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A B S T R A C T

Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF)
approximation is appropriate for big scattered datasets in n–dimensional space. It is a non-separable approxi-
mation, as it is based on the distance between two points. This method leads to the solution of an overdetermined
linear system of equations.
In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of
big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with
respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the
matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for syn-
thetic and real datasets.
1. Introduction

Interpolation and approximation are the most frequent operations
used in computational techniques. Several techniques have been devel-
oped for data interpolation or approximation, but they usually require an
ordered dataset, e.g. rectangular mesh, structured mesh, unstructured
mesh, etc. However, in many engineering problems, data are not ordered
and they are scattered in n–dimensional space, in general. Usually, in
technical applications the conversion of a scattered dataset to a semi-
regular grid is performed using some tessellation techniques. However,
this approach is quite prohibitive for the case of n–dimensional data due
to the computational cost.

Interesting techniques are based on the Radial Basis Function (RBF)
method, which was originally introduced by Hardy (1971, 1990). A good
introduction to RBFs is given by Buhmann (2003). RBF techniques are
widely used across many fields solving technical and non-technical
problems, e.g. surface reconstruction (Carr et al. (2001), Turk and
O'Brien (2002)), data visualization (Pepper et al. (2014)) and pattern
recognition. It is an effective tool for solving partial differential equations
(Hon et al. (2015), Li et al. (2013)). The RBF techniques are really
meshless and are based on collocation in a set of scattered nodes. These
methods are independent with respect to the dimension of the space. The
computational cost of the RBF approximation increases nonlinearly
July 2017; Accepted 7 August 2017
(almost cubic) with the number of points in the given dataset and linearly
with the dimensionality of the data. Of course, there are other meshless
techniques such as discrete smooth interpolation (DSI) (Mallet (1989)),
kriging (Royer and Vieira (1984), Ma et al. (2014), Cressie (2015)),
which is based on statistical models that include autocorrelation, etc.

The radial basis functions are divided into two main groups of basis
functions: global RBFs and Compactly Supported RBFs (CS–RBFs)
(Wendland (2006)). In this paper, we will mainly focus on CS-RBFs.
Fitting scattered data with CS–RBFs leads to a simpler and faster
computation, because the system of linear equations has a sparse matrix.
However, an approximation using CS–RBFs is sensitive to the density of
the approximated scattered data and to the choice of a shape parameter.
Global RBFs are useful in repairing incomplete datasets and they are
insensitive to the density of scattered data. However, global RBFs lead to
a linear system of equations with a dense matrix and therefore they have
high computational and memory costs. Typical global RBFs are Gauss

ϕðrÞ ¼ e�ðαrÞ2 , inverse quadratic ð1þ ðαrÞ2Þ�1 and inverse multiquadric

ð1þ ðαrÞ2Þ�1=2, where α is shape parameter which defines behavior of
function. These RBFs are monotonically decreased with increasing radius
r, strictly positive definite, infinitely differentiable and convergent to

zero. Other global RBF is multiquadric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðαrÞ2

q
which is mono-

tonically increased with increasing radius r, infinitely differentiable and
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divergent as radius increases. The last popular global RBF is thin plate
spline (TPS) r2logðrÞ which is shape parameter free and divergent as
radius increases. TPS has a singularity at the origin which is removable
for the function and its first derivative but this singularity is not
removable for the second derivative of TPS.

For the processing of scattered data we can use the RBF interpolation
or the RBF approximation. The unknown function sampled at given
points fxigN1 by values fhigN1 can be determined using the RBF interpo-
lation, e.g. presented by Skala (2015), as:

f ðxÞ ¼
XN
j¼1

cjϕ
�
rj
� ¼XN

j¼1

cjϕ
���x � xj

���; (1)

where the interpolating function f ðxÞ is represented as a sum of N RBFs,
each centered at a different data point xj and weighted by an appropriate
weight cj which has to be determined. This leads to a solution of linear
system of equations:

Ac ¼ h; (2)

where the matrix A ¼ fAijg ¼ fϕð����xi � xj
����Þg is N � N symmetric square

matrix, the vector c ¼ ðc1;…; cNÞT is the vector of unknown weights and
h ¼ ðh1;…; hNÞT is a vector of values in the given points. The disadvan-
tage of RBF interpolation is the large and usually ill-conditionedmatrix of
the linear system of equations. Note that the one of the possible solution
of ill-condition problems based on modified orthogonal least squares is
described in Chen and Li (2012). Moreover, in the case of an oversampled
dataset or intended reduction, we want to reduce the given problem, i.e.
reduce the number of weights and used basis functions, and preserve
good precision of the approximated solution. The approach which in-
cludes such a reduction is called the RBF approximation. In the following
section, the approach recently introduced in Skala (2013) will be
described in detail. This approach requires less memory and offers higher
speed of computation than the method using Lagrange multipliers (Fas-
shauer (2007)). Further, a new approach to RBF approximation of large
datasets is presented in Section 5. This approach uses symmetry of a
matrix, partitioning the matrix into blocks and data structures for storage
of the sparse matrix (see Section 4).

2. RBF approximation

For simplicity, we assume that we have an unordered dataset
fxigN1 2 E2. However, this approach is generally applicable for n-
dimensional space. Further, each point xi from the dataset is associated
with a vector hi 2 Ep of the given values, where p is the dimension of the
vector, or a scalar value, i.e. hi 2 E1. For an explanation of the RBF
approximation, let us consider the case when each point xi is associated
with a scalar value hi, e.g. a 21=2D surface. Let us introduce a set of new
reference points (knots of RBF) fξjgM1 , see Fig. 1.

These reference points may not necessarily be in a uniform grid. A
good placement of the reference points improves the approximation of
the underlying data. For example, when a terrain is approximated,
placement along features such as break lines leads to better approxima-
tion results. The number of reference points ξj is M, where M≪N. The
RBF approximation is based on the distance computation between the
given point xi and the reference point ξj.

The approximated value is determined as (see Skala (2013)):

f ðxÞ ¼
XM
j¼1

cjϕ
�
rj
� ¼XM

j¼1

cjϕ
���x � ξj

���; (3)

where ϕðrjÞ is an RBF centered at point ξj and the approximating function
f ðxÞ is represented as a sum of these RBFs, each associated with a
different reference point ξj, and weighted by a coefficient cj which has to
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be determined.
When inserting all data points xi, with i ¼ 1;…;N, into (3), we get an

overdetermined linear system of equations.

hi ¼ f ðxiÞ ¼
XM
j¼1

cjϕ
�����xi � ξj

����� ¼XM
j¼1

cjϕi;j i ¼ 1;…;N (4)

The linear system of equation (4) can be represented in a matrix
form as:

Ac ¼ h; (5)

where Aij ¼ ϕð��xi � ξj
��Þ is the entry of the matrix in the i-th row and j-th

column, the number of rows is N≫M, M is the number of unknown
weights c ¼ ðc1;…; cMÞT , i.e. a number of reference points, and h ¼
ðh1;…; hNÞT is a vector of values in the given points. The presented sys-
tem is overdetermined, i.e. the number of equations N is higher than the
number of variables M. This linear system of equations can be solved by
the least squares method (LSE) as ATAc ¼ ATh.

3. RBF approximation with polynomial reproduction

Themethodwhich was described in Section 2 can have problems with
stability and solvability. Therefore, the RBF approximant (3) is usually
extended by a polynomial function PkðxÞ of the degree k. This approach
was introduced in Majdisova and Skala (2016).

The approximated value f ðxÞ is determined as:

f ðxÞ ¼
XM
j¼1

cjϕ
���x � ξj

���þ PkðxÞ; (6)

where ξj are reference points specified by a user. The approximating
function f ðxÞ is represented as a sum of M RBFs, each associated with a
different reference point ξj, and weighted by an appropriate coefficient cj,
and PkðxÞ is a polynomial function of degree k. It should be noted that the
polynomial function affects only global behavior of the approximated
dataset. In practice, a linear polynomial P1ðxÞ:

P1ðxÞ ¼ aTx þ a0 (7)

is used (e.g. P1ðxÞ ¼ a1x þ a2y þ a0 for x 2 E2). Geometrically, the co-
efficient a0 determines the “vertical” placement of the hyperplane and
the expression aTx represents the inclination of the hyperplane.

Thus, the following overdetermined linear system of equations
is obtained:

hi ¼ f ðxiÞ ¼
XM
j¼1

cjϕ
���xi � ξj

���þ aTx þ a0

¼
XM
j¼1

cjϕi;j þ aTx þ a0 i ¼ 1;…;N:

(8)

The linear system of equation (8) can be represented in a matrix
form as:

Acþ Pk ¼ h; (9)

where Aij ¼ ϕð����xi � ξj
����Þ is the entry of the matrix in the i-th row and j-th

column, c ¼ ðc1;…; cMÞT is the vector of unknownweights, Pi ¼ ðxT
i ;1Þ is

the vector of basis functions of linear polynomial at point xi, k ¼
ðaT ; a0ÞT is the vector of the coefficient for the linear polynomial and h ¼
ðh1;…; hNÞT is the vector of values in the given points. The presented
linear system of equations can be solved by the minimization of the
square of error, which leads to a system of linear equations:



Fig. 2. M �M square matrix which is partitioned into MB �MB blocks. The color red is
used to denote the main diagonal of the matrix and illustrates the symmetry of the matrix.
The color green is used to denote the blocks which must be computed. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 1. The RBF approximation and reduction of points. Note that the reference points
(knots) can be distributed arbitrarily.
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�
ATA ATP
PTA PTP

��
c
k

�
¼
�
ATh
PTh

�
: (10)

Finally, it should be noted that the polynomial of degree k>1 can be
used in general. However, in this case, it is necessary be careful because
the polynomial of higher degree in combination with a large range of
data might cause numerical problems. This is due to the fact that the
elements of sub-matrix PTP in relation (10) contain much larger values
than elements of sub-matrix ATA in the same relation.

4. Data structures for storage of the sparse matrix

If the CS-RBFs are used, the matrix of the linear system of equations is
sparse. Therefore, the most important part of each approximation using
CS-RBFs is a data structure used to store the approximation matrix. There
are a number of existing sparse matrix representations, e.g. Bell and
Garland (2009), �Simecek (2009), each with different computational
characteristics, storage requirements and methods of accessing and
manipulating entries of the matrix. The main difference among existing
storage formats is the sparsity pattern, or the structure of the nonzero
elements, for which they are best suited. For our purpose, the coordinate
format is used, which is briefly described in the following.

The coordinate (COO) format is the simplest storage scheme. The
sparse matrix is represented by three arrays: data, where the NNZ

nonzero values are stored, row, where the row index of each nonzero
element is kept, and col, where the column indices of the nonzero values
are stored.

Example of the COO format for matrix Q:

Q¼

0
BBBBBB@

1 0 6 0 0

9 2 0 7 0

0 1 3 0 8

4 0 2 4 0

0 5 0 0 0

1
CCCCCCA

row ¼ ½0 0 1 1 1 2 2 2 3 3 3 4 �
col ¼ ½0 2 0 1 3 1 2 4 0 2 3 1 �
data ¼ ½1 6 9 2 7 1 3 8 4 2 4 5 �

So, if the COO format is used for representation of matrix Q (in form
as described above) and the equation y ¼Qx, where x is vector of the
given values, has been solved, the following pseudocode is used for
calculation:

∀i ¼ 0;…;N : y½i� ¼ 0

for i ¼ 0;…;NNZ � 1 do
yrow½i� ¼ yrow½i� þ data½i�⋅xcol½i�

Note that vector of given values has form x ¼ ½x0; x1;…; xM �, whereM
is number of columns of matrix Q, and the resulting vector is
y ¼ ½y0; y1;…; yN �, where N is number of rows of matrix Q.

The benefit of the COO format is its generality, i.e. an arbitrary sparse
matrix can be represented by the COO format and the required storage is
always proportional to the number of nonzero values.

The disadvantage of the COO format is that both row and column
indices are stored explicitly, which reduces the efficiency of memory
transactions (e.g. read operations).

5. RBF approximation for large data

In practice, real datasets contain a large number of points, which
results in high memory requirements for storing the matrix A of the
overdetermined linear system of equation (5). Unfortunately, we do not
have an unlimited capacity of RAM memory; therefore, calculation of
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unknown weights cj for RBF approximation would be prohibitively
computationally expensive due to memory swapping, etc. In this section,
a proposed solution to this problem is described.

In Section 2, it was mentioned that an overdetermined system of
equations can be solved by the least squares method. For this method the
square M �M matrix:

B ¼ ATA (11)

is to be determined. Advantages for computation of the matrix B are that
it is a symmetric matrix and, moreover, only two vectors of length N are
needed for determination of one entry, i.e.:

bij ¼
XN
k¼1

ϕki⋅ϕkj; (12)

where bij is the entry of the matrix B in the i�th row and j�th column.
To save memory requirements and to prevent data bus (PCI) over-

loading, block operations with matrices are used. Based on the above
properties of the matrix B, only the upper triangle of this matrix is
computed. Moreover, the matrix B is partitioned into MB �MB blocks,
see Fig. 2, and the calculation is performed sequentially for each block:



Table 3
Experimentally determined shape parameters α for the used CS-RBFs.

CS-RBF Shape parameter

Synthetic Serpent Mound St. Helens

Wendland's ϕ3;0 α ¼ 0:707 α ¼ 0:01 α ¼ 0:0005
Wendland's ϕ3;1 α ¼ 0:500 α ¼ 0:01 α ¼ 0:0007
Wendland's ϕ3;3 α ¼ 0:250 α ¼ 0:01 α ¼ 0:0005

Table 2
Used Wendland's CS-RBFs ϕd;s. Wendland's functions are univariate polynomial of de-
gree ⌊d=2⌋þ 3sþ 1, they are always positive definite up to a maximal space dimension
d and their smoothness is C2s . For more details see Chapter 11.2 in Fasshauer (2007).

CS-RBF ϕðrÞ
ϕ3;0 ð1� αrÞ2þ
ϕ3;1 ð1� αrÞ4þð4αr þ 1Þ
ϕ3;3 ð1� αrÞ8þð32ðαrÞ3 þ 25ðαrÞ2 þ 8αr þ 1Þ

Table 1
Overview information for the tested datasets. The Axis-Aligned Bounding Boxes (AABBs) of
the tested datasets have a size width� length� relief, i.e. xrange � yrange � zrange . Note that
one foot [ft] corresponds to 0.3048 m [m].

Synth. Serpent Mound St. Helens

Number of pts. 1089 3;265;110 6;743;176
Number of ref. pts. 81 10; 000 10;000
Relief [ft] 1.238 48.70 5138.69
Width [ft] 1.000 1;085:12 26;232:37
Length [ft] 1.000 2;698:96 35;992:69

Fig. 3. Franke's function defined as (17).

Fig. 4. Original datasets: Mount Saint Helens (left); Serpent Mound (right).
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Bkl ¼ ðA�;kÞT ðA�;lÞ

k ¼ 1;…
	
;
M
MB



; l ¼ k;…;

	
M
MB



;

(13)

where Bkl is a sub-matrix in the k�th row and l�th column, the index �
denotes that the sub-matrix A�;k contains all values in the appropriate
block of columns (given by the index k) of the original matrix A, i.e. A�;k
is defined as:

A�;k ¼

0
BBBB@

ϕ1;ðk�1Þ⋅MBþ1 ⋯ ϕ1;minfk⋅MB ;Mg
⋮ ⋱ ⋮

ϕi;ðk�1Þ⋅MBþ1 ⋯ ϕi;minfk⋅MB ;Mg
⋮ ⋱ ⋮

ϕN;ðk�1Þ⋅MBþ1 ⋯ ϕN;minfk⋅MB ;Mg

1
CCCCA; (14)

where the size of this matrix is N �MB except of the last block and the
index k denotes the k�th block of columns. This enables the computation
of big datasets on hardware systems with limited main memory.

The size of block MB is chosen so that swapping of memory (RAM)
does not occur during the computation, i.e.:�
M2 þ 2⋅MB⋅N

�
⋅prec < size of RAM ½B�; (15)

where prec is the size of the data type in bytes. Note that this relation is
valid when thematrixA of the overdetermined linear system of equations
is dense. If CS-RBFs are used for RBF approximation and the matrix A of
the overdetermined linear system of the equation is stored using special
data structures, see Section 4, then the optimal size of block MB is much
larger than given in relation (15). For this case, the optimal size of block
MB should satisfy:�
M2 þ 2⋅NNZ

�
⋅prec < size of RAM ½B�; (16)

where NNZ is the maximum number of non-zero elements in sub-matrices

A�;k; k ¼ 1;…;

	
M
MB



. Naturally, it is obvious that the size of the block

should be selected as the largest possible value satisfying (16).
Moreover, note that the elements in sub-matrices A�;k are zero for far

away points, when CS-RBFs are used. Therefore, we do not want to
compute the elements for all pairs of points, so the kd-tree (A.2 in Fas-
shauer (2007)) is used for computing the sub-matricesA�;k. Algorithm for
determination of the sparse sub-matrix A�;k is described in Algorithm 1.

In general, the mentioned approach could be used in combination
with massive parallel computing on GPU, but the calculation would have
to be done in single precision to exploit the full potential of GPU. How-
ever, in this case, problems with numerical stability and solvability of the
RBF approximation can be expected.

Finally, note that it is possible to modify this approach easily for the
RBF approximation with a polynomial reproduction, see Section 3.

6. Experimental results

The presented RBF approximation method was tested on synthetic
and real data. The implementation was performed in Matlab. Experi-
mental results for one synthetic and two real datasets follow.
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Table 4
The RBF approximation error and density of least square matrix for the tested datasets and
different radial basis functions. Note that density of least square matrix expresses per-
centage of non-zero elements in matrix and that one foot [ft] corresponds to 0.3048 m [m].

Phenomenon without polynomial Wendland's with linear polynomial
Wendland's

ϕ3;0 ϕ3;1 ϕ3;3 ϕ3;0 ϕ3;1 ϕ3;3

Synthetic data
Mean
absolute
error [ft]

0.0041 0.0021 0.0019 0.0040 0.0019 0.0019

Deviation of
error [ft]

1.92E-5 6.06E-6 5.25E-6 1.90E-5 5.45E-6 5.12E-
6

Mean
relative
error [%]

0.0151 0.0076 0.0072 0.0150 0.0070 0.0072

Serpent Mound
Mean
absolute
error [ft]

0.173 0.141 0.130 0.164 0.139 0.129

Deviation of
error [ft]

0.072 0.047 0.037 0.068 0.047 0.037

Mean
relative
error [%]

0.015 0.012 0.011 0.014 0.012 0.011

Density of
LSE matrix
[%]

8.413 8.413 8.413 8.468 8.468 8.468

Mount St. Helens
Mean
absolute
error [ft]

12.568 11.589 9.881 12.129 10.935 9.773

Deviation of
error [ft]

188.595 165.574 100.738 159.139 122.659 98.993

Mean
relative
error [%]

0.013 0.012 0.010 0.012 0.011 0.010

Fig. 5. Results for synthetic dataset false-colored by magnitude of absolute error: Wendland's RBF ϕ3;0, α ¼ 0:707 (left); Wendland's RBF ϕ3;1, α ¼ 0:500 (center) and Wendland's RBF ϕ3;3,
α ¼ 0:250 (right).
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The synthetic dataset has a Halton distribution (A.1 in Fasshauer
(2007)) of points and each point is associated with a value from Franke's
function (Franke (1979)):

f ðxÞ ¼ f1ðxÞ þ f2ðxÞ þ f3ðxÞ � f4ðxÞ;

f1ðxÞ ¼ 0:75⋅exp

 
� ð9x1 � 2Þ2

4
� ð9x2 � 2Þ2

4

!
;

f2ðxÞ ¼ 0:75⋅exp

 
� ð9x1 þ 1Þ2

49
� ð9x2 þ 1Þ2

10

!
;

f3ðxÞ ¼ 0:50⋅exp

 
� ð9x1 � 7Þ2

4
� ð9x2 � 3Þ2

4

!
;

f4ðxÞ ¼ 0:20⋅exp
�� ð9x1 � 4Þ2 � ð9x2 � 7Þ2�;

(17)

where x ¼ ðx1; x2Þ is a point for which the associated value has been
computed. This function is shown in Fig. 3.

The first real dataset was obtained from LiDAR data of Mount Saint
Helens in Skamania County, Washington,1 see Fig. 4 (left). The second
real dataset is LiDAR data of the Serpent Mound in Adams County,
Ohio21, see Fig. 4 (right).

Each point of these datasets is associatedwith its elevation. Moreover,
as a first step, the real datasets are translated so that their estimated
center of gravity corresponds to the origin of the coordinate system. This
step is used due to the limitation of the influence of dataset placement in
space. The set of reference points is a subset of the given dataset, for
which we determine the RBF approximation. In addition, reference
points are uniformly distributed within a given area. Table 1 gives an
overview of the used datasets.

Because the global RBFs affect the entire domain of given datasets,
which is usually undesirable behavior, the CS-RBFs have been used for
the presented experiments. All CS-RBFs from the catalog of RBFs in
Fasshauer (2007) (see D.2.7) have been used for the experiments.
Depending on the quality, the obtained results are divided into three
groups. The results are presented for a representative of each group,
see Table 2.

Note that the notation ð1� αrÞqþ means:

ð1� αrÞqþ ¼
� ð1� αrÞq if 0 � αr � 1
0 if αr>1

; (18)

where r is the variable which denotes the distance of the given point from
the appropriate reference point and α is a shape parameter. The shape
1 http://www.liblas.org/samples/.
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parameters α for the used CS-RBFs were determined experimentally with
regard to the quality of approximation and they are presented in Table 3.
Some papers have also been published on choosing the optimal shape
parameter α, e.g. Franke (1982), Rippa (1999), Fasshauer and Zhang
(2007), Scheuerer (2011). Note that the value of the shape parameter α is
inversely proportional to the width, length, and number of points of
the datasets.

Fig. 5 presents the approximations of the synthetic dataset without
polynomial reproduction for all CS�RBFs.

In this figure, the surfaces are false-colored by the magnitude of the
Density of
LSE matrix
[%]

6.470 3.452 6.470 6.536 3.510 6.536

http://www.liblas.org/samples/


Fig. 6. Results for the tested real datasets false-colored by magnitude of absolute error.
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error. The error is defined as the absolute value of the difference between
Franke's function (17) and approximated function. It can be seen that for
the synthetic dataset, the RBF approximation with Wendland's ϕ3;3 basis
function returns the best result in terms of the error. On the contrary, the
worst result is obtained for the RBF approximation with Wendland's ϕ3;0

basis function. Table 4 shows three different error measures of the
datasets depending on the chosen basis functions: mean absolute error,
deviation and mean relative error.

These error measures are performed for approximation without
polynomial reproduction and for approximation with linear polynomial
reproduction. It can be seen that the RBF approximation with linear
polynomial reproduction produces slightly better results than the RBF
approximation without reproduction in terms of the error, but this
improvement seems to be insignificant.
56
The RBF approximation for the real datasets was solved using “block-
wise” approach described above. Approximations of Mount Saint Helens
dataset without polynomial reproduction for all CS-RBFs are shown
in Fig. 6a.

It illustrates the magnitude of error at each point of the original point
cloud. Moreover, the detail of a crater is shown for each approximation. It
can be seen that the RBF approximation with Wendland's ϕ3;3 basis
function returns the best results in terms of the error. On the contrary, the
worst result is obtained for the RBF approximation with Wendland's ϕ3;0

basis function again. For this approximation, sharp peaks are formed. It is
most evident around the rim of a crater. Also for the Mount Saint Helens
dataset, the three errormeasuresof the computedelevation for all usedCS-
RBFs and for both types of RBF approximation (i.e. approximationwithout
polynomial reproduction and approximation with linear polynomial



Fig. 8. Time performance for approximation of the Serpent Mound depending on the
block size.

Fig. 7. The signed errors for the Serpent Mound dataset and Wendland's RBF ϕ3;1 with
α ¼ 0:01: the positive error is colored white and the negative error is colored black.
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reproduction) are presented in Table 4. These results confirm the state-
ments above. Further, it can be seen that the RBF approximation with
linear reproduction again produces better results than the RBF approxi-
mation without reproduction, especially in terms of deviation of error.

The last presented experimental results are for the RBF approximation
of Serpent Mound without polynomial reproduction and are shown in
Fig. 6b. It illustrates the magnitude of error at each point of the original
point cloud. Moreover, the detail of Serpent Mound is shown for each
approximation. It can be seen that the RBF approximation with Wend-
land's ϕ3;3 basis function returns a slightly better result than RBF
approximationwithWendland'sϕ3;1 basis function in termsof the error for
the Serpent Mound dataset. The RBF approximation withWendland's ϕ3;0

basis function returns the worst results. These facts are mainly evident in
the details. Further, we can see that the highest errors occur on the
boundary of the terrain for all cases. The three error measures of the
elevation for all used CS�RBFs and for both types of RBF approximation
(i.e. approximation without polynomial reproduction and approximation
with linear polynomial reproduction) are presented in Table 4. These re-
sults again confirm the statements above. Further, it can be seen that the
RBFapproximationwith linearpolynomial reproductionproduces slightly
better results than the RBF approximation without reproduction in terms
of the error, but this improvement is not significant. The mutual com-
parison of both real datasets in terms of the deviation of error (Table 4)
indicates that RBF approximation with linear reproduction returns
considerably better results than RBF approximation without polynomial
reproduction if the range of associated values is large. Moreover, it should
benoted that the degreeof smoothness for the tested typeof real datasets is
lower than degree of smoothness for Wendland's ϕ3;1 andWendland's ϕ3;3

basis functions and, therefore, the comparison of RBF approximationwith
Wendland's ϕ3;1 basis function and RBF approximation with Wendland's
ϕ3;3 basis function returns less significant results. The situation is different
for comparison of RBF approximationwithWendland's ϕ3;0 basis function
and RBF approximation with Wendland's ϕ3;1 basis function where the
difference is significant. The signed errors for the Serpent Mound dataset
andWendland'sϕ3;1 basis function are shown in Fig. 7.We can see that the
signs are different at various locations. Similar results are obtained for the
rest of the experiments.

The implementation of the RBF approximation was performed in
MATLAB and tested on a PC with the following configuration:
57
� CPU: Intel® Core™ i7-4770 (4 � 3.40 GHz þ hyper-threading),
� memory: 32 GB RAM,
� operation system: Microsoft Windows 7 64 bits.

For the approximation of the Serpent Mound dataset with 10;000
local Wendland's ϕ3;1 basis functions with shape parameter α ¼ 0:01, the
running times for different sizes of blocks were measured. These
computational times are presented in Fig. 8b. We can see that the time
performance is large for the approximation matrix which is partitioned
into small blocks (i.e. smaller than 500 � 500 blocks). This is caused by
overhead costs and, moreover, each entry in the matrix A of the over-
determined linear system has to be calculated more times than for larger
sizes of block. On the other hand, the running time begins to rise above
the permissible limit due to memory swapping for the approximation
matrix which is partitioned into larger blocks (i.e. larger than 2500 �
2500 blocks).

The running time for determination of RBF approximation with the
mentioned parameters was divided into two steps. The running time
needed for calculation of all sub-matrices formed from the matrixA of the
original overdetermined linear system of equations by the block-wise
approach is determined in the first step. The running time needed for
calculation of the least square matrix ATA and for calculation of the
vector of unknown weights is measured in the second step. The com-
parison of the perceptual time performance of these two steps can be seen
in Fig. 8a. It can be seen that the most time-consuming part is the first
step, in which all needed sub-matrices are calculated (lower part in
the graph).
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7. Conclusion

In this paper two different RBF approximation methods are experi-
mentally verified using one synthetic and two real datasets. The first
method is an RBF approximation without polynomial reproduction and
the second method is an RBF approximation with linear reproduction.
Moreover, a new approach to the RBF approximation of large datasets is
presented. The proposed approach uses symmetry of the matrix, parti-
tioning the matrix into blocks and block-wise solving which enables the
computation on systems with limited main memory. Because CS-RBFs
are used for approximation, data structures for storage of the sparse
matrix can be employed; thereby a larger size of blocks can be chosen
and the computational costs decrease. The experiments proved that the
proposed approach is fully applicable for the RBF approximation for
large datasets.

The experiments also showed that, depending on the quality of the
results, it is possible to divide the CS-RBFs from the catalog of RBFs
(D.2.7 in Fasshauer (2007)) into three groups. The results of the exper-
iments proved that RBF approximation with linear reproduction returns
better result than RBF approximation without polynomial reproduction,
particularly if the range of associated values is large. The experiments
also proved that the RBF methods have problems with the accuracy of
calculation on the boundary of an object, which is a well-known prop-
erty. The presented approach is directly applicable in GIS and geo-
science fields.

Future work will be aimed at improving the accuracy at the bound-
aries, on the computational performance without loss of approximation
accuracy and computation of optimal shape parameters. Also, the
“moving window” technique will be explored to increase speed of
computation.
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