmatrix effects are caused by the differentmaterials
sand and silt/clay. Especially in the sandy material, these effects are
strong. This is probably caused by the transparency of quartz, the
main constituent of the sandy material. Krasniker et al. (2001) demon-
strated the linear decay of plasma energy and spectral intensities with
increasing sand percentages for major and minor soil constituents
(20–90% sand content). The laser light, that encounters the optically
transparent and hardly evaporated quartz, passes through the particle
with some losses and is able to penetrate deep into the sample, where
it contributes to the formation of large craters (Krasniker et al., 2001).
The energy, which is captured inside the quartz, is lost regarding the
plasma formation. However, matrix related effects also occur in differ-
ent layers of the fine-grained material.

In contrast to LIBS, themodelling of the EDXRF spectra by the funda-
mental parameter approach can reduce the influence of the sand and
silt/clay matrix. However, the quality of the processed EDXRF spectra
differs from element to element. For the elements Pb, Zn, Cu, Fe2O3,
SiO2, andK2O, EDXRF results correlatewellwith element concentrations
of the reference samples (Table 4, Fig. 3). This is expressed by r2-values



Table 3
Statistic compendium of the bulk chemical analysis done with WDXRF and in the case of sulphur with LECO. Total iron is calculated as Fe2O3.

Pb
(ppm)

Zn
(ppm)

Cu
(ppm)

Ni
(ppm)

Co
(ppm)

Ba
(ppm)

Stotal
(%)

SiO2

(%)
TiO2

(%)
Al2O3

(%)
Fe2O3

(%)
MnO
(%)

MgO
(%)

CaO
(%)

Na2O
(%)

K2O
(%)

LOI
(%)

Sand (n = 29)
Mean 404 2032 35 146 57 61 0.30 88.25 0.24 2.71 0.97 0.14 1.13 1.80 0.02 0.59 3.09
Median 385 2071 32 132 55 65 0.29 88.69 0.24 2.65 0.92 0.13 1.07 1.76 0.02 0.58 2.94
Min 267 1528 15 105 36 30 0.26 83.05 0.22 2.21 0.81 0.10 0.87 1.36 0.01 0.48 2.37
Max 700 2913 101 262 93 96 0.42 90.44 0.31 3.64 1.53 0.22 1.70 2.73 0.04 0.80 4.53
Stdev 100 322 17 39 13 21 0.04 1.69 0.02 0.27 0.16 0.03 0.22 0.36 0.01 0.06 0.58

Silt/clay (n = 49)
Mean 2411 2305 91 232 137 210 0.44 73.08 0.48 10.84 2.38 0.16 1.41 2.10 0.09 2.28 5.38
Median 1945 1753 81 235 134 211 0.37 73.34 0.48 10.81 2.34 0.15 1.35 2.03 0.09 2.26 5.22
Min 859 908 33 155 70 144 0.22 66.64 0.39 6.67 1.90 0.09 1.07 1.54 0.04 1.46 4.43
Max 9493 11,980 262 342 207 271 1.22 78.46 0.57 14.44 3.15 0.26 1.98 3.21 0.12 3.02 6.61
Stdev 1575 1819 45 33 24 33 0.20 2.48 0.04 1.62 0.29 0.03 0.20 0.35 0.02 0.34 0.55

Stdev: standard deviation, LOI: loss on ignition at 1030 °C.
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of the LR model of N0.73. Whereas differences between predicted and
reference concentrations for Pb, Zn, and Cu probably result from the
low number of calibration samples with high metal concentrations
(Fig. 3), the other elements show somedifferenceswithin certainmatri-
ces. For K, these differences occurmainly in the sandymaterial, whereas
Fe and Si showdivergences in somefine-grained layers. Strongermatrix
effects seem to influence the elements Ni, MnO, S, TiO2, and CaO (r2 =
0.12 to 0.67).

Cobalt, Ba, and Al2O3 concentrations are near the detection limits
and therefore signals are very noisy. However, in contrast to Co and Ba
with no distinct distribution patterns, Al2O3 distribution patterns fit
quite well to WDXRF concentrations. Aluminium is the element with
the lowest atomic number detectable by the ITRAX scanner (Mo-tube)
and measurements are often compromised by attenuation of excited
X-rays in the air gap between the X-ray detector and the core surface
(Rothwell and Rack, 2006).

Despite fundamental parameter analyses, matrix effects still occur
for a variety of elements measured with the ITRAX scanner and there-
fore, spectra calibration by amultivariatemethod seems to be appropri-
ate not only for the LIBS data, but also for the ITRAX data.
Table 4
The prediction performance of the linear regression (LR) models and the PLS regression
models for LIBS and ITRAX core scanner data. The coefficient of linear regression r2, the co-
efficient ofmultiple correlation R2, aswell as the rootmean square error of prediction refer
to the test set, whichwas used formodel evaluation. Please note, thatMgO andNa2O is not
detectable by the ITRAX scanner (n.d.).

LR model
LIBS

PLS model LIBS LR model
EDXRF

PLS model EDXRF

r2 RMSEP
(%)

R2 Latent
variables

r2 RMSEP
(%)

R2 Latent
variables

SiO2 0.18 1.93 0.93 8 0.88 1.76 0.94 3
Fe2O3 0.01 0.23 0.90 8 0.89 0.15 0.96 3
Al2O3 0.01 1.17 0.92 8 0.37 0.82 0.96 6
K2O 0.26 0.25 0.91 8 0.88 0.18 0.96 6
Na2O 0.23 0.01 0.85 8 n.d. 0.01 0.89 6
TiO2 0.48 0.04 0.92 8 0.67 0.02 0.96 6
Ba 0.07 0.003 0.89 8 0.05 0.002 0.90 6
Pb 0.41 0.08 0.72 4 0.91 0.05 0.89 3
Zn 0.51 0.06 0.65 6 0.79 0.04 0.82 3
Cu 0.71 0.003 0.61 4 0.73 0.002 0.76 7
Co 0.43 0.002 0.72 8 0.13 0.002 0.81 7
Ni 0.49 0.003 0.57 8 0.18 0.003 0.60 7
S 0.31 0.12 0.60 5 0.13 0.10 0.68 2
MnO 0.14 0.02 0.36 4 0.19 0.02 0.44 7
MgO 0.22 0.16 0.49 4 n.d. 0.13 0.63 9
CaO 0.22 0.27 0.36 4 0.12 0.24 0.47 9
3.2. Quantitative analyses by PLS regression

The evaluation of the PLS models was performed by means of 39
independent test samples. In order to show the predictive ability of
the models, the statistical parameters R2 (square of correlation coeffi-
cient for validation) and RMSEP (root-mean-square error of prediction)
were used (Table 4).

It turned out that, depending on the element, the optimal number of
latent variables of the PLS models varied between 4 and 8 for LIBS data
and between 2 and 9 for the EDXRF data. As already highlighted by
previous studies (Tucker et al., 2010; Yaroshchyk et al., 2010;
Yaroshchyk et al., 2012), the models calculated from pre-processed av-
erage LIBS spectra have lower rootmean square errors of calibration and
validation compared to models created with unprocessed average
spectra.

Assuming, that there is no bias in the models, the RMSEP represents
the standard deviation of the differences between predicted and
observed values. For both core scanners, the elements can be assigned
to three different groups showing similar prediction qualities of the
corresponding PLS model. The first group comprises the compounds/
elements SiO2, Fe2O3, Al2O3, K2O, Na2O, TiO2, and Ba, which are bound
within themain siliceousmatrixminerals quartz, illite–muscovite, chlo-
rite, and to a minor extend in feldspar and rutile/anatase. Iron is bound
to a minor extend in carbonates and sulphides (e.g. siderite, ankerite,
pyrite, bravoite, chalcopyrite, sphalerite), too. Mineralogy was verified
bymeans of transmitted and incident light opticalmicroscopy, scanning
electron microscopy and microprobe analyses. The element concentra-
tions of the first group plot within two clouds in the measured vs. pre-
dicted scatter plots, since concentrations differ quite strong between
the fine-grained clay/silt-matrix and the coarse-grained sand matrix
(Fig. 3). Within the same lithological unit, variations are low. The PLS
predicted element concentrations of the validation samples show a
strong correlation to the WDXRF concentrations. Thus, R2

test set-values
are very high and vary between 0.96 and 0.89 for the ITRAX core
scanner, and between 0.93–0.85 for the LIBS core scanner.

Themetals Pb, Zn, Cu, Co, Ni and the element S belong to the second
group, whose PLS models have moderate R2

test set-values between 0.72
and 0.57 for the LIBS scanner and between 0.89 and 0.60 for the ITRAX
scanner. All of these elements are bound in different ore minerals and
their alteration products, and they are characterised by nugget forma-
tion. Additionally, these minerals show a non-uniform distribution,
with enrichments in only a few layers within the three drill cores.
Therefore, calibration and validation samples with high concentrations
are rare and have a strong influence on themodel (Fig. 3). More calibra-
tion and validation samples with high metal concentrations would im-
prove the PLS model.

The last group of elements include CaO, MgO, and MnO. PLS models
of these elements are characterised by the lowest R2

test set-values



78 K. Kuhn et al. / Journal of Geochemical Exploration 161 (2016) 72–84
varying between 0.49 to 0.36 for the LIBS scanner and 0.63–0.44 for the
ITRAX scanner. The three elements are bound to different carbonates,
which occur in the tailing material. These carbonates are calcite
(CaCO3), dolomite (CaMg(CO3)2), ankerite (Ca(Fe, Mg, Mn)(CO3)2),
and subordinately siderite (FeCO3) as well as mixtures of these min-
erals. Just like the sulphides, these minerals are minor components
within the tailings and show variable distributions as well as nugget ef-
fects. Further reasons for the low PLS prediction abilities of both
methods, beside the nugget effect, could not be identified.

While both chemical screening methods represent near-surface
sampling techniques, a 3D object with a volume of at least 3 cm3 was
analysed byWDXRF. Therefore, bulk chemicalWDXRF results represent
average concentrations covering large volumes. For elements that show
nugget effects, it is more difficult to obtain representativeWDXRFmea-
surements. This might be reflected by the lower correlation coefficients
of the second and third group.

For all elements, the prediction capability of the PLS regression
models generated from ITRAX intensities is better than from LIBS inten-
sities. This is not surprising, since energy-dispersive XRF and
wavelength-dispersive XRF, which was used for calibration of the PLS
model, are quite similar techniques compared to LIBS.

Furthermore, both core scanners have different sampling statistics.
On the one hand, the sample area of the ITRAX scanner is slightly larger,
with 1.6mm2 (8mm× 0.2mm), compared to 0.8mm2 for one LIBS row
(0.03 mm2 × 25 sampling points). On the other hand EDXRF scanners
are characterised by element specific excitation response volumes
which are increasing with atomic number of the element. Wilhelms-
Dick et al. (2012) published extrusion depths for the Avaatech EDXRF
core scanner of up to several hundreds of microns. In porous materials,
the fluorescence X-ray extrusion depth for heavy elements (e.g. Fe, Co,
Ni, Cu, Zn, Pb) should be even higher and amount to 1 mm. The LIBS
scanner performs point-samplingmeasurementswith a diameter of ap-
proximately 200 μm and a crater depth ranging between a view
micrometre until several hundred of microns, according to the material
and the number of laser shots. For the tailings, analysed with five laser
shots, sampling depth is smaller than 100 μm. Although LIBS craters
are larger in sandy material, a lot of the material is thrown out and
not ablated. Due to the smaller sampling volume, element concentra-
tions vary substantially, depending on the mineral ratio ablated by the
laser beam. Very fine-grained clay material provides the best statistical
results since thousands of grains are ablated. The homogeneously dis-
tributed pores have probably a moderate effect on the ablation depth
and signal intensity. On the other hand coarser, sand dominated mate-
rial might provide single crystals and/or large pores within the focus
area.

A further point that derogates prediction quality for the LIBS scanner
results are subtle variations in LIBS intensities between the 25measured
rows (y-direction), due to the calibration of the LIBS spectrometer after
every measured row in x-direction. These calibrations were done, since
LIBS measurement time of one core metre took about 20 h and the
shifting of the spectrometer should be prevented. By installing the spec-
trometer to an enclosurewith constant temperatures, calibration during
measurement would not be necessary for future measurements. Al-
though pre-processing procedures could not eliminate the intensity
shifts from spectrometer calibration, the influences of these shifts are
reduced by averaging many spectra of a larger area (according to the
WDXRF sample area) for each PLS calibration sample.
3.3. Spatially resolved geochemistry of the tailing material

Based on the PLS regression models, spatially resolved element con-
centrations of the three drill core metres were predicted by regression.
Fig. 4 shows the predicted concentrations of one drill-core metre for
bothmethods in comparison toWDXRF bulk chemical results. For a bet-
ter comparison with the 1D graph of the ITRAX scanner, the LIBS
concentration matrix was reduced to one dimension by averaging the
concentrations of the 25 sampling spots in y direction.

For both methods, PLS regression compensates matrix effects to a
large extend, leading to a good correlation of element distribution pat-
terns and WDXRF results. Although, element concentrations have to
be regarded carefully as the model extrapolates especially very high
concentrations, they fit very well to WDXRF results. Due to the correla-
tion of Na andMgwith other elements, element concentrations of these
elements can be predicted by PLS even though the ITRAX core scanner
cannot detect them. Although prediction ability of the LIBS and the
EDXRF PLSmodels for Mg, Ca, andMn are quite low for the test set, cor-
relation patterns with WDXRF results are good (Fig. 4). However, simi-
lar to CaO and MnO which are also bound to carbonates, the predicted
concentration patterns of the EDXRF data are quite noisy. The choice
of less latent variables for the PLS models would smoothen the graphs,
but also lead to mismatches for some layers. For Co and Ni, predicted
concentrations from EDXRF intensities also reveal noisy signals, but
with lower amplitude than for CaO, MnO, and MgO.

In summary, both methods provide a good basis to image element
distribution patterns along drill cores. Furthermore, predicted element
concentrations are consistent with WDXRF concentrations. By means
of these distribution patterns, inter-elemental correlations can be iden-
tified and information about lithology and mineralisation of the tailing
material can be drawn.

3.4. Lithology of the tailing material

Inter-element correlations can be gathered from 1D element
graphs as well as from 2Dmaps (Figs. 4 and 5). The advantage of spa-
tially resolved mapping, generated by the LIBS Scanner, is the possi-
bility to detect structures within the material. By means of
hyperspectral classification methods, like SAM, a classification of
the results is possible. For very coarse-grained rocks or ore, this
could be a mineral classification. In the case of fine-grained tailings,
the resulting classification image does not represent a mineral distri-
bution map, since grain sizes of the tailing material are smaller than
diameter of the LIBS laser. It rather can be seen as a lithological dis-
tribution image, indicating the spatial distribution of quartz-,
phyllosilicate- or carbonate-rich layers.

The layers with sand-sized tailing material mainly consist of quartz
grains and can easily be perceived by the human eye. Within the core
logging results, these areas are characterised by the highest Si contents.
In the classification map, quartz-rich layers are coloured in red (Fig. 5).
However, there are also minor contents of phyllosilicates and carbon-
ates, occurring as disseminated mineral grains or in very thin layers.
These structures are visible in almost all element distribution maps.

Within the silt- and clay-sized material, the classification map re-
veals different lithological layers, which are not distinguishable on a
photograph. In an optical image of the drill core, the different layers
have quite similar colours. Additionally, colours of some layers, which
were located at the tailing surface for a longer period, have changed
by secondary oxidation processes. The main siliceous matrix of the
fine-grained material consists of clay-sized phyllosilicate minerals and
minor amounts of quartz, feldspar residues and rutile/anatase. Zones
with the highest content of theseminerals are reflected by high concen-
trations of Al2O3, Fe2O3, K2O, Na2O, TiO2 and Ba and represent most of
the fine-grainedmaterial (blue colours within the lithological classifica-
tion map, Fig. 5). The Si concentrations of the fine-grained layers can be
considered as a combination of Si bound to quartz and Si bound to
phyllosilicates and feldspar. Due to the strong variation of the quartz
content within the fine material, there is no obvious correlation to the
phyllosilicate distribution.

Some 2–10 cm thick layers with higher contents of carbonate min-
erals occur within the sand and the silt- to clay-sized parts (yellow to
green colours within the classification map, Fig. 5B). In these layers,
CaO, MgO, and MnO concentrations are up to twice as high as in the



Fig. 3. Comparison of predicted concentrations versus reference concentrations (WDXRF) for both core scanner data. For the ITRAX scanner prediction results of the LRmodels aswell as of
the PLSmodels are shown. Predicted concentrations of the LIBS scanner derive fromPLS. The training set is represented by open circles, and the closed circles represent the test set. The line
shows the regression curve of the training set. Analysed elements, which are not shown in this figure (group 1: Fe2O3, Al2O3, K2O, Ba; group 2: Zn, Ni; group 3: MgO, MnO) have similar
correlation patterns like the displayed elements of the same group.
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other layers and can reach up to 3% CaO, 2%MgO and 0.3%MnO. The en-
richment of carbonates in some layers could ether derive from sorting
during material transport, when filling the pond or indicate that these
residues derive from ore material, which had higher contents of
carbonates.
3.5. Mineralisation of the tailing material

Concentrations of economically interestingmetals, like Pb, Zn, Cu, Co
and Ni, within the analysedmining residues are not equally distributed,
but enriched in certain layers. This can be caused by sedimentation
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processes during injection of the slurry from (different) spigot points, as
well as by the deposition of different residues from different ore
processing steps. Furthermore, weathering of the waste material can
lead to depletion or enrichment of metals in certain zones.

Due to the small grain sizes of the material and the mixture with
other minerals, layers enriched in metals cannot be detected by eye,
but with both core scanners. For the analysed drill cores, all metal-rich
layers occur in the fine-grained parts of the tailings. The thickness of
these layers varies between 0.5 and 4 cm.

For Pb, Zn, and Cu,maximumconcentrations occur between 785 and
789 cm sediment depth (Figs. 4 and 5). Average bulk chemical concen-
trations of that sediment section amount 0.95% Pb, 1.20% Zn, and
262 ppm Cu. A calculation of average metal concentrations for different
layers by the PLS predicted concentrations is not advisable, since PLS
models extrapolatewhen predicting concentrations from single spectra.
Further small-scaled reference samples frommetal-enriched layers and
maybe from pure calibration minerals would be necessary to improve
PLS models. Because of the low number of metal-rich layers within
the three analysed drill core metres, these samples have to be taken
from other cores.

Lead, Zn, and Cu show the same zones of enrichment and depletion
indicating similar ore processing steps of galena (PbS), sphalerite ((Zn,
Fe)S), and chalcopyrite (CuFeS2). Sulphur also correlates with Zn, Pb,
and Cu, which points to the common occurrence within sulphide
minerals and secondary formed gypsum, whereby the sulphur derives
from the sulphide alteration. Mineralogical investigations showed that
most of the galena is altered to cerussite, a Pb-carbonate (PbCO3).
Whereas Pb- and Cu-bearing minerals have mostly higher contents in
the fine-grained material, the Zn-bearing mineral sphalerite occurs in
the fine- and coarse-grained material in equal amounts (Fig. 4). Never-
theless, themain zones of Zn enrichment are located in the fine-grained
parts and correlate to the strongest Pb- and Cu-enrichment zones. In the
sandy material, as well as in silt- to clay-sized layers with lower metal
concentrations, the metal-bearing minerals are randomly distributed.
Bright spots within the 2D maps of the LIBS core scanner (Fig. 6) illus-
trate this. Within the fine-grained material with high metal concentra-
tions, the metal-bearing minerals form layers, which can be observed
in the maps as bright bands (Figs. 4 and 5).

Nickel and Co do not correlate with Pb, Zn, and Cu (Figs. 4, 5).
Although concentrations for both metals vary along the drill cores,
they do not show distinctive enrichment zones, as it is the case for Pb,
Zn, and Cu. The strong correlation between Ni und Co is due to the
occurrence within the samemineral bravoite ((Fe0.7Ni0.2Co0.1)S2), a va-
riety of pyrite. The beautifully zoned bravoite from the Maubacher
Bleiberg deposit, where these ore processing residues come from, is
very famous and can contain Ni and Co concentrations up to 25% and
14%, respectively (Vaughan, 1969). The fine-grainedmaterial in general
contains more Co and Ni compared to the sand-sized material (Fig. 4).
The relatively low variability in the Co- and Ni-concentrations within
the fine-grained material probably result from a homogenous distribu-
tion of thatmineralwithin the ore, and the fact that the Bravoitewas not
extracted from the Maubacher ore. Maximum concentrations occur at
778–782 cm depth with bulk concentrations of 342 ppm Ni, and
207 ppm Co.

The layers with the highest Co and Ni contents are generally
characterised by high carbonate contents (Figs. 5 and 6).

Based on the investigated three core metres, the base metal concen-
trations within the tailing material are too low for a profitable re-use of
thematerial. This is consistent withWDXRF analyses, which were done
for further drill cores taken from other areas of the tailing site.

3.6. Comparison of LIBS and EDXRF

Within our study, both core scanners reveal sufficiently precise
results for our application. However, both methods have their advan-
tages and disadvantages.
The main advantage of the LIBS core scanner is the high spatial
resolution in x- and in y-direction of the analysis which enables the
construction of two-dimensional element distribution images, as well
as mineral/lithological distribution maps. This is helpful especially for
irregularly structured or cross-bedded samples.

However, the bigger sample area of the EDXRF scanner can be an
advantage, when horizontal layered cores are analysed and a better
statistical coverage is needed.

Another advantage of the EDXRF technique is that it is non-
destructive, except for subsequent luminescence dating (Davids et al.,
2010). The laser from LIBS leaves behind minor destructions because
it generates craters, ranging between several μm in the clay material
and up to 1 mm in the sand. The remaining surface consists of molten
material and has to be scraped in case of further analysis.

Although smooth surfaces are required for both techniques, they can
cope with certain surface roughness. The ITRAX core scanner is
equipped with a laser triangulation system, which enables the system
to keep always the same distance between the detector and the sample
surface. However, strong roughness differences within a narrow space
cannot be followed by the measurement unit and a signal would be
stronglyweakened in such sections. In case of LIBS, some surface rough-
ness is tolerated, due to a high depth of focus. The used drill cores
showed variations in height of up to 2 mm (except for drying cracks)
and no systematic errors depending on the surface morphology could
be recognized.

Both core screening methods work best for dry samples since
increasing water concentrations lead to lower signals (BUBLITZ et al.,
2001; ESELLER et al., 2010; RAMMLMAIR et al., 2001). However, Bublitz
et al. (2001) showed that for soil samples water contents up to 6%
even increased LIBS emission intensities. Higher water concentra-
tions lead to decreasing LIBS signals. Effects on emission due to
water can also be observed for X-ray fluorescence. In a long-term ex-
perimental setup at sediment columns, which were stepwise satu-
rated with water, Rammlmair et al. (2001) showed that for the
EDXRF geoscanner (prototype of ITRAX core scanner from Cox) at-
tenuation due to the water content is strong for light elements but
less for heavy metals.

While the EDXRF technique is able to detect elements with an atom-
ic number greater than 12, i.e. Al to U (Croudace et al., 2006), the LIBS
technique is able to detect almost all elements. However, the number
of elements, detectable by LIBS, strongly depends on the experimental
setup, particularly the wavelength range and resolution of the spec-
trometer as well as the used measurement parameters. Therefore, LIBS
is most efficient when the setup und the parameters are adapted to
the sample matrix and the elements, which should be determined.
The more elements should be measured, the more difficulties arise to
detect all elements with a good precision.

Big challenges of LIBS analytics include quantification of the LIBS
spectra which show a high amount of element emission lines with
much interference. For the EDXRF technique, one should be aware of
diffraction peaks which can occur in sand-sized material. This may
lead to misinterpretation of occurring elements or distort element
concentrations.

Measurement times of both scanners are highly variable depend-
ing on the statistical coverage needed. For the ITRAX scanner, mea-
surement time and step size in the long direction (x) can be
changed. The measurements in this study took about 12 h per drill
core metre. For the used prototype LIBS core scanner, measurement
time can be influenced by the step size in both x- and y- direction.
The shown LIBS measurements were taken with 25 rows in y-
direction and therefore took about 20 h per drill core metre. Since
the scanner is not designed for fast measuring, the limiting factor is
the time for reading/exporting spectra from the CCD, which are
three spectra per second as well as the traversing time of the motor-
ized stage. For both core scanners technical modifications would en-
able for shorter measurements.



Fig. 4. Comparison of element concentrations predicted by PLS (grey lines), and element concentrations analysed byWDXRF (black spots). The upper graphs contain LIBS results and the
lower graphs EDXRF results. For a better comparison of the 2D LIBSmapping results with the 1D ITRAX element profiles, spectra from the y-directionwere averaged to yield a single spec-
trumper depth. Due to strong correlations, Pb distribution patterns are representative also for Cu and S; Co also forNi; Al2O3 also for K2O, TiO2, Na2O, aswell as Fe2O3; andMgO also for CaO
and MnO.
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Fig. 5. A: Spatially resolved elementmaps of one drill coremetremeasuredwith the LIBS core scanner. The predicted concentrations after PLS regressionwere transformed into grey value
pictures. Bright colours reflect high and dark colours low concentrations. B: Lithological classification image generated by SAM and majority analyses on basis of the LIBS maps. C: RGB
image reflecting the distribution of Pb+ Zn+ Cu-rich layers and Ni+ Co-rich layers. Please note, the vertical stripe patterns, which occur in somemaps, refer to artefacts, caused by cal-
ibration of the LIBS spectrometer, after every measured row in x-direction.
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4. Conclusions

Within this study, two core scanning methods were applied to
obtain chemical information for drill cores from tailing material of a
former Pb–Zn-deposit.

• Whereas the LIBS core scanner is characterised by higher spatially
resolved measurements and the opportunity to provide 2D element
maps, the ITRAX core scanner utilises a wider sample area and de-
livers 1D element profiles of drill cores. For both core scanning
methods, the intensities of some of the analysed elements are affected
by matrix-effects, whereby element intensities measured with LIBS
are more often altered, especially in the sandy parts.

• Therefore, the application of PLS regression turned out to clearly
improve results for both core scanners because it compensates for
most of the matrix effects. The validation results of the PLS model
show, that the ITRAX core scanner yields slightly better correlation to
bulk chemical WDXRF concentrations and lower standard deviations.
Due to inter-elemental correlations, PLS regression can also be used to
predict concentrations for elements, which are characterised by weak
signals or cannot be measured at all (e.g. EDXRF Al, Co, Ba, Na, Mg).

• The distribution patterns of predicted element concentrations for
whole drill cores are almost similar for both core scanners and show
very good correlation to WDXRF concentrations. By means of the
maps that were possible with the LIBS core scanner, conclusions
about the mineral distribution can be drawn. According to the spot
size, mineral or lithological distributionmaps can be generated by clas-
sification algorithms. The smaller the spot size, the more accurate the
mineral distribution map. However, small sample areas also lead to in-
ferior statistical coverage, when calculating average concentrations for
whole layers.

• Using an ITRAX or LIBS core scanner, zones with elevated metal
concentrations can be detected and conclusions about the lithological
succession can be drawn. Especially for drilling campaigns with many
cores, both screening methods deliver a good basis for selective sub-
sampling. In consequence, the amount of sub-samples and therefore
costs for further investigations can be reduced when these scanning
techniques are applied.
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Fig. 6. Spatially resolved LIBSmaps showing element distribution patterns of one segment
within the silt/clay layers (left side, depth: 762–767 cm) and one segmentwithin the sand
(right side, depth: 700–705 cm), each about 5 cm long. Please note, the horizontal stripe
patterns, which occur for some elements, refer to artefacts, caused by calibration of the
LIBS spectrometer, after every measured row in x-direction.
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