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a b s t r a c t

In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision
areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems,
common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors
could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data
which consist of a great number of images. Bundle block adjustment of large-scale data with conven-
tional algorithm is very time and space (memory) consuming due to the super large normal matrix
arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC)
method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a
stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing
data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in
time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets
of real data are used to test our proposed method. Preliminary results have shown that the BSMC method
can efficiently decrease the time and memory requirement of large-scale data.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bundle block adjustment is an inevitable and crucial procedure
in the photogrammetry, remote sensing and computer vision area.
Especially in the 3D model reconstruction with multiple sensors
such as UAV camera, oblique camera system and even cell phone
cameras. A lot of research works have been done for UAV camera
systems (Mathews and Jensen, 2013; Ai et al., 2015; Tong et al.,
2015; Frueh et al., 2004; Dahlke and Wieden, 2013). Oblique images
(Besnerais et al., 2008), ordinary digital cameras (Dandois and Ellis,
2010), and even internet images (Snavely et al., 2008; Agarwal et al.,
2010, 2011). Those images are always large-scale data. They bring us
more redundant observations, but in the mean time, they need
more computation and memory resources. The main challenge of
bundle block adjustment of these large-scale data is storing and
computing the super large normal equation produced by a large
number of images and tie points. Thus how to solve the big normal
equation is a key issue. There are usually two categories of solu-
tions, direct method and iterative method. Direct method is always
referred to the conventional Levenberg–Marquardt (LM) algorithm.
It was a most popular algorithm in the last few decades for solving
non-linear least square problems. Conventional aerial photo-
grammetry procedure acquired images on an airborne platform and
the images are regularly arranged. Thus the normal matrix has a
sparse band structure which can be easily solved with memory
space equal to the bandwidth of the sparse band structure. But the
UAV images, oblique images, cell phone image and especially the
internet images are mostly arranged irregularly. So the normal
matrix of these data has no band characteristics. The LM method
has to invert the full sparse matrix. It is no longer suitable for
processing the large-scale remote sensing data. The iterative
method includes a lot of algorithms. The most widely used iterative
method is Conjugate Gradient (CG) algorithm which was firstly
proposed in 1952 (Hestenes and Stiefel, 1952), but it's not widely
used due to its drawbacks in precision and stability until recently.
This method multiplies the normal matrix and the residuals vector
of normal equation, forming a Krylov subspace (Saad, 1981), and
then iteratively computes the answer of normal equation, and
eventually end up to a convergence value which is close enough to
the true answer (Hestenes and Stiefel, 1952). CG was further ex-
tended to an advanced method called Preconditioned Conjugate
Gradient (PCG) which uses a preconditioner to reduce the condition
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of the normal matrix so as to improve the converging speed (Bru
et al., 2008; Byröd and Åström, 2009, 2010; Jian et al., 2011; Li and
Saad, 2013).

The main advantage of the iterative method is that the normal
equation can be solved without explicitly forming the full normal
matrix which is a relatively high cost in both computation and
storage phase. It gives us a chance to solve the super large normal
equation produced by large-scale data consisting of more than
hundreds of thousands even millions of images on a common
personal computer. The normal matrix is always sparse and in-
cludes a lot of zero elements. So only non-zero elements and their
position indexes in the sparse matrix need to be stored, this
strategy can largely compress the normal matrix. A widely used
matrix compress method called Compressed Sparse Row (CSR)
uses three one dimension data arrays to store non-zero elements
and the corresponding necessary information. But we found in
practice that this storage method is not suitable for the normal
matrix update since that the normal matrix are formed and up-
dated point by point in bundle block adjustment. After the sub-
normal-matrix of each point is calculated, the whole normal ma-
trix needs to be updated. When a CSR storage method is adopted,
finding the position of the sub-normal-matrix of current point in
the full normal matrix is very time consuming and complicated.
Because the CSR stores matrix elements one by one while the sub-
normal-matrix is an n*n block (n is the number of unknown
parameters related to the current point), all the elements of the
sub-normal-matrix have to be updated one by one. So we propose
a Block-based Sparse Matrix Compression (BSMC) format to
compress the whole normal matrix in order to decrease its
memory requirement while making the normal matrix easy to be
updated.

In this paper, PCG algorithm is applied to solve the large normal
equation. The Jacobi preconditioner is chosen to decrease the
iteration times of PCG process. The BSMC method is introduced to
combine with PCG aiming to decrease the memory requirement.
The main purpose of this work is to build a stable and efficient
bundle block adjustment system to deal with large-scale remote
sensing data. Part of the test data are downloaded from a public
data source website which was built and shared by Sameer
Agarwal in University of Washington (Agarwal et al., 2010). UAV
images, oblique images and cell phone images are also used as test
data. We have analyzed and compared the memory and time re-
quirement of different methods including the conventional LM
algorithm and proposed BSMC method with PCG. A final summary
of this work is given in the last section.
2. Related works

LM algorithm has been well studied for a long time. The
mathematic theory and equation derivation are well-defined. Re-
cently, the structure from motion is widely discussed in computer
vision community. Most of the researchers working on structure
from motion applied iterative methods to deal with bundle block
adjustment problems of large-scale data (Snavely et al., 2008; Jian
et al., 2011). The most famous and widely used method is PCG
which is an extension version of the CG algorithm. CG belongs to
the algorithms family called Krylov method (Saad, 1981). It mul-
tiplies the normal matrix and the residuals vector, forming a
Krylov subspace which is used to iteratively solve the normal
equations. It's been reported that the iteration times of con-
vergence is related to the condition number of the normal matrix.
Thus a PCG algorithm uses a preconditioner to decrease the con-
dition of the normal matrix, so as to improve the converging speed
(Byröd and Åström, 2010; Jian et al., 2011). A lot of works have
focused on how to choose a proper preconditioner. Some efficient
and stable preconditioners have been introduced, such as Jacobi
preconditioner (Agarwal et al., 2010, 2011) (Byröd and Åström,
2010; Jian et al., 2011), Symmetric Successive Over-relaxation
(SSOR) preconditioner (Byröd and Åström, 2010; Jian et al., 2011),
QR factorization preconditioner (Byröd and Åström, 2010), Ba-
lanced Incomplete Factorization based preconditioner (Bru et al.,
2008), multiscale preconditioner (Byröd and Åström, 2009), sub-
graph preconditioner (Jian et al., 2011) and so on. Among the
above preconditioners, Jacobi is simplest and most widely used in
the real case. Iterative methods can be also explored in remote
sensing community since more and more large-scale remote
sensing data have emerged, such as UAV images, Oblique images,
and mobile phone images even internet images. When the images
increased to a certain large number, the conventional LM method
is no longer suitable for solving such big normal equations. Then,
the iterative method is considered to be a necessary alternative.

Matrix-vector product is the most frequently computed pro-
cedure in the PCG iteration. The multiplications of normal matrix
and residuals vector need to be calculated during each iteration of
PCG. It means that the normal matrix will be frequently read and
used during each iteration of PCG. Thus it has to be stored what-
ever in RAM or external memory. Some methods use mathematic
trick to avoid storing the normal matrix (Agarwal et al., 2010;
Byröd and Åström, 2010). However, this will take even more
computational cost which will largely slow down the iteration
speed. But to store the whole normal equation will need a very
large memory space especially for the large-scale data. So the
normal matrix should be compressed. As mentioned before, the
normal matrix is often sparse and includes a lot of zero elements.
Only non-zero elements and their position indexes in the sparse
matrix need be stored. A famous and widely used normal matrix
compression method is called CSR. This method only needs three
one dimensional data arrays to store the non-zero elements and
their position indexes while abandoning all the zero elements (Bell
and Garland, 2009). But we found in practice that this storage
method is not suitable for the normal matrix update. So the BSMC
method is introduced to decrease its memory requirement while
making the normal matrix easy to be updated.
3. Methodology

3.1. Imaging geometry

A ground point P(X, Y, Z) is imaged by a camera with para-
meters (Xs, Ys, Zs, phi, omega, kappa) known as Exterior Orienta-
tion Parameters (EOPs) and (f, x0, y0, k1, k2) known as Interior
Orientation Parameters (IOPs). Then an image point p(x, y) corre-
sponding to the ground point P can be obtained in the image as
shown in Fig. 1. The camera lens center is defined as the per-
spective center S. The ground point P, it's corresponding image
point p and the perspective center S is on a line, the relationship
can be described by formulae as Eqs. (1), (2), (3) and (4).
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where R is a rotation matrix consisting of three rotation angles:
phi, omega, and kappa. Δx, Δy is the correction terms for image
point coordinates.



Fig. 1. The Geometry of image to the ground. O-XYZ is the ground coordinate
system, o-xy is the image coordinate system.

Fig. 2. S1, S2 are left and right camera centers, P is a ground point which is imaged
by left and right camera at S1 and S2 producing two corresponding image points p1,
p2.
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Combine (1) and (2) we have
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In a common bundle block adjustment problem, the EOPs (Xs,
Ys, Zs, phi, omega, kappa) and ground point P(X, Y, Z) are un-
knowns. If we use an uncalibrated camera, then the IOPs (f, x0, y0,
k1, k2) are also unknowns. The given parameters are the ob-
servations: image point coordinates (x, y) extracted from images.

If the EOPs and IOPs are all given, we can calculate the ground
point coordinates by intersection with conjugate image points, the
intersection geometry is demonstrated in Fig. 2. If there are more
than two conjugate image points, the intersection should be more
robust.
3.2. Levenberg–Marquardt model

The purpose of the bundle block adjustment is to obtain the
EOPs of every camera and every unknown Ground Point Co-
ordinates (GPC) using a large number of conjugate image points
and the collinearity condition. The IOPs are often calibrated before
bundle block adjustment. IOPs are set as given values in this paper,
thus only EOPs and GPCs are the unknown parameters. We can
build error equations according to Eq. (5) based on Gauss–Newton
model (Byröd and Åström, 2010).

= ( )A Au A b 6T T

where A is a matrix consisting of the first order derivatives of
Eq. (5) to the unknowns (EOPs and GPC), it's also called Jacobi
matrix. u is the vector of unknowns. b is a vector of the differences
between calculated and observed image point coordinates. A
damping term λD is often used in case that the rank of A AT is not
full and makes Eq. (6) irresolvable.
λ( + ) = ( )A A D u A b 7T T

Matrix D is usually the diagonal of matrix A AT , λ is a damping
value between (0, 1). It should be changed according to the results
of each iteration.

3.3. Schur complement

The Jacobi matrix A can be partitioned into two parts, camera
part and ground point part, so the matrix A can be rewritten as

= [ ]A A AC P where AC consists of the derivatives of Eq. (5) to EOPs
and AP consists of the derivatives of Eq. (5) to GPCs, the same can
be done to = [ ]D D DC P and = [ ]u u uc p . Then the Eq. (7) can be
rewritten as follows:

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

λ

λ

+

+
=

( )

A A D A A

A A A A D

u
u

A b

A b 8

C
T

C C C
T

P

P
T

C P
T

P P

c

p

C
T

P
T

For simplicity, denote VC as λ+A A DC
T

C C, VP as λ+A A DP
T

P P, W as
A AC

T
P, bc as A bC

T , bp as A bP
T , we get:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

( )

V W

W V

u
u

b
b 9

C

T
P

c

p

c

p

As can be seen in Eqs. (8) and (9), VC and VP are both block
diagonal, the number of ground point unknowns are always much
more than that of the camera unknowns. The structure of normal
matrix is shown in Fig. 3.

So we can eliminate the ground point unknowns using block-
wise Gauss elimination method and obtain the reduced normal
equation.

( − ) = ( − ) ( )− −V WV W u b WV b 10C P
1 T

c c P
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= − ( )V u b W u 11P p p
T

c

Unknown parameters uc can be calculated by Eq. (10), and up

can be then substituted by Eq. (11). As mentioned before, VP is a
block diagonal matrix which can be inverted block by block. If
there are m cameras and n points, the size of normal matrix is now
reduced from (6mþ3n)*(6mþ3n) to 6m*6m. This process is the so
called Schur complement trick. Matrix − −V WV WC P

1 T is known as



Fig. 3. The structure of a normal matrix in a simple bundle block adjustment
problem where only EOPs and GPCs are unknowns, the gray squares or rectangles
are blocks with non-zero elements. Others are zero elements. Each block in VC
consists of 6*6 elements, each block in VP consists of 3*3 elements, each block in W
consists of 6*3 elements.

Fig. 4. The structure of a Schur complement matrix produced by dataset with 12
images, each square is a block containing 6*6 elements. The gray squares represent
the blocks with non-zero elements, the blank squares represent blocks with zero
elements.

M. Zheng et al. / Computers & Geosciences 92 (2016) 70–78 73
Schur complement matrix S. Note that ncm is the usual case, thus
the Schur complement can efficiently reduce the size of the nor-
mal matrix. The condition of the reduced normal matrix is also
largely decreased. After Schur complement, the normal equation
can be rewritten as follows:

= ( )Su l 12c

where

= − ( )−S V WV W 13C P
1 T

= − ( )−l b WV b 14c P
1

p

Schur complement matrix consists of only EOP unknowns
corresponded to images. The structure of matrix S can express the
relationship among those images. As demonstrated in Fig. 4, for a
dataset with 12 images, the Schur matrix consists of 12*12 blocks
each of which containing 6*6 elements. If block (i, j) is a non-zero
block, it means that image i and image j have overlap area, on the
contrary, if block (i, j) is a zero block, it means that image i and
image j have no overlap. One can also see that the Schur matrix is a
sparse matrix, as the image number is increasing, the sparsity of
the matrix is getting bigger.

3.4. Preconditioned Conjugate Gradients

The PCG method is to apply a preconditioner −M 1 to the normal
matrix while using the conjugate gradient algorithm, so as to
decrease the condition of the normal matrix, and thus accelerate
the iteration process. After using a preconditioner, Eq. (12) can be
rewritten as follows:

= ( )− −M Su M l 15c
1 1

The iteration times now should be no more than the condition
of matrix −M S1 . The main task is shifted to finding a proper pre-
condition matrix which can decrease the condition of the normal
matrix and is easy to be inverted. The simplest and most widely
used preconditioner is Jacobi preconditioner which uses a diagonal
of the normal matrix as preconditioner. Other preconditioners
such as SSOR, QR factorization preconditioner and so on, could be
more efficient but might be more complicated and less stable.

3.5. Compressed sparse row format

Matrix-vector multiplications need to be calculated during each
PCG iteration. So the Schur complement normal matrix S must be
stored, otherwise it has to be calculated by observations data in
each iteration of PCG. Some methods do not store normal matrix
(Byröd and Åström, 2010), they have to calculate the whole normal
matrix in each iteration of PCG (usually hundreds times to be
converged) which is extremely time consuming. Agarwal did not
store the Schur complement normal matrix but stored matrix VC,
W and VP in Eq. (9) instead (Agarwal et al., 2010). In that case, VC

and VP are both block diagonal matrices which are easy to be
stored, but the size of matrix W is 6m*3n which is still much
bigger than that of the Schur complement matrix S (6m*6m) since
that ncm.

If we store full matrix S directly, a large memory space is
needed when the image number is very big, for an instance, ten
thousands even hundreds of thousand more. Thus the matrix
compression is crucial. Note that the matrix S is sparse. The
sparsity can be calculated by the ratio of the number of non-zero
elements and the number of all elements in the matrix. We can
compress the sparse matrix by abandoning the zero elements. The
CSR format is a standard and general sparse matrix compression
format, the details can be found in references (Bell and Garland,
2009; Wu, 2011.).

3.6. Block-based sparse matrix compression storage

In a structure from motion problem, the normal matrix is a
block-wise sparse matrix as shown in Fig. 4. It can be divided into
a number of sub-matrices. The size of sub-matrices is related to
the number of unknown parameters. In our case, for an instance,
the size of sub-matrix is 6*6. If one uses CSR format, block



Table 1
A block-wise sparse matrix with 10*10 sub-matrix, where the shadow blocks are
non-zero sub-normal-matrix, the others are zero blocks.
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structure of the normal matrix will be destroyed. More im-
portantly, during the bundle block adjustment, the normal matrix
needs to be updated after normalization of each point. Positions of
the sub-normal-matrix of each point in the whole normal matrix
need to be calculated, and the block in that position should be read
out and added by the newly computed sub-normal-matrix of the
current point, then the result is written back into that block of the
whole normal matrix. If the normal matrix was stored in the CSR
format, every elements of the current sub-normal-matrix should
be updated one by one. Thus it's a very complicated and time
consuming procedure.

A Block-based Sparse Matrix Compression (BSMC) format was
introduced according to the special block structure of the normal
matrix in a photogrammetry, remote sensing and computer vision
problem. In this format, only the non-zero sub-block-matrix and
its position indices which includes four elements: beginning row
ID, beginning column ID, row number and column number in the
full matrix are stored.

In Table 1, the normal matrix is a block-wise sparse matrix
consisting of 10*10 sub-matrix which have a size of m*m, where m
is the number of unknown parameters. Here, m is 6. So the size of
every sub-matrix is 36 doubles. The size of the block info is 4 in-
tegers. Every sub-block data is supplemented with a block info
structure which identifies the position and size of the sub-matrix
in the full matrix as shown in Table 2. Besides, the normal matrix
is usually a symmetric matrix, so only the diagonal sub-matrix and
the upper triangle part (blocks filled with black color) need to be
stored.
Table 2
The Block-based Sparse Matrix Compression (BSMC) storage format.

Block ID 0 1 2
Block info (0,0,6,6) (0,5,6,6) (1,1,6,6)
Block data Sub-block1 Sub-block2 Sub-block3
As can be seen in Table 2, BSMC storage can be divided into
block data part and block info parts. The size of the block data part
is smaller than the first array in the CSR format since only the
diagonal blocks and the upper triangle part of blocks are stored.
The block info part is also much smaller than the rest of CSR. So
the BSMC storage format is overall more efficient than CSR while
dealing with the block-based sparse matrix. To further investigate
the compression efficiency of the two storage formats, take the
sparse matrix in Table 1 for an instance, we assume that all ele-
ments in the sub-normal-matrix is non-zero, the required memory
of the sparse matrix in different formats are listed in Table 3.

One can easily tell that the proposed BSMC format only need
about half of the required memory as the CSR format does. As the
whole sparse matrix size is getting bigger, the BSMC format will be
more efficient than that of the CSR format.

3.7. Sparse normal matrix update

As mentioned in the previous section, the normal matrix needs
to be updated point by point. Each point will produce a sub-nor-
mal-matrix which will be added in the whole normal matrix. The
procedure of updating normal matrix is given as in Fig. 5.
4. Experiments and analysis

To further investigate the performance of the proposed meth-
od, a series of test datasets with different sizes are tested with the
conventional method and our proposed method. The tie point
identification was performed before the bundle block adjustment.
In this paper, we focused on algorithms and technical details of the
bundle block adjustment. The IOPs are also calibrated in the pre-
vious procedure, and only EOPs and GPC are set as unknowns in
the bundle block adjustment. First, we compared the memory
requirement of three methods, the uncompressed normal matrix,
the compressed normal matrix in the CSR format, the compressed
normal matrix in the proposed BSMC format. Then, the conven-
tional LM algorithm and PCG algorithm combined with BSMC are
tested. The simple and effective Jacobi preconditioner are adopted
in PCG. The memory requirements, total run time and the overall
precisions were compared and analyzed. All the experiments are
performed on a common laptop computer equipped with the Inter
(R) Core(TM) i5-33320M CPU 2.60 GHz, 8.00GB RAM, and 64 bit
Window 7 Operating System. Note that this is a relatively low-
performance machine.

4.1. Datasets

The first three datasets of the test data include cell phone
images and UAV images. Other datasets are all consist of internet
images which were downloaded from a public source website
which was built and shared by Sameer Agarwal in University of
Washington (Agarwal et al., 2010). These test datasets have dif-
ferent sizes from the smallest one with 40 images to the biggest
one with 13682 images. Those images are mostly collected by
uncalibrated camera such as cell phones, automatic digital cam-
eras and digital single lens reflex cameras and so on. They are
mostly not regularly arranged. Thus the corresponding normal
matrices have no band characteristic, they have to be inverted
3 … 13 14
(1,6,6,6) … (8,8,6,6) (9,9,6,6)
Sub-block4 … Sub-block13 Sub-block14



Table 3
Comparison of the required memory of sparse matrix in Table 1 in CSR format and BSMC format.

Method Full size CSR format BSMC format

Array1 Array2 Array3 Total Block info Block data Total

Size 10*10*36 20*36 20*36 10 8680 15*4 15*36 4560
Data type Double Double Integer Integer Integer Double
Memory (Bytes) 28,800 5760 2880 40 240 4320

Fig. 5. The procedure of updating the normal matrix with both the uncompressed
and compressed normal matrix.
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directly in the bundle block adjustments in the LM algorithm. The
IOPs are all calibrated before the bundle block adjustment. So we
have not introduced self-calibration here. As mentioned before,
this paper mainly focuses on the efficiency and capability of the
bundle block adjustment. Image qualities are different from each
other especially for internet images. There are a lot of gross errors
in the dataset. A gross point detection and elimination process is
applied both before and during the bundle block adjustment.
4.2. Comparison of memory requirement of the normal matrix

In this section, normal matrices are stored in three ways, the
uncompressed normal matrix, the compressed normal matrix in
Table 4
The memory requirements of the normal matrix and look up table with different algor

Dataset Images Sparsity LM PCG-CSR

Total Look up table Normal matrix Total

1 40 0.380 0.439 0.109 0.142 0.253
2 84 0.106 1.938 0.484 0.191 0.676
3 218 0.126 13.05 3.261 1.331 4.597
4 394 0.867 42.63 10.65 27.90 38.57
5 961 0.989 253.6 63.40 188.7 252.1
6 1936 0.923 1029.4 257.3 714.1 971.4
7 4585 0.105 5773.9 1443.4 459.3 1902.9
8 13682 0.104 51415.2 12853.6 4043.9 16897.9
the CSR format and the compressed normal matrix in the pro-
posed BSMC format. All 8 datasets of normal matrix are tested
with these three methods. The compression ratio is calculated as
the original-size divided by the compressed-size. The final results
are listed in Table 4.

As can be seen in Table 4 and Fig. 6, Both CSR format and BSMC
format can decrease the memory requirements compared to the
conventional LM algorithm without any compression. Memory
requirement of the normal matrix in BSMC format is smallest
while dealing with the same dataset. The proposed BSMC method
is more efficient than that of CSR format. As shown in Figs. 7 and 8,
the compression ratios of the two methods are both highly related
to the sparsities of the normal matrix.
4.3. Efficiency and accuracy assessment

To further investigate the efficiency and accuracy of the pro-
posed method, total 8 datasets are tested with both LM method
and PCG-BSMC method. The time and accuracies of bundle block
adjustment are compared and analyzed. The detail data can be
found in Table 5.

As demonstrated in Table 5 and Fig. 9, time of building normal
equation of the same dataset with both LM and PCG-BSMC are
almost the same while the time of solving normal equation is
different. So the total time is highly depended on the time of
solving normal equation. The time of solving normal equation with
conventional LM algorithm is growing exponentially as the image
number is increasing while that of our proposed method PCG-
BSMC is almost linear. Besides, when the image number continues
to increase, the conventional LM algorithm can not work any more
due to the memory constraint.

The accuracy performance can be found in Table 5 and Fig. 10.
The overall accuracies of both LM and PCG_BSMC algorithm are at
the same level. That is to say, the proposed PCG-BSMC method can
achieve the same accuracy as the conventional LM method while it
is more efficient than LM when dealing with large-scale data. It
should be also noted that when image number is more than 3000,
PCG-BSMC is still available while LM is not.
ithms (Memory Unit: MB).

PCG-BSMC

Compress ratio Look up table Normal matrix Total Compress ratio

1.735 0.003 0.099 0.103 4.262
2.867 0.013 0.133 0.147 13.184
2.839 0.090 0.933 1.025 12.732
1.105 0.295 19.63 19.93 2.139
1.006 1.760 132.7 134.5 1.886
1.060 7.145 502.4 509.6 2.020
3.034 40.08 323.1 363.2 15.897
3.043 357.0 2845.5 3202.6 16.054



Fig. 6. Total memory requirements of different algorithms: LM, PCG_CSR, PCG_BSMC.

Fig. 7. Sparsity and compression ratios of different compression formats with all 8 datasets.

Fig. 8. The compression ratios against sparsity of matrix for CSR and BSMC format.

Table 5
Time and accuracies of bundle block adjustment of different dataset with LM and PCG-BSMC algorithm.

Data ID Data source Image
number

Ground
points

Image points LM PCG-BSMC

Time of build-
ing normal
matrix

Time of sol-
ving normal
matrix

Total time RMSE Time of build-
ing normal
matrix

Time of sol-
ving normal
matrix

Total time RMSE

1 Cell phone 40 8272 23681 23 s o1 s 27 s 0.472 19 s o1 s 19 s 0.533
2 UAV 84 25589 56090 53 s o1 s 80 s 0.520 78 s o1 s 78 s 0.526
3 UAV 218 49966 179339 156 s 10 s 187 s 0.528 157 s o1 s 178 s 0.529
4 Internet 394 20074 105799 99 s 68 s 176 s 0.732 108 s 4 s 112 s 0.715
5 Internet 961 37421 337891 358 s 904 s 1289 s 0.879 388 s 24 s 412 s 0.868
6 Internet 1936 129935 1045645 1229 s 8593 s 9895 s 0.912 1247 s 79 s 1326 s 0.904
7 Internet 4585 264917 1825228 – – – – 2491 s 107 s 2598 s 0.870
8 Internet 13682 891224 5801328 – – – – 13351 s 15286 s 28637 s 0.907
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Fig. 9. Time of solving normal equation with LM and PCG-BSMC algorithm. Fig. 4a shows the building time, Fig. 4b shows the solving time.

Fig. 10. Accuracies of bundle block adjustment with different datasets.

Table 6
Comparison on Accuracy of Wu et al.'s method and the proposed method.

Data ID Source Image
number

Ground
points

Image points Reprojection error in
pixels

Wu's
method

Proposed
method

1 Internet 52 64063 347143 41.0 0.625
2 Internet 88 64298 383987 41.8 0.536
3 Internet 13682 891224 5801328 41.9 0.907
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4.4. Comparison to other works

Wu et al. implemented bundle adjustment with GPU parallel
computing. They did not store the normal matrix but compute it
on the fly (Wu, 2011.). Their method is fast, but the accuracy is
constrained since the GPU only provides single precision compu-
tation (Some high performance GPU can provide double precision
but the computation speed is compromised, the memory re-
quirement is also increased). Our method is based on double
precision on CPU, we explore matrix compression format to de-
crease the memory requirement of large normal equation. We
compared the accuracy of Wu's method and our proposed method.
The results are shown in Table 6.

The three datasets are referred to “Figure 2(a)”, “Figure 2(b)”, and
“Figure 1(a)” in Wu et al.'s paper respectively (Wu, 2011.). The third
dataset is also referred to the eighth dataset of this paper as shown in
Table 5. The speed of their method excels out method undoubtably
since they adopted GPU parallel computing techniques. But the ac-
curacy of our method is better than their method as listed in Table 6.

5. Conclusion

In this paper, a BSMC method is proposed to combine with
PCG algorithm aiming to deal with large-scale remote sensing
data. BSMC is compared with the well-known sparse matrix
compression algorithm CSR. Conventional LM method and PCG
method in bundle block adjustment are reviewed and dis-
cussed. The detail procedure of bundle block adjustment with
PCG combined with BSMC is described. Total 8 datasets of
different kinds of remote sensing data including UAV images,
Cell Phone images and internet images are tested with both
conventional LM and BSMC-PCG algorithm to compare the ef-
ficiency and accuracy performance of these two algorithms.
After statistically analyzing all the experiment results, we can
conclude that:

) The proposed Block-based Sparse Matrix Compression method
has better performance than CSR method when dealing with
bundle block adjustment problem. The compression ratio of
BSMC is smaller than that of CSR method, and BSMC is more
suitable for bundle block adjustment due to its block-based
characteristic.

) The BSMC-PCG algorithm is more efficient than conventional
LM algorithm especially dealing with large-scale remote
sensing data. The memory requirement of BSMC-PCG is much
smaller than that of LM method since that the BSMC algo-
rithm can largely compress the normal matrix. When the
image number is getting bigger (43000), the conventional
LM method can no longer work due to the memory constraint
while the BSMC-PCG method is still available. The proposed
method is available as long as the compressed normal matrix
can be stored in the memory. As the image number continues
to increase, when there was not enough memory even for the
compressed normal matrix, the proposed method was
disabled.

More real data should be tested to verify the robustness of this
method. It is not parallelized yet. The parallel computing tech-
nology will be implemented in our future work.
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