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A B S T R A C T

Spectral induced polarization (SIP) measurements are now widely used to infer mineralogical or hydrogeolo-
gical properties from the low-frequency electrical properties of the subsurface in both mineral exploration and
environmental sciences. We present an open-source program that performs fast multi-model inversion of
laboratory complex resistivity measurements using Markov-chain Monte Carlo simulation. Using this stochastic
method, SIP parameters and their uncertainties may be obtained from the Cole-Cole and Dias models, or from
the Debye and Warburg decomposition approaches. The program is tested on synthetic and laboratory data to
show that the posterior distribution of a multiple Cole-Cole model is multimodal in particular cases. The
Warburg and Debye decomposition approaches yield unique solutions in all cases. It is shown that an adaptive
Metropolis algorithm performs faster and is less dependent on the initial parameter values than the Metropolis-
Hastings step method when inverting SIP data through the decomposition schemes. There are no advantages in
using an adaptive step method for well-defined Cole-Cole inversion. Finally, the influence of measurement noise
on the recovered relaxation time distribution is explored. We provide the geophysics community with a open-
source platform that can serve as a base for further developments in stochastic SIP data inversion and that may
be used to perform parameter analysis with various SIP models.

1. Introduction

In recent years, there has been an increase in interest towards
spectral induced polarization (SIP) to solve various problems in
mineral exploration, hydrogeology, and environmental sciences. SIP
data consists of complex resistivity measurements (phase shift and
amplitude) in the frequency domain, typically between 1 mHz and
100 kHz. Mathematical models that describe SIP phenomena are often
used to describe field or laboratory complex resistivity measurements.
These models usually involve parameters known as chargeability and
characteristic relaxation time. Empirical models such as the Pelton
Cole-Cole resistivity model (Pelton et al., 1978) and the Debye
decomposition approach (Nordsiek and Weller, 2008) were proposed
to parameterize the SIP response. Other models are derived from
equivalent circuits (see Dias (2000)). Chargeability and relaxation time
are also involved in mechanistic models that describe the polarization
effect observed when rocks are subjected to alternating electrical fields.
The models of Wong (1979), Revil et al. (2015) and Misra et al. (2016a,

2016b) describe the polarization of metallic grains disseminated in a
rock's pore space. Mechanistic models have also been proposed to
explain the polarization of rocks in the absence of metallic minerals
(Vinegar and Waxman, 1984; Revil and Florsch, 2010; Revil et al.,
2012). SIP models can be validated using synthetic samples with well-
known physical properties (e.g. Leroy et al.,2008; Gurin et al., 2015).

Experimental evidence shows that there is a strong relationship
between the magnitude of electrical polarization and the surface-area to
pore volume ratio (Spor), as first described by Börner and Schön (1991).
Additional data then strengthened this relationship (Slater et al., 2006;
Kruschwitz et al., 2010) and it was shown by Weller et al. (2010b) that
values of chargeability can be used to infer Spor. A direct relationship
between the Cole-Cole time constant and pore size has also been
established (Kruschwitz et al., 2010; Niu and Revil, 2016). In the presence
of metallic grains and without considering oxidation processes, it is the
metallic grain size distribution that dictates the shape of the SIP responses
of unconsolidated sands (Wong, 1979; Gurin et al., 2013, 2015). The
approximations used in mechanistic models are not always representative

http://dx.doi.org/10.1016/j.cageo.2017.05.001
Received 7 November 2016; Accepted 1 May 2017

⁎ Corresponding author.
E-mail addresses: cberube@ageophysics.com (C.L. Bérubé), michel.chouteau@polymtl.ca (M. Chouteau), pejman.shamsipour@polymtl.ca (P. Shamsipour),

randy.enkin@canada.ca (R.J. Enkin), olivo@queensu.ca (G.R. Olivo).

Computers & Geosciences 105 (2017) 51–64

Available online 03 May 2017
0098-3004/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.05.001
http://dx.doi.org/10.1016/j.cageo.2017.05.001
http://dx.doi.org/10.1016/j.cageo.2017.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.05.001&domain=pdf


of real geological material. Extensive experimental data sets are needed to
see if these models hold for more complex media such as the deformed
and altered rocks that are often host to ore deposits. Studies that aim to
characterize the SIP responses of rock samples from such deposits require
fast and robust batch inversion codes.

In the SIP literature, three different approaches are often used to
interpret SIP data. In the first, no curve fitting is required and only the
basic features (peak value, frequency of the peak) of the imaginary part of
conductivity are considered (e.g. Börner and Schön, 1991; Kruschwitz
et al., 2010). The second approach consists of fitting the SIP data with a
generalized Cole-Cole model or any of its variants. In this approach the
optimization problem is overdetermined and fitting can be done using the
nonlinear least squares formulation of Tarantola and Valette (1982).
Lastly, interpretation of the SIP data can be done by performing a
deconvolution of the complex resistivity spectra into a linear superposition
of relaxations models. A Debye (Nordsiek and Weller, 2008) or Warburg
(Revil et al., 2014) transfer function is typically used in the deconvolution
scheme. In this approach, the problem is underdetermined and requires
optimized regularization (Florsch et al., 2012, 2014).

Techniques based on the least-squares optimization have inconve-
niences. First, the inversion result is very dependent on the initial
parameter estimation (e.g. Nordsiek and Weller (2008) and Weigand
and Kemna (2016) for Debye decomposition). Batch inversion over large
collections of laboratory measurements can prove to be a frustrating and
time-consuming process for this reason. Second, they do not allow a
straightforward estimation of the uncertainty around the recovered

parameters. These two problems can be avoided by using a more global
optimization approach such as a Markov-chain Monte Carlo (MCMC)
simulation. With MCMC algorithms, the influence of the starting values
diminishes as the simulation progresses. They also allow the propagation
of measurement uncertainties during the inversion process. SIP parameter
uncertainty is often neglected while attempts are made to establish
relationships between SIP responses and rock properties (e.g. Zisser
et al., 2010; Placencia-Gomez et al., 2013).

We developed BISIP, an open-source Python program to perform fast
Bayesian Inversion of Spectral Induced Polarization data using either
Debye or Warburg decomposition, the Cole-Cole model, or any other
empirical model based on simple circuits. An adaptive MCMC algorithm is
implemented in BISIP. This approach offers significant advantages in
terms of computation time when inverting SIP data with the decomposi-
tion approach, by comparison with the non-adaptive routine proposed by
Keery et al. (2012). In this paper, parameter analysis of double Cole-Cole
and Warburg decomposition inversions of synthetic data contaminated
with varying levels of noise and of real SIP data measured on mineralized
rocks from the Canadian Malartic gold deposit.

2. Bayesian inference using MCMC

From a Bayesian point of view, all model parameters and data are
random quantities. If X denotes a vector of random variables (e.g. a
data set) and θ represents a vector of model parameters, then the
probability distribution of the parameters given the random variables is

Fig. 1. Flowchart of the Metropolis-Hastings algorithm.

C.L. Bérubé et al. Computers & Geosciences 105 (2017) 51–64

52



given by Bayes’ theorem:

∫
π θ X p X θ p θ

p X θ p θ dθ
( ∣ ) = ( ) ( )

( ) ( )
,

(1)

where p θ( ) is the prior distribution of the parameters and p X θ( ) is a
statistical model that reflects our understanding of the random
variables given the model parameters. π θ X( ) is also known as the
posterior distribution, and can be written as

π θ X θ p θ
c

( ∣ ) = ( ) ( ) ,
n (2)

where θ( ) denotes the likelihood function and ∫c p X θ p θ dθ= ( ) ( )n is
the normalization constant. The posterior distribution is therefore
proportional to likelihood multiplied by the prior distribution. The goal
of Bayesian inference is to obtain the posterior expectation of a
function of θ or, more directly, of the parameters θ. The expected
value of a function f(X) can be obtained with Monte Carlo integration
by drawing n random samples from the posterior distribution of X. The
estimated expectation is

∑E f X
n

f X[ ( )] ≈ 1 ( ).
j

n

j
=1 (3)

The samples Xj can be drawn from the stationary distribution of a
Markov chain. In the following sections, we describe two MCMC
algorithms to produce such chains: the Metropolis-Hastings step
method and an adaptive Metropolis step method.

2.1. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm was initially proposed by
Metropolis et al. (1953) and was later generalized by Hastings
(1970). Both algorithms use Markov chains to perform Monte Carlo
integration. A Markov chain is defined as a sequence of random
samples where the probability of the next sample depends only on
the current one, i.e.,

P X X X P X X( ,…, ) = ( ).t t t t+1 1 +1 (4)

Markov chains must satisfy three conditions to be ergodic. A chain
must be irreducible, aperiodic, and have a unique stationary distribu-
tion (see Gilks et al. (1995) for details on the Ergodic theorem).

Fig. 2. Real and imaginary resistivity spectra of double Cole-Cole models 1 (a) and 4 (b) described in Table 1. Data is contaminated with errors of 1 mrad to simulate repetition of the
measurements. The inversion is repeated 10 times, each time with new starting values draw randomly from the uniform priors. The mean fit is superimposed on the 10 inversion results.

Table 1
Parameters used for synthetic modelling of a double Cole-Cole type SIP spectra and the recovered parameters for different combinations of frequency dependence exponent and
chargeability (c1 and m1, respectively). These parameters are never correctly recovered when the frequency exponent has a low value of 0.1. The correct parameters are recovered when
the frequency dependence has a high value of 0.4.

ρ0 (Ω m) m1 c1 τ1 (s) m1 c1 τ2 (10−5 s)

Model 1 Synthetic 1000 0.1 0.1 0.1 0.9 0.9 1.0
(c = 0.11 , m = 0.11 ) Recovered 1039 ± 15 0.17 ± 0.03 0.06 ± 0.01 0.29 ± 0.01 0.89 ± 0.06 0.89 ± 0.01 0.96 ± 0.04
Model 2 Synthetic 1000 0.4 0.1 0.1 0.9 0.9 1.0
(c = 0.11 , m = 0.41 ) Recovered 929 ± 5 0.26 ± 0.01 0.17 ± 0.01 0.21 ± 0.02 0.96 ± 0.03 0.89 ± 0.01 1.03 ± 0.05
Model 3 Synthetic 1000 0.1 0.4 0.1 0.9 0.9 1.0
(c = 0.41 , m = 0.11 ) Recovered 1002 ± 3 0.100 ± 0.004 0.40 ± 0.02 0.122 ± 0.004 0.88 ± 0.06 0.90 ± 0.01 1.08 ± 0.04
Model 4 Synthetic 1000 0.4 0.4 0.1 0.9 0.9 1.0
(c = 0.41 , m = 0.41 ) Recovered 1001 ± 3 0.401 ± 0.004 0.40 ± 0.01 0.100 ± 0.002 0.85 ± 0.06 0.91 ± 0.01 1.04 ± 0.02
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The Metropolis-Hastings algorithm requires a starting value for the
Markov chain (X0). At every step of the chain, where the current value
is Xt, a candidate sample Y is drawn from a proposal distribution,
denoted by q X Y( , )t . It must then be decided if the candidate Y will be
accepted or rejected. If π (·) is the target distribution from which we
wish to sample from after a large number of iterations (the posterior
distribution), the probability of move α is defined by (Chib and
Greenberg, 1995):

α X Y π Y q Y X
π X q X Y

( , ) = min ( ) ( , )
( ) ( , )

, 1t
t

t t

⎡
⎣⎢

⎤
⎦⎥ (5)

Therefore, the chain always moves from Xt to the candidate Y if the
ratio is greater than 1. If the ratio is lower than 1, the candidate is only
accepted with probability α X Y( )t . In the latter case, a random sample u
is drawn from a uniform density between 0 and 1, denoted by (0, 1).
If α X Y( )t is greater than u, the candidate is accepted. Otherwise, it is
rejected. An important special case is one where the proposal distribu-
tion is symmetric, resulting in q Y X q X Y( , ) = ( , )t t . If this condition is
satisfied, the probability of move is reduced to the ratio between the
posterior distributions. If the prior distributions are uniform, the
probability of move further reduces to the likelihood ratio. The
Metropolis-Hastings algorithm is summarized in Fig. 1, where T is
the total number of iterations to perform.

Finally, the choice of proposal distribution has a strong influence on
the convergence of the Markov chain toward the target stationary
distribution (Roberts et al., 1997). We use the common choice of

Gaussian proposal distribution centered on the current state of the chain.
Acceptance rate is defined as the percentage of accepted samples during a
segment of the Markov chain. Roberts et al. (1997) have shown that the
optimal acceptance rate is 23.4% in high-dimensionality problems. In
order to produce a Markov chain with good mixing, the acceptance rate is
computed at user-defined intervals and the standard deviation of the
proposal distribution is tuned accordingly (Roberts and Rosenthal, 2001).

2.2. Adaptive proposal distribution

Haario et al. (1999, 2001) first proposed the use of an adaptive
proposal distribution in MCMC. A self-tuning proposal distribution
allows to: (1) reduce the computational cost of tuning the proposal
distribution scale to adjust the acceptance rate, and (2) reduce the
amount of burn-in required when parameters are highly correlated.

In the adaptive algorithm, the stochastic variables are updated as a
single block. Candidates are drawn from a multivariate normal distribu-
tion whose covariance depends on previous states. During burn-in, an
initial delay period is used to gather information about the parameter
space. After this delay an empirical covariance matrix is computed from
the trace acquired so far. Then, the covariance is updated automatically at
user-defined intervals. The adaptiveMetropolis algorithm does not respect
Eq. (4), and is therefore considered non-Markovian. However, work by
Roberts and Rosenthal (2007) has shown that the adaptive Metropolis
algorithm satisfies the Ergodic theorem if tuning of the covariance matrix
is stopped after burn-in.

Fig. 3. Posterior distribution sampled from the stationary distribution after a double Cole-Cole inversion of synthetic data with well-defined imaginary resistivity peaks (model 4,
Table 1). The results of 10 inversions with random starting values are superimposed. All 10 recovered models fit the data and the solution is unique.
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3. Implementing MCMC for SIP inversion

In this section we describe how to implement MCMC techniques to
estimate the SIP parameters of the generalized Cole-Cole model and the

Debye or Warburg decomposition models. The likelihood function and the
SIP transfer functions are first described. We then give the necessary
parameter transformations and discuss the prior distributions for each
model. Finally, we make practical recommendations on how to assess

Fig. 4. Posterior distribution sampled from the stationary distribution after a double Cole-Cole inversion of synthetic data with c = 0.11 (model 1, Table 1). The results of 10 inversions

with random starting values are superimposed. All 10 recovered models fit the data but two solutions have been found for R0, m1, m2 and c1. The chain of τ1 is also unstable.

Fig. 5. Parameter histograms fitted with Gaussian distributions for the mean logarithmic relaxation time and total chargeability parameters after Debye decomposition of models 1 and
4 (a: m1=0.1 and c1=0.1, b: m1=0.4 and c1=0.4). 10 000 samples were drawn from the stationary distribution at the end of a 100 000 iterations Markov chain. Both integrating
parameters have a unimodal posterior distribution, regardless of the shape of the SIP spectra.
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convergence of the stochastic inversion.

3.1. Likelihood function

Complex resistivity (ρ*) can be expressed in terms of real (ρ′) and
imaginary (ρ″) parts: ρ ρ iρ* = ′ + ″, where i = −12 . The probability of
measuring ρ* given a set of SIP parameter (θ) is denoted by P ρ θ( * ). If
we make the assumption that the complex resistivity measurements
follow a Gaussian distribution with mean μ and width σ (Ghorbani
et al., 2007), the conditional probability of measuring ρ* is given by

P ρ μ σ
π σ σ

ρ( * ∣ , ) = 1
2

exp − 1
2

( * − μ) .2
2

⎡
⎣⎢

⎤
⎦⎥ (6)

For a series of N measurements through the range of frequencies
that yield a set of ρ*

i and their associated uncertainties σ*i , the
likelihood of measuring ρ* is defined as the product of the
probabilities of each measurement such that

∏ρ μ σ P ρ μ σ( * ∣ , ) = ( * ∣ , *).
i

N

i i i
=1 (7)

In the inverse problem the measurements ρ*
i and their uncertainties σ*i

are known, and the goal is to estimate the mean of a distribution that

fits the data using forward modelling. We define ρ*
i as the modelled

complex resistivity, a function of the set of SIP parameters θ.
Combining Eqs. (6) and (7) the likelihood of the model (and therefore
the SIP parameters) becomes

∏θ ρ σ
π σ σ

ρ ρ( ∣ *, *) = 1
2 *

exp − 1
2 *

( * − *) .
i

N

i i
i i

=1
2

2⎡
⎣⎢

⎤
⎦⎥ (8)

It should be noted that computing the log-likelihood is preferable (see
Patil et al. (2010)), and that ρ*, ρ* and σ* can be defined as two-
dimensional arrays containing the real and imaginary parts of resis-
tivity. Chen et al. (2012) mention that it is possible to fit only the
imaginary part of resistivity and including the real part in the objective
function can cause bad results. The model must satisfy Kramers-Kronig
relations. Therefore, if the model is not able to accurately fit both the
real and imaginary part of the data, it implies that the uncertainty of
the measurements was largely underestimated.

3.2. Generalized Cole-Cole model

The Cole-Cole resistivity and conductivity models have been used

Table 2
Parameter values used to generate synthetic data from a triple Cole-Cole model.

Synthetic triple Cole-Cole model

DC resistivity ρ0 (Ω·m) 1000

Grain size m1 0.20
c1 0.40
τ1 (s) 103

Grain roughness m2 0.30
c2 0.35
τ2 (s) 10−2

Maxwell-Wagner m3 0.40
c3 0.50
τ3 (s) 10−6

Fig. 6. Triple Cole-Cole synthetic data set fitted with a Warburg decomposition model using the adaptive and non-adaptive Metropolis step methods. The fitted models are obtained by
running 20 independent Markov-chains with random starting values for all parameters. In each case the simulation is stopped after 600 000 iterations and the last 100 000 iterations are
used to determine the optimal parameters (burn-in period of 500 000 iterations).
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extensively for the interpretation of SIP data in mineral exploration
(Pelton et al., 1978; Vanhala and Peltoniemi, 1992), in environmental
sciences (Vanhala, 1997; Placencia-Gomez et al., 2013, 2015) and to
study the texture of porous materials (e.g. Binley et al., 2005;
Kruschwitz et al., 2010). It may also be employed to extract spectral
information from field time-domain induced polarization data
(Johnson, 1984; Fiandaca et al., 2012). As mentioned in Tarasov and
Titov (2013) (also see comments by Macnae (2013)), there are
fundamental differences between the Cole-Cole resistivity and con-
ductivity models. For laboratory measurements, a double or triple
Cole-Cole model is typically used to fit the low, intermediate, and high-
frequency parts of the spectra (see Fig. 13 of Leroy et al. (2008) for the
physical meaning of each relaxation mode). The complex resistivity
given by the generalized Cole-Cole model (Chen et al., 2008) is

∑ρ ω ρ m
iωτ

* ( ) = 1 − 1 − 1
1 + ( )

,CC
l

L

l
l

c0
=1

l

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(9)

where ω is the angular frequency (ω πf= 2 ), ρ0 is the DC resistivity and
ml, τl, and cl are respectively the chargeability, relaxation time and
frequency dependence exponent of the lth relaxation mode. L may take
values of 1, 2, 3 or more depending on the modality of the complex
resistivity spectra. Adding more modes will quickly result in the
inversion problem becoming underdetermined.

3.3. Debye and Warburg decomposition

The Debye decomposition approach has received increasing atten-
tion in recent SIP studies to infer grain or pore size distributions (e.g.

Weller et al., 2010a, 2010b; Zisser et al., 2010; Gurin et al., 2013;
Placencia-Gomez et al., 2013; Placencia-Gomez et al., 2015). The
notion that complex conductivity can be interpreted as a sum of
relaxation processes is based on the work of Morgan and Lesmes
(1994) and Lesmes and Morgan (2001). The complex resistivity given
by the Debye decomposition model is

∑ρ ω ρ m
iωτ

* ( ) = 1 − 1 − 1
1 +

,DD
k

K

k
k

0
=1

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(10)

and the complex resistivity given by the Warburg decomposition model
is

∑ρ ω ρ m
iωτ

* ( ) = 1 − 1 − 1
1 + ( )

.WD
k

K

k
k

0
=1

1/2

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(11)

where mk and τk are respectively the chargeability and characteristic
relaxation time parameters that correspond to each of the K super-
posed relaxation modes that form the relaxation time distribution
(RTD). The Debye decomposition model corresponds to a Cole-Cole
model with frequency dependence exponent value of c=1.0. Revil et al.
(2014) have, however, recently shown that rocks and soils rarely
produce a SIP response with frequency dependence above 0.5.
Nordsiek and Weller (2008) and Zisser et al. (2010) have proposed
deterministic methods to fit the Debye decomposition model to
complex resistivity spectra using the linear least-squares formulation
and a vector of predetermined relaxation times (K=1000 in the case of
Zisser et al. (2010)). Integrating parameters such as total chargeability
(Σm, the sum of allmk chargeabilities) and mean relaxation time (τ , the
logarithmic average value of all τk relaxation times weighted by their

Fig. 7. Parameter traces of 10 attempts to fit the triple Cole-Cole type SIP spectra with a Warburg decomposition scheme using the Metropolis-Hastings step method. Each parameter is
assigned a random starting value. The parameter traces reveal that the chains are slowly converging toward the same values but more iterations are needed for them to reach the
stationary distribution.
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corresponding chargeability) are derived from the RTD to simplify the
results (see Nordsiek and Weller (2008)).

To perform Bayesian inference of the RTD in practical computation
times, it is necessary to reduce the dimensionality of the decomposition
scheme. Chargeability can be expressed as a polynomial function of
relaxation time (Keery et al., 2012). The generalized equation for a
polynomial RTD is

∑m τ a τ( ) = (log ) ,
p

P

p
p

=0
10

(12)

where P is the order of the polynomial approximation, and ap are the
polynomial coefficients. The parameters to estimate are therefore the
polynomial coefficients a0 to aP and the DC resistivity ρ0. The fourth-
order approximation used by Keery et al. (2012) is not always
necessary and sometimes result in superfluous parameters, preventing
the simulation from converging. Higher order approximations may also
be needed to fit highly multimodal SIP spectra. Finally, it is evident
from Fig. 6b of Keery et al. (2012) that the regular Metropolis-Hastings
algorithm struggles in the parameter space of a Debye decomposition
and that the chains of the polynomial coefficients can be unstable.

3.4. Prior distributions

Although the MCMC sampling process becomes independent of the
starting values after the chain has reached the stationary distribution,
initial guesses for the parameters are still required to launch the
simulation. A practical approach is to launch several chains using
dispersed starting values drawn from regions of high posterior density
(Gelman and Rubin, 1992), or simply use several different starting

values drawn from uniform prior distributions.

3.4.1. Cole-Cole parameters
Uniform prior distributions are used for the Cole-Cole parameters.

Prior information includes lower and upper bounds of the prior
distributions, which are selected based on the physical meaning of
the parameter (e.g. m0 ≤ ≤ 1 for chargeability and c0 ≤ ≤ 1 for
frequency dependence). The relaxation time parameter is strictly
positive and may vary over several orders of magnitude. Therefore,
this parameter is log-transformed and the bounds of the uniform prior
distribution that describe it are set to include values typically found in
the literature (e.g. τ−6 ≤ log ≤ 310 ).

3.4.2. Decomposition parameters
Uniform prior distributions are assigned to the polynomial coeffi-

cients for the decomposition approach. We found that an interval of
[−0.1, 0.1] generally contains values of the polynomial coefficients that
describe a typical RTD. The polynomial coefficients often switch
between negative and positive values. A reasonable hypothesis is that
the polynomial coefficients can be described by a normal prior
distribution, centered on 0. More extensive collections of inversion
results with the stochastic decomposition approach are however
needed to confirm this hypothesis.

3.5. Convergence of the chains

Raftery and Lewis (1992) have proposed a quantitative convergence
diagnostic to determine the amount of iterations and burn-in required for
a single long Markov chain. The burn-in period refers to the initial

Fig. 8. Parameter traces of 10 attempts to fit the triple Cole-Cole type SIP spectra using the adaptive Metropolis step method and a Warburg decomposition scheme. Each parameter is
assigned a random starting value. The traces of all parameters converge to the same stable value after 500 000 iterations.
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iterations required to reach the stationary state. For a single chain,
however, it is unknown if the chain has explored all regions of the
posterior distribution (Brooks, 1998). It can be argued that convergence is
only truly reached when multiple chains with dispersed initial values have
been shown to converge toward the same stationary distribution. Gelman
and Rubin (1992) have developed a convergence diagnostic that consists
of running multiple chains with dispersed starting values and comparing
the estimated between-chains and within-chain variances for each para-
meters. A comprehensive review of MCMC convergence diagnostics is
available in Cowles and Carlin (1996).

4. Results and discussion

Synthetic SIP data sets were generated using double and triple
Cole-Cole models with varying relaxation times, frequency dependence
and chargeability values. In this section, we first test our stochastic
inversion program to assess the convergence and parameter recovery of
the algorithm. Important limitations regarding the capability of double
Cole-Cole models to recover the correct parameters in particular cases
are highlighted. Then, the Debye and Warburg decomposition ap-
proaches are tested on the synthetic spectra for which the Cole-Cole
parameters were not recovered. Next, a comparison between the
Metropolis-Hastings and adaptive Metropolis step methods for the
estimation of Warburg or Debye RTD is presented, followed by an
analysis of the impact of phase measurement noise on the recovered
RTD. Finally, BISIP is tested on real SIP data measured on mineralized
rocks from the Canadian Malartic gold deposit.

4.1. MCMC inversion using the Cole-Cole model

Synthetic double Cole-Cole models with varying chargeability and
frequency dependence exponents are fitted using the Metropolis-
Hastings step method (Fig. 2). The parameter values used to generate
the synthetic SIP responses and the parameter values recovered from
inversion of four models are summarized in Table 1. For low c1 values
(models 1 and 2), all parameters that describe the low-frequency
relaxation (R0, c1, m1, τ1), are not correctly recovered whereas the
parameters that describe the high-frequency relaxation (c2, m2, τ2) are
recovered within an acceptable range. For high values of c1 (models 3
and 4), all parameters are correctly recovered, with the most accurate
results being obtained when both c1 and m1 are equal to 0.4.

The inversion process is repeated 10 times with different initial
values drawn from the prior distributions. Bivariate analysis of the
parameter traces confirms that the solution to the double Cole-Cole
inversion is unique when both peaks are well-defined (Fig. 3). In such a
case, all parameters take on a Gaussian posterior density. On the other
hand, the MCMC simulation is unstable when the c exponent of one of
the Cole-Cole modes is near 0.1. Fig. 4 shows the posterior distribution
of this particular case, also after performing 10 inversions using
random initial values. The 10 inversions yield indiscernible fits on
Fig. 2. However, the R0, c1, m1 and m2 parameters have a bimodal
posterior distribution. Possible values of the chargeability parameter
m1 vary in a range between 0.10 and 0.40 whereas the frequency
dependence parameter c1 varies in a range between 0 and 0.15. The
strong correlation (Pearson r=−0.93) between these two parameters

Fig. 9. Posterior distribution of a Warburg decomposition of the synthetic triple Cole-Cole SIP data. During the burn-in period the adaptive Metropolis algorithm was used. Scatter
points correspond to the [500 000 − 600 000] interval in Fig. 8. Biplots reveal strong correlation between the polynomial coefficients, especially between a0 and a2, a0 and a4, a1 and a3,
and a2 and a4. Total chargeability (Σm) and mean relaxation time (τ ) are deterministic variables.
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implies that small increments of the m1 parameter are easily compen-
sated by small decrements of the c1 parameter without affecting the
likelihood. Consequently, the flat shape of the phase shift spectra in the
low-frequency range may be fitted by either low c1 exponent and
chargeability (the expected result) or by a lower value of c1 paired with
a high enough value of chargeability (m1) to make the curve look flat at
the scale of the data range. It is worth noting that the parameter space
is diagonal (Pearson r=1.00) between the R0 andm1 parameters, the R0

and m2 parameters, and the m1 and m2 parameters, and that it is
“banana-shaped” between R0 and c1, c1 and m1, and c1 and m2.

4.2. Adaptive MCMC inversion with the decomposition scheme

The decomposition approach provides an alternative for fitting SIP
data when relaxation peaks are not well defined in the data. In this section
we show that the Metropolis-Hastings algorithm performs well with the
Debye or Warburg decomposition schemes when a third order polynomial
approximation of the RTD is used. However, the Metropolis-Hastings step
method is unable to converge in reasonable computation times for more
multimodal SIP spectra requiring fourth or fifth order polynomial
approximations. The latter is also very dependent on starting values. We
now show that the adaptive Metropolis step method implemented in BISIP
performs better than the non-adaptive option in the highly correlated
parameter space of a Warburg decomposition.

4.2.1. Third order Debye decomposition
The spectra of models 1 and 4 (Table 1) generated in the previous

section were fitted using the Debye decomposition scheme and the
Metropolis-Hastings step method. The Debye decomposition approach
was able to properly fit the synthetic Cole-Cole spectra regardless of the

c1 value used to generate them. In both cases a 3rd order polynomial
approximation was used for the RTD. Then, integrating parameters of
total chargeability and mean logarithmic relaxation time are computed
from the RTD in a range from 0.001 to 10 s. To assess the stability of
the recovered of the RTD, the traces of these two deterministic
variables are plotted in histograms (Fig. 5). Contrary to the double
Cole-Cole inversion, the SIP parameters recovered using the Debye
decomposition scheme are unique and the MCMC algorithm has
reached a stable solution.

4.2.2. Fourth order Warburg decomposition
A synthetic data set representative of a highly multimodal SIP

spectra was generated using a triple Cole-Cole model. The synthetic SIP
spectra features three distinct modes: (1) a partly defined low-
frequency (<0.1 Hz) mode describing the grain size distribution, (2) a
well-defined intermediate frequency (1–100 Hz) phase peak represen-
tative of grain roughness, and (3) a high-frequency (>1 kHz) feature for
Maxwell-Wagner polarization (see Fig. 13 of Leroy et al., 2008). The
synthetic data is contaminated with phase shift errors of 1 mrad and
amplitude errors of 0.1%. Table 2 summarizes the values used to
generate the synthetic triple Cole-Cole data.

This multimodal SIP data set is fitted with a fourth order Warburg
decomposition approach, first using the Metropolis-Hastings step
method as implemented in Keery et al. (2012), and next using our
adaptive Metropolis step method. To compare the performance of both
step methods, we launch 20 independent Markov-chains of 600 000
iterations with a burn-in period of 500 000 iterations. In the adaptive
MCMC algorithm, the first covariance matrix is computed after an
initial 50 000 iterations. It is then updated every 50 000 iterations and
fixed after the burn-in period. For each chain, new starting values of all

Fig. 10. The impact of phase measurement noise on the estimation of the RTD. The synthetic data is contaminated with noise levels of 1 mrad (a) and 5 mrad (b). The mean fit and the
95% highest posterior density interval are drawn over the synthetic data on the left. The estimated Warburg RTD, its range and its standard deviation are drawn on the right.
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parameters are randomly drawn from the prior distribution. The
solutions obtained with both step methods are drawn in Fig. 6. With
the Metropolis-Hastings step method, the mean of the 20 fitted models
converges toward the data points. However only 1 of the fitted model
passes through every data point. With the Adaptive Metropolis step
method, all 20 Markov-chains have produced models that fit the data.

Warburg (and Debye) decomposition fitting of multimodal SIP
spectra is highly dependent on the initial starting values when using the

regular Metropolis-Hastings step method. Even if the independent
Markov-chains converge, on average, toward a model that properly fits
the data, most of the chains have not reached the stationary distribu-
tion at the 900 000 iterations mark (Fig. 7). By comparison, for equal-
length chains, the dependence of the initial parameter values on the
fitted models is diminished when using an adaptive step method that
updates the RTD polynomial coefficients as a single block parameter.
Fig. 8 shows the progression of 10 independent adaptive Metropolis
chains, which all converged toward the same value after 500 000
iterations.

When comparing the traces in Figs. 7 and 8, it is apparent that the
MCMC simulation progresses much slower with the Metropolis-
Hastings step method than with the adaptive Metropolis step method.
The slow convergence of the Markov-chains with the regular
Metropolis-Hastings sampler is explained by: (1) the strong correlation
between the polynomial coefficients that describe the Warburg RTD
and (2) the existence of local high posterior density traps around the
global maximum. The Pearson correlation coefficient is particularly
high between the a0 and a2 parameters (r=−0.97), the a0 and a4
parameters (r=0.98), the a1 and a3 parameters (r=−0.93), and the a2
and a4 parameters (r=−0.96) (Fig. 9). This observation implies that at
maximum likelihood (reached shortly after 400 000 iterations), small
increments of a0 are easily compensated by increments of a4 and
decrements of a2, and so on.

4.3. Propagation of measurement noise on the RTD

One of the main advantages of using MCMC simulation to estimate
the RTD of rock and soil samples is the ability to quantify the
uncertainty around the inversion solution. In this section, we contam-

Fig. 11. Inferred Warburg decomposition parameters of a synthetic triple Cole-Cole data set for phase measurement noise levels ranging from 1 to 10 mrad.

Table 3
Sulfur content associated with pyrite alteration, physical properties and recovered SIP
parameters of two altered metagreywacke samples from the Canadian Malartic gold
deposit. The two samples have the same mineral assemblage and mostly differ by their
degree of pyrite alteration. The Cole-Cole parameters are undefined for sample A.

Sample A Sample B

Sulfur content (%) 0.095 ± 0.005 0.454 ± 0.005
Gold content (ppm) 0.01 0.1

Density (g cm/ 3) 2.753 ± 0.003 2.788 ± 0.003

Porosity (%) 0.8 ± 0.1 1.3 ± 0.1

Magnetic susceptibility (SI) (2.89 ± 0.12) × 10−4 (3.00 ± 0.07) × 10−4

Resistivity (Ω m· ) 2800 ± 420 1571 ± 283
Cole-Cole c1 – 0.46 ± 0.04
Cole-Cole m1 – 0.15 ± 0.01
Cole-Cole τ1 (s) – 0.12 ± 0.01

Warburg m∑ 0.054 ± 0.002 0.15 ± 0.01

Warburg τ (s) 0.34 ± 0.01 0.30 ± 0.01
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inate the synthetic triple Cole-Cole spectra of Table 2 with varying
amounts of noise 1–10 mrad) on the phase shift. Fig. 10 shows the
estimated RTD and its uncertainty for noise levels of 1 and 5 mrad.
There is a direct relationship between measurement error and the
uncertainty of the estimated polynomial coefficients (Fig. 11). With
typical laboratory errors (below 5 mrad) the solution remains well-
defined. It can be argued that the error on the RTD is negligible for
noise levels below 1 mrad. Above 5 mrad, the range of possible
distributions become important, and several independent Markov-
chains should be run and averaged.

4.4. Inversion of laboratory data

We tested BISIP on real SIP spectra measured on rock samples
from the Canadian Malartic gold deposit, where gold occurs mainly as
inclusions in pyrite which is hosted in Archean sedimentary rocks (Helt
et al., 2014; Perrouty et al., 2017). The physical properties, SIP
parameters, and sulfur content of both samples can be found in
Table 3. Fig. 12 shows that mineralized greywacke samples produce
phase shift peaks in the range of 0.1–10 Hz. The phase shift peak
associated with sample B (containing up to 0.454% sulfur in the form of

pyrite mineralization) reaches 30 mrad while the one measured on
sample A (with only 0.095% sulfur) is limited to 10 mrad. In both
cases, multiple Cole-Cole inversions points toward a model that passes
through all data points. However, when the relaxation peak is not
obvious (Fig. 12A), the parameter histograms show a bimodal ten-
dency, with possible solutions of c1 at 0.035 and 0.060, and possible
solutions of m1 at 0.35 and 0.55. In Fig. 12B, the phase shift curve
resembles the synthetic spectra generated with high values of c1, and
the posterior distribution is unimodal Gaussian with mean values of
c = 0.46 ± 0.031 and m = 0.15 ± 0.011 .

We then launch 10 independent inversions with random starting
values using Warburg decomposition and the adaptive Metropolis
algorithm (Fig. 13). The traces of total chargeability and mean
relaxation time have reached a stationary distribution and the inver-
sion has a unique solution. Proper estimation of SIP parameters is vital
to reduce the dimensionality of electrical properties of rocks in studies
where large data sets of mineral exploration data from different
disciplines are to be integrated in a common earth model. The
MCMC inversion technique implemented in BISIP is well-suited for
this type of problem. First, it facilitates batch inversion by minimizing
the influence of user guesses. Second, analysis of the parameter traces

Fig. 12. Fitting results and parameter histograms after double Cole-Cole inversion of SIP laboratory measurements on two altered metagreywacke samples with sulfur contents of
(0.095 ± 0.005)% (Sample A) and (0.454 ± 0.005)% (Sample B). The grey area around the fitted model represents the 95% highest posterior density interval at the end of the simulation.

The 10 independent chains with random starting values produced identical fits but two solutions are found for c1 and m1 in the case of sample A. Results obtained with the Metropolis-
Hastings step method.
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allow the user to accept or reject the inversion results before feeding
them to a common earth model.

5. Conclusions

Batch inversion of laboratory rock complex resistivity data using the
classic least squares approach can prove to be a tedious and frustrating
process due to the high amount of user-interaction needed to fit SIP
curves. This process requires even more user knowledge when the
measurements are performed on weakly polarizable samples. The
optimization algorithm implemented in BISIP reduces the influence
of initial guesses and the amount of user-interaction required to fit SIP
data, therefore making batch or time-lapse inversion of hundreds of
laboratory measurements a simpler process.

It was shown in this paper that the Cole-Cole model should be
avoided when fitting SIP curves produced by weakly polarizable
samples. In this case, the solution to the inverse problem is not unique.
The stochastic Debye or Warburg decomposition scheme has a unique
solution regardless of the shape of the SIP spectra. However, inversion
through the decomposition scheme progresses slowly when using the
regular Metropolis-Hastings algorithm. This poor performance is
explained by the strong correlation between several of the polynomial
coefficients that describe the RTD. We have shown that our adaptive
Metropolis step method performed better than its non-adaptive
counterpart in the case of Warburg decomposition. Finally, the
importance of properly estimating SIP parameter uncertainty before
propagating them into mechanistic models was highlighted by showing
the direct relationship between measurement uncertainty and the
range of possible recovered RTD.

BISIP is available under the MIT open-source licence. We hope to
provide the geophysics and petrophysics community with a base for
further developments in stochastic inversion of laboratory SIP data and
to make parameter analysis of SIP transfer functions a simpler process.
The source code, standalone executables, and documentation of the
program presented in this study are maintained at https://github.com/
clberube/bisip.
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