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a b s t r a c t

We describe a metric named averaged ratio between complementary profiles to represent the distortion
of map projections, and the shape regularity of spherical cells derived frommap projections or non-map-
projection methods. The properties and statistical characteristics of our metric are investigated. Our
metric (1) is a variable of numerical equivalence to both scale component and angular deformation
component of Tissot indicatrix, and avoids the invalidation when using Tissot indicatrix and derived
differential calculus for evaluating non-map-projection based tessellations where mathematical for-
mulae do not exist (e.g., direct spherical subdivisions), (2) exhibits simplicity (neither differential nor
integral calculus) and uniformity in the form of calculations, (3) requires low computational cost, while
maintaining high correlation with the results of differential calculus, (4) is a quasi-invariant under ro-
tations, and (5) reflects the distortions of map projections, distortion of spherical cells, and the associated
distortions of texels. As an indicator of quantitative evaluation, we investigated typical spherical tes-
sellation methods, some variants of tessellation methods, and map projections. The tessellation methods
we evaluated are based on map projections or direct spherical subdivisions. The evaluation involves
commonly used Platonic polyhedrons, Catalan polyhedrons, etc. Quantitative analyses based on our
metric of shape regularity and an essential metric of area uniformity implied that (1) Uniform Spherical
Grids and its variant show good qualities in both area uniformity and shape regularity, and (2) Crusta,
Unicube map, and a variant of Unicube map exhibit fairly acceptable degrees of area uniformity and
shape regularity.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Spherical tessellation methods divide a sphere into spherical
polygonal cells. Each cell can be further subdivided to produce
hierarchical sub-cells in different level of details (Goodchild, 1994;
Kimerling et al., 1999; Clarke, 2000; Sahr et al., 2003).

The tessellations of a sphere have been widely used in domains
of cartography (Goodchild and Yang, 1992; Dutton, 1996; Górski
et al., 2005; Holhoş and Roşca, 2014), virtual globe (Fekete and
Treinish, 1990; Dutton, 1996; White, 2000; Sahr et al., 2003;
Cignoni et al., 2003b; Platings and Day, 2004; Hwa et al., 2005;
Westerteiger et al., 2011; Bernardin et al., 2011; Holhoş and Roşca,
2014), weather forecast (Majewski et al., 2002), geological analysis
(Bernardin et al., 2011), environment mapping (Wan et al., 2007;
Ho et al., 2011), atmospheric modeling (Ronchi et al., 1996), ther-
mal convection calculation (Zhong et al., 2000; Choblet et al.,
ao@buaa.edu.cn (X. Song),
2007), microwave background analysis (Tegmark, 1996; Górski
et al., 2005), etc.

Different kinds of tessellations exhibit their own characteristics
and inherent advantages and disadvantages (Clarke, 2000). For the
sake of comparison, we could place tessellations in different ca-
tegories. Tessellations that belong to the same category exhibit
similar characteristics. Tessellations in different categories may
exhibit diversity in characteristics.

Spherical tessellations could be categorized as geographic co-
ordinate system (GCS-)based grids, polyhedron-based grids, etc.

The common uses of GCS-based grids in virtual globes (e.g.,
Google Earth and NASA WorldWind) and the widely existing GCS-
based datasets (e.g., Plate Carrée used in NASA WorldWind) pro-
vide simplicity and convenience. However, singularity and data
redundancy are inevitable in these methods and datasets at two
poles. Cells distort from equator to poles. Especially, quadrilateral
cells would degenerate into triangle cells at the poles (Sahr et al.,
2003; Bernardin et al., 2011; Oldham et al., 2012). In addition, area
uniformity of cells is hard to achieve. Some map projections (e.g.,
Mercator projection and Lambert cylindrical equal-area
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projection) also suffer from severe distortions at the poles. Hence,
Web Mercator is defined within the areas between ca. 85.05°S and
85.05°N.

Polyhedron-based methods avoid the singularity at two poles,
produce similar areas and shapes of cells, and exhibit symmetry
for each initial cell.

Sahr et al. (2003) have given an overview on discrete global
grid system based on five Platonic polyhedrons. Platonic poly-
hedrons are commonly employed for polyhedron-based grids, e.g.,
cube (Ronchi et al., 1996; Hwa et al., 2005; Choblet et al., 2007; Ho
et al., 2011; Roşca and Plonka, 2011), octahedron (Dutton, 1996;
White, 2000; Holhoş and Roşca, 2014), icosahedron (Fekete and
Treinish, 1990; Tegmark, 1996; White, 2000; Teanby, 2006).

Catalan polyhedrons are also used for polyhedron-based grids,
e.g., rhombic dodecahedron (Zhong et al., 2000) and rhombic
triacontahedron (Platings and Day, 2004; Bernardin et al., 2011).

Furthermore, Oldham et al. (2012) used two parameters to
construct a generic polyhedron-based grid generation method.
Special cases of their method involve some Platonic polyhedrons
and some Catalan polyhedrons. Twelve faces (Górski et al., 2005),
six faces (Wan et al., 2007), or two hemispheres (Rosca, 2010)
based tessellations are also used in specific domains.

Although polyhedron-based methods have the advantages of
(1) non-singularity at two poles, (2) similar areas, and (3) similar
shapes over GCS-based grids, recursive subdivisions or specific
transformations between local coordinate system and GCS are
usually required for raster or vector datasets.

Spherical tessellations could also be categorized as map pro-
jection (MP-)based methods, direct spherical subdivision (DSS-)
based methods, etc.

MP-based tessellation methods (e.g., Dutton, 1996; Ronchi
et al., 1996; Górski et al., 2005; Wan et al., 2007; Rosca, 2010; Ho
et al., 2011; Roşca and Plonka, 2011; Holhoş and Roşca, 2014)
subdivide regular grids on a plane initially. Then, spherical grids
are constructed by some inverse projection formulae. The
boundaries of MP-based grids are geodesics, graticules, or some
forms of complicated curves.

Instead, DSS-based tessellation methods (e.g., Fekete and
Treinish, 1990; Zhong et al., 2000; Majewski et al., 2002; Bernardin
et al., 2011) directly subdivide cells on a sphere via great circle
arcs. In general, DSS-based methods are constructed recursively.
The vertex coordinates and boundary coordinates of a sub-cell are
calculated according to the coordinates of its parents. Usually, DSS-
based methods are unable to produce equal-area tessellations.

Above categorizations provide qualitative means to identify
characteristics of spherical tessellations. In addition, Goodchild
Criteria (Goodchild, 1994) and its revised criteria (Kimerling et al.,
1999) formulated more qualitative criteria to evaluate spherical
tessellation methods. In addition, Clarke (2000) has given an
overview on global georeferencing system, and discusses different
aspects of criteria and metrics.

Moreover, it should also take consideration of some quantita-
tive metrics, such as area (Snyder, 1987; Dutton, 1996; Kimerling
et al., 1999; Oldham et al., 2012), distortions (Snyder, 1987; Mul-
cahy and Clarke, 2001), compactness (Kimerling et al., 1999; Gre-
gory et al., 2008), grid point spacing (Kimerling et al., 1999), and
mesh quality for numerical calculation (Gregory et al., 2008;
Oldham et al., 2012).

Area metrics have been extensively studied and commonly
used (e.g., Dutton, 1996; Kimerling et al., 1999; Oldham et al.,
2012), while distortion of shape may still need to be investigated.

Different topologies of shape (e.g., triangular, quadrilateral, or
hexagonal grids) are used in different applications. Among these
shapes, quadrilateral subdivisions are suitable for array storage
(Kimerling et al., 1999) and provide convenient ways to map tex-
tures or construct quadtrees. Mapping from sphere to quadrilateral
grids can be employed in the domains of cartography, virtual
globes, environment mapping, etc.

When we map a sphere by quadrilateral grids, quadtrees-based
pyramid is an essential means to provide high-resolution details of
texture mapping (Platings and Day, 2004; Bernardin et al., 2011).
In these applications, the globe is tessellated into quadrilateral
cells. Within cells, adaptive unstructured triangulation (Bahrainian
and Dezfuli, 2014), regular triangulation (Bösch et al., 2009), or
irregular triangulation (Cignoni et al., 2003a) may be constructed.
Then, the underlying texture is mapped for each cell.

Triangular cells are compatible with quadrilateral cells (White,
2000). For example, in some methods (Cignoni et al., 2003a,b;
Hwa et al., 2005; Gobbetti et al., 2006; Bösch et al., 2009; Goswami
et al., 2010), triangular nodes are employed for representing me-
shes, and adjacent triangular nodes are connected together as
quadrilateral cells for data storage and texture mapping.

No matter what kinds of map projections or DSS are used,
texels (i.e., pixels on textures) are evenly sampled, but they be-
come uneven when mapping onto a sphere (Wan et al., 2007; Ho
et al., 2011). Distortions of cells and texels inevitably occur in the
applications mentioned above. The most distorted cell may result
in severe distortion of texels. Thus, it is a practical issue to measure
the distortions and compare the degree of distortions for different
tessellation methods.

It should be noted that viewing parameters and perspective
projection could also result in distortion of texels. These view-
dependent distortions are beyond the scope of our paper.

Much research (Snyder, 1987; Mulcahy, 2000; Mulcahy and
Clarke, 2001; White, 2006; Bauer-Marschallinger et al., 2014) on
the distortion of/between map projections has been carried out.
These methods provide various means to measure distortions of
MP-based tessellations, while distortions of non-MP-based tes-
sellations (e.g., DSS-based tessellations) still need to be
investigated.

Oldham et al. (2012) used diagonal ratio of great circle arcs
(DiRaGCa) to evaluate their generic polyhedron-based grid gen-
eration method. The metric DiRaGCa is also suitable for MP-based
tessellations, but DiRaGCa is inaccurate in some cases (e.g., de-
generated quadrilateral, and rectangle-like quadrilateral).

Mulcahy and Clarke (2001) have given an overview on sym-
bolization of map projection distortion. Tissot indicatrix provides a
visual representation to illustrate map projection distortions
(Mulcahy and Clarke, 2001). Tissot extensively analyzed the dis-
tortion of map projections by using an infinitely small circle on a
sphere and projecting it onto a plane by specific map projection.
Generally, the circle on a sphere turns to be an ellipse with a semi-
major axis and a semi-minor axis. Tissot ellipses intuitively reflect
map distortions. In addition, some differential calculus (Snyder,
1987, pp. 21–24) could also reflect areal, linear, or angular distor-
tions of map projections.

Although Tissost ellipses are intuitive and elegant, a dis-
advantage of Tissot indicatrix is that (1) the indicatrix only re-
presents distortions of infinitesimal areas near the center of el-
lipses and (2) the indicatrix is limited to the forward transforma-
tion from the globe to a map projection (Mulcahy and Clarke,
2001). There is neither projection plane(s) nor transformation
formulae for DSS-based tessellation methods, hence, Tissot in-
dicatrix is also limited to MP-based tessellation methods only.
Those complicated numerical methods described in Snyder (1987)
and Mulcahy (2000) also suffer from these limitations.

To avoid the disadvantages mentioned above, we introduce the
averaged ratio between complementary profiles (AveRaComp) to
measure the shape regularity of spherical cells. The metric AveR-
aComp consists two complementary metrics, diagonal ratio of
small circle arcs (DiRaSCa), and a ratio representing the divergence
of angle between diagonals (RaReDad). Experimental comparisons
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and analyses imply that the metric AveRaComp is highly correlated
with the numerical methods described in Snyder (1987) and
Mulcahy (2000), and avoid invalidation for non-MP-based
tessellations.

For one cell, the metric AveRaComp is fairly acceptable and
effective to reflect the distortions of the cell and associated dis-
tortions of texture mapping. The maximum value of AveRaComp
(MaxAveRaComp) could be calculated to represent the shape
regularity or texel distortion for all cells in a given level of tes-
sellation. Then, the suprema of MaxAveRaComp are calculated to
evaluate and compare different tessellation methods.
Fig. 1. Two MP-based spherical tessellation methods. Red stars represent center
points of grids on projection plane(s). They are also the common points of further
subdivided sub-cells. (a) Regular grids on six projection planes using USG method
(Roşca and Plonka, 2011). (b) Spherical quadrilateral cells of USG method. (c) Planar
grids and spherical cells of O-QTM/Quad by using ZOT projection (Dutton, 1991).
Some quadrilateral cells of O-QTM/Quad degenerate into triangle cells. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
2. Metrics of shape regularity

2.1. Preliminaries

Taking Uniform Spherical Grids (USG) (Roşca and Plonka, 2011)
for example, the construction of MP-based tessellations are usually
as follows: (1) tiling regular grids on projection planes [see Fig. 1
(a)] and (2) transforming straight lines of planar grids to produce
the boundaries of spherical cells via specific inverse transforma-
tion [see Fig. 1(b)].

Tessellating each planar square into four equal-area squares
makes it possible to construct hierarchical subdivisions. The
midpoints of the square' edges and the barycentric point [i.e., the
geometric center of planar square, marked as red stars in Fig. 1(a)]
in each square are used to subdivide the corresponding cell into
four sub-cells and produce hierarchical tilings on a sphere. The
corresponding “center points” on a sphere are just the common
points of four subdivided sub-tiles.

Similarly, Fig. 1(c) illustrates the process of construction
quadrilateral grids by using zenithal orthotriangular (ZOT) pro-
jection (Dutton, 1991). Originally, Dutton (1996) used ZOT pro-
jection to construct his octahedral quaternary triangular mesh (O-
QTM). Hence, we refer the quadrilateral version of grids in Fig. 1
(c) as O-QTM/Quad.

In addition, a variant of USG is to be investigated. As illustrated
in Fig. 2(a), this variant is constructed by initially subdividing
planar grids of USG via diagonals, then combining adjacent tri-
angles. Similarly, we could convert other cube (or six-faces) based
tessellations into rhombic dodecahedron (or twelve-faces) based
tessellations, or vice versa. Conversions between octahedron-
based tessellations and two-hemispheres based tessellations are
possible [see Fig. 2(c)]. These kinds of variants are named with a
postfix “/Diag”. The initial polyhedron of USG/Diag is a rhombic
dodecahedron. The initial cells of O-QTM/Quad/Diag are two
hemispheres.

Additionally, another two triangular tessellations will be in-
vestigated in this paper, i.e., octahedral equal area partition (OEAP)
(Holhoş and Roşca, 2014) and icosahedron-based sphere quadtrees
(SQT) (Fekete and Treinish, 1990). For simplicity, we refer the
quadrilateral versions of OEAP and SQT as OEAP/Quad and SQT/
Quad, respectively. Cubed Sphere (Ronchi et al., 1996) and New
Uniform Grids (Rosca, 2010) are also abbreviated to C-Sph and
NUG in this paper.

Opposite to MP-based tessellations, projection plane(s) may not
exist in some other tessellation methods (e.g., DSS-based tessel-
lations). Thus, center points of cells may not exist either. But when
a cell is subdivided, the common point of four sub-cells still
exists. The common point plays an important role in tessellations.
In Section 2.2, we will describe our metric AveRaComp by
using the common point of four sub-cells. In Section 2.3, we will
give an analysis based on numerical calculations to validate our
metric. In Section 2.4, we will discuss and explain some known
issues of our metric. In Section 2.5, we will simplify our
AveRaComp metric for the reason of compatible with reference
ellipsoid.
2.2. Averaged ratio between complementary profiles

Fig. 3 illustrates a spherical quadrilateral cell (denoted by
♢P P P P1 2 3 4) on the Earth. The point Pn is the common point of sub-
cells of ♢P P P P1 2 3 4. The small circle arc connecting points Ps, Pn, and
Pt is denoted by ⁎P P Ps t .

We employ ρ ( )iCP , the averaged ratio between complementary
profiles (AveRaComp) to evaluate the shape regularity of ♢P P P P1 2 3 4.
The metric ρ ( )iCP consists of two profiles. One is ρ ( )iD3 , the diagonal
ratio of small circle arcs (DiRaSCa), and another is ρ ( )α i , a ratio



Fig. 2. Variants of USG method and O-QTM/Quad method. (a) Planar tessellations
of USG/Diag. (b) Spherical tessellations of rhombic dodecahedron based USG/Diag.
(c) Planar grids and spherical cells of O-QTM/Quad/Diag based on two hemispheres.
Some quadrilateral cells of O-QTM/Quad/Diag degenerate into triangle cells.

Fig. 3. The spherical quadrilateral ♢P P P P1 2 3 4 represents the ith spherical cell of a
given tessellation method, where = …i N1, 2, , , and N is the total number of cells.
The point Pn is the common point of four sub-cells of ♢P P P P1 2 3 4. The arcs in red
represent small circle arcs ⁎P P P1 3 and ⁎P P P2 4 . (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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representing the divergence of angle between diagonals (RaR-
eDad). Both ρ ( )iD3 and ρ ( )α i are dimensionless quantities, so we
could synthesize these two metrics as a whole.
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and →pt are the Cartesian coordinates of the points Ps, ⁎P , and Pt .
According to the definitions in Eqs. (2) and (3), ρ ( ) ≥i 1D3 , and

ρ ( ) ≥α i 1. Thus, our shape metric AveRaComp ρ ( ) ≥i 1CP .
Then, we can calculate ρCP, the maximum value of AveRaComp

(MaxAveRaComp) for all cells to evaluate the shape regularity of
spherical tessellations.

ρ ρ= ( ) ( )=
imax , 6CP

i

N

CP
1

where N is the total number of cells.
The geometry meanings of the metrics ρ ( )iD3 and ρ ( )α i of a

planar quadrilateral are demonstrated in Fig. 4. Diamonds and
rectangles are two special cases of a planar quadrilateral. For a
diamond, the metric ρ ( ) =i AD BC/D3 measures one profile of
distortion, i.e., the length ratio between the maximum diagonal
and the minimum diagonal. For a rectangle, the metric
ρ ( ) =α i EG EF/ measures another profile of distortion, the length
ratio between the maximum edge and the minimum edge. By
synthesizing above complementary metrics, the average of metrics
ρ ( )iD3 and ρ ( )α i could measure the shape distortions of arbitrary
quadrilaterals in addition to diamonds or rectangles. In Section 2.3,
we will evaluate the accuracy of our metric ρ ( )iCP by measuring the
shape distortions of spherical quadrilaterals.

Quadrilateral subdivisions are commonly used in virtual globes,
environment mapping, etc. Among these methods, quadrilateral
cells are usually used for texture mapping, so the metrics AveR-
aComp or MaxAveRaComp may reflect the distortion of texels. In
Section 3.2, we will give an experimental analysis on our metrics.



Fig. 4. Illustration of two special cases of a planar quadrilateral. For a diamond,
ρ ( ) = >i AD BC/ 1D3 , and ρ ( ) =α i 1. For a rectangle, ρ ( ) =i 1D3 , and
ρ ( ) = >α i EG EF/ 1. Therefore, the diagonal ratio ρ ( )iD3 dominates in a diamond,
while the edge ratio ρ ( )α i dominates in a rectangle. The average between ρ ( )iD3 and
ρ ( )α i could reflect both aspects for arbitrary quadrilaterals.

Fig. 5. Spherical regions on a sphere for evaluating different tessellations by using
different shape indicators in Fig. 6. For clarity, we separate some regions by offsets
along longitudinal direction. The letters in parentheses are corresponding to letters
in Fig. 6.
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White (2000) mentioned that triangular cells are compatible
with quadrilateral cells, so we can evaluate the shape regularity of
the quadrilateral cells derived from the triangular cells. Generally,
a texel is square even though triangular cells (Cignoni et al., 2003a,
b; Hwa et al., 2005; Gobbetti et al., 2006; Bösch et al., 2009;
Goswami et al., 2010) are used for texture mapping, so the metrics
AveRaComp or MaxAveRaComp could also reflect the distortion of
texels of triangular cells.

In addition to quadrilateral and triangular cells, spherical hex-
agonal cells also provide a possible means to subdivide a sphere. It
should be noted that one disadvantage of our metric is the un-
suitability for evaluating hexagonal cells. But it is unnecessary to
compare the shape regularity of hexagonal cells with the shape
regularity of quadrilateral cells due to the differences of topology
between hexagonal and quadrilateral cells.

It should also be noted that it is impossible to completely tile a
sphere by hexagons individually. Pentagons are inevitable at the
vertices of initial polyhedrons. Besides, tessellations using hexa-
gons do not satisfy a hierarchical structure (White, 2000; Sahr
et al., 2003).

Due to the disadvantages of hexagonal cells mentioned above
and the differences of topology between hexagonal and quad-
rilateral cells, we do not consider hexagonal cells in this paper.

2.3. Other metrics of shape regularity

Oldham et al. (2012) used the diagonal ratio of great circle arcs
(DiRaGCa) to evaluate his generic grid generation method. The
metric DiRaGCa reflects the shape regularity of cells to some ex-
tent, especially for cells with diamond-like shape. But the metric
DiRaGCa is inaccurate for cells with rectangle-like shape (see
Fig. 4) or degenerated quadrilateral [see triangular cells in Figs. 1
(c) and 2(c)].

Tissot indicatrix is an intuitive assessment method for map
projection distortions. Spherical cells of nine MP-based tessella-
tions are investigated. Due to symmetry, we only investigate one
or two initial cell(s) (see Fig. 5) for each method. The first and
fourth rows of Fig. 6 depict Tissot ellipses for all MP-based sphe-
rical cells illustrated in Fig. 5. From the illustration, we obtain that
ellipses in equatorial regions are more oblate than other regions
when we use ZOT projection, projection of OEAP, or projection of
NUG. Some Tissot ellipses of NUG are of heart-like shape, this
misinterpretation is caused by the inherent weakness of Tissot
indicatrix (Mulcahy and Clarke, 2001). In addition, projection of
Unicube, USG, USG/Diag, and C-Sph exhibit less distortion than
other methods.

To quantitatively evaluate the distortions of MP-based methods
illustrated in the first and fourth rows of Fig. 6, we calculate the
ratio ρ = a b/s , where a and b are the maximum and minimum
scale factor, respectively, by using (Eqs. (7)–13) mentioned by
Snyder (1987). For all methods we investigated, we further cal-
culate ω (see Eq. (14)), an indicator of angular deformation, to
evaluate our AveRaComp metric. The correlation coefficients be-
tween ω and AveRaComp are also listed in Table 1.
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Fig. 6. Illustrations and comparisons of different shape indicators [Tissot ellipses, the ratios between the maximum and minimum scale factor (denoted by ρs), and our
AveRaComp metric (denoted by ρCP)]. Nine MP-based tessellations are investigated. The values above distributions are the maximum value for given tessellations. The
positions of the maximum values are approximately coincident or adjacent (see red stars). Pearson product-moment correlation coefficients (PPMCCs) between ρs and ρCP for
all tessellations we investigated are larger than 0.95, that means our metric ρCP has a high correlation with the metric ρs. It should be noted that PPMCCs are independent on
the time of samples when the time of samples is large enough. Here, PPMCC is calculated using 1024�1024 samples (which is sufficient) for each tessellation. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Table 1
Pearson product-moment correlation coefficient (PPMCC) between different metrics (i.e., ρD3, ρα , and ρ ρ ρ= + αCP D3 ) and ρs (as a reference variable). There is a strong
correlation between our metric ρCP and the reference metric ρs. Because both ρCP and ρs are ratios between two variables, it is intuitive to compare ρCP with ρs. We also notice
that there is a strong correlation between ρs and a dimensionless quantity Tissot' omega ω. The numerical results also indicate that our metric ρCP could represent the
distributions of Tissot' omega. In Section 2.5, we derive ρ̃CP , a simplified version of AveRaComp to adapt for reference ellipsoid. The minimum value of ρ ρ( ˜ )PPMCC ,CP CP for all
methods we investigated is larger than 0.99998, hence, ρ̃CP is an estimate of ρCP in concise and general form (see Section 2.5).

Method PPMCC PPMCC PPMCC PPMCC PPMCC PPMCC
ρ ρ( ),D s3 ρ ρ( )α , s ρ ρ( ),CP s ρ ω( ),CP ω ρ( ), s ρ ρ( ˜ ),CP CP

NUG 0.2517 0.9314 0.9829 0.9817 0.9932 >0.9999
USG 0.6469 0.9395 0.9750 0.9745 0.9990 >0.9999
Unicube 0.6052 0.8041 0.9886 0.9885 0.9973 >0.9999
C-Sph 0.8454 0.5211 0.9866 0.9880 0.9976 >0.9999
Isocube (polar) 0.9467 0.9516 0.9960 0.9974 0.9960 >0.9999

(equatorial) �0.1623 1.0000 1.0000 0.9979 0.9978 >0.9999
OEAP/Quad 0.8822 0.3823 0.9872 0.9851 0.9932 >0.9999
O-QTM/Quad 0.7922 0.7363 0.9901 0.9864 0.9950 >0.9999
HEALPix (polar) 0.8969 0.9054 0.9539 0.9513 0.9912 >0.9999

(equatorial) 1.0000 0.0819 1.0000 0.9985 0.9985 >0.9999
USG/Diag 0.9427 0.6651 0.9801 0.9791 0.9990 >0.9999

Fig. 7. Correlation between the maximum values of ρs and our metric
MaxAveRaComp.

J. Yan et al. / Computers & Geosciences 87 (2016) 41–55 47
where R is the radius of the Earth, x and y are rectangular co-
ordinates on projection plane(s), ϕ and λ are latitude and long-
itude. We notice that (Eqs. (7)–14) are derived from an assumption
of the Earth being a sphere. Analyses of ρs andω on Ellipsoid could
also be conducted by using correction factors (Snyder, 1987, pp.
24–27).

We calculate metrics ρs and ω by the finite difference method.
The distributions of ρs and the maximum value of ρs are illustrated
in the second and fifth rows of Fig. 6. The ratio quantitatively re-
presents the degrees of oblateness for ellipses. In addition, the
metric ρs is a continuous function, any ( )x y, belongs to it domain
is valid. Further calculations imply that ω is also a continuous
function, and has a similar distribution to ρs [see ω ρ( )PPMCC , s in
Table 1].

We also calculate our metrics AveRaComp and MaxAveRaComp
for the same spherical tessellations. The distributions of our metric
are illustrated in the third and sixth rows of Fig. 6. Our metric
AveRaComp is a discrete function, the domain of AveRaComp is the
set of projected points corresponding to the centers of all cells.

Red stars in Fig. 6 indicate the points of maximum values. The
number above each distribution (ρs or ρCP) in Fig. 6 is the max-
imum value for corresponding tessellation. Pearson product-mo-
ment correlation coefficient (PPMCC) between ρs and ρCP is also
represented in Fig. 6. PPMCC is the ratio between the covariance of
two variables and the product of their standard deviations.

According to Eq. (1), our AveRaComp metric reflects two pro-
files of shape distortions of cells, while ρs reflects the ratio be-
tween the maximum and minimum directions. Although a little
difference between ρCP and ρs exists in Fig. 6, we find that the
distributions of these two metrics are fairly similar. The positions
of MaxAveRaComp coincide with or adjoin the positions of max-
imum values of ρs.

Table 1 gives quantitative analyses of Fig. 6 by using PPMCCs
within the range of �1 to 1, where �1 means total negative
correlation, and 1 means total positive correlation. From Table 1,
we obtain that PPMCCs between ρCP and ρs for all tessellations we
investigated are larger than 0.95, so, there is a high correlation
relationship between ρCP and ρs. While neither ρD3 nor ρα could
estimate the distortion of tessellations properly. From Table 1,

ρ ω( )PPMCCs ,CP are also larger than 0.95, hence our AveRaComp
simultaneously gives a good estimation of angular deformation of
spherical tessellations. Furthermore, Fig. 7 indicates that ranking
above nine tessellations in Fig. 6 according to MaxAveRaComp and
the maximum values of ρs are also consistent (PPMCC¼0.995).

In addition to polyhedron-based map projections, We evaluate
Plate Carrée projection and Web Mercator projection by
using different metrics. For Plate Carrée projection,

ρ ρ( ) =PPMCC , 1.0000CP s , and ρ ω( ) =PPMCC , 0.9199CP . That means
a strong correlation exists between our AveRaComp and ρs (or ω).
For Web Mercator projection, metrics ρCP, ρs, and ω are approxi-
mately constant functions ( ρ ≈ 1.0000CP , ρ ≈ 1.0000s , and
ω ≈ 0.0000, the standard deviation of these metrics is less than
10�6) where latitude ϕ ∈ [ ° ° ]85 S, 85 N .

From above analyses, one benefit from our metric is that Eqs.
(1)–(5) exhibit lower time complexity than differential calculus
using (Eqs. (7)–14), while our metric ρCP produces similar shape
distributions as those complicated formulae, and gives good esti-
mates of the shape distortions indicator ρs, and the maximum
angular deformation indicator ω. Another benefit from our metric
AveRaComp is that it may be possible to evaluate non-MP-based
tessellation methods. In Section 3.2, we will evaluate some DSS-
based methods via our metric.

Table 2 lists the PPMCCs of AveRaComp between some original
tessellations and their variants via transformations as illustrated in
Fig. 2. Taking the comparison between USG and USG/Diag for



Table 2
PPMCCs of AveRaComp between some tessellations and their variants under
rotations.

Method 1 Method 2 PPMCC
ρ ρ( ),CP CP1 2

USG USG/Diag 0.9977
Unicube Unicube/Diag 0.9988
C-Sph C-Sph/Diag 0.9981
O-QTM/Quad O-QTM/Quad/Diag 0.9989
OEAP/Quad OEAP/Quad/Diag 0.9991
Isocube (equ.) Isocube/Diag (equ.) 0.9953
Isocube (equ.) Isocube/Diag (pol.) 0.9985
Isocube (pol.) Isocube/Diag (pol.) 0.9992
HEALPix (pol.) HEALPix/Diag (pol.) 0.9992
HEALPix (pol.) HEALPix/Diag (equ.) 0.9985
HEALPix (equ.) HEALPix/Diag (equ.) 0.9953

Fig. 8. Characteristics of quasi-invariant under rotations. Our metric ρ ( )iCP for a cell
of USG/Diag is approximately equal to the metric ρ ( )iCP for an adjacent cell of USG.
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example, half region of USG [see right triangle ABC in Fig. 6(a)] and
quarter region of USG/Diag [see right triangle ′ ′ ′A B C in Fig. 6(b)] are
numerically compared by using PPMCC. We notice that the length
of AB is 1024 2 , while the length of ′ ′A B is 1024, so we resize both
△ABC and △ ′ ′ ′A B C (by interpolation) to a pair of congruent tri-
angles whose lengths of hypotenuses are 512 2 for calculating
PPMCCs. The results listed in Table 2 are larger than 0.99, so there
is a strong correlation relationship between original tessellations
and their variants. A cell of USG method and an adjacent cell of
USG/Diag are illustrated in Fig. 8. Our metrics AveRacomp for these
two cells are similar. Differences of AveRacomp mainly occur on
boundaries or diagonals in above methods, hence PPMCCs be-
tween these methods are not totally equal to 1. Nevertheless,
numerical results reveal that our metric AveRacomp is a quasi-
invariant under rotations as illustrated in Fig. 2. Given a tessella-
tion method T and its variant ′T , quasi-invariant under rotations
means that ρ ρ( ) ≈ ( ′)C CCP CP , where C is a cell of T, ′C is a cell of ′T ,
and C and ′C locate in an approximately same position on Earth.
Because cells are located in discrete positions, C and ′C may not
coincide strictly. We do not calculate PPMCCs of ρs between
methods listed in Table 2, because ρs is not the key point of our
paper. But a fact is that ρs is also a quasi-invariant under rotations.

2.4. Further discussions

In summary, our metric (1) could quantitatively measure the shape
regularity of spherical cells by using uniform formula for both MP-
based and non-MP-based tessellations, and (2) exhibits good estima-
tion, similar distributions, and consistent rankings as differential cal-
culus when we evaluate MP-based tessellations (see Section 2.3).
In our method, we only employ vertices of cells to measure the
shape regularity of tessellations. It seems that our metric does not
depend on the shape of boundaries explicitly. Alternatively, we
only use four corners and one midpoints in Eq. (1). Therefore,
there are still two issues need to be discussed, one is the choice of
points in our metric, and another is the influences of boundary of
cells on our metric.

Firstly, the choices of points in our metric are not arbitrary. For
a cell and its four sub-cells on a sphere, we select the common
point of four sub-cells as the midpoint in our metric. Strictly
speaking, for MP-based tessellation methods, the midpoint of a
cell is just the barycentric point of the cell.

Although our metric involves coordinates of only five points,
utilizing small circle arcs via these five points are important to
measure shape regularity, and representative of both interior and
margins of cells. In other words, using small circle arcs via mid-
point of a cell could avoid any deviation of diagonal to one
boundary. Deviation of diagonal to one boundary may occur in the
case of degenerated quadrilateral [see triangular cells in Figs. 1
(c) and 2(c)] when using great circle arcs.

Secondly, the boundaries of a cell seem to have no influence on
our metric if we fix the five points in our method. However, it is
not hold true due to the following reasons.

� When cells are subdivided into infinitesimal ones, the bound-
aries of a cell approach straight coplanar lines [see Fig. 9(g),
(j) and (m)]. Hence, the Euclidean geometry is possible to be
used to measure infinitesimal cells. As illustrated in Fig. 4,
vertices of infinitesimal cells could represent boundaries and
could be used to measure the shape regularity of cells. Further
numerical results (see Fig. 12 in Section 3.2) imply that the
metric AveRaComp of cells is a monotonically increasing func-
tion. That means infinitesimal cells are more representative of
shape regularity than large cells.

� For a given spherical tessellation, the boundaries of cells are of
meaning [usually straight lines on projection plane(s), geo-
desics, or graticules] and definite. Hence, it is unreasonable to
change the boundaries of cells while maintaining the points
used in our metric. Modification boundaries of an existing tes-
sellation may improve shape regularity of some cells [e.g., see
Fig. 9(j)], but shape regularity of other cells [e.g., see Fig. 9(g)]
would probably be damaged. Further calculation (see Appendix
A) implies that modification the boundaries has bad effects on
shape characteristics.

� We could construct a tessellation that keeps midpoints fixed for
some low levels of tessellations. Appendix A gives an analysis,
and implies that the positions of midpoints of boundaries would
change when subdivision goes further. Hence, it is difficult to
conceive a tessellation which modifies the boundaries of cells
for hierarchical tessellations, while simultaneously keeps the
position of points for each level of tessellations.

� Additionally, modification of boundaries may have effects on
areal distributions. Taking two octahedron-based methods in
Fig. 6 for examples, O-QTM/Quad exhibits a less degree of shape
distortions than OEAP/Quad, but O-QTM/Quad loses uniformity
in area when compared to OEAP/Quad.

For the above reasons and some analyses mentioned in Section
2.3, it is fairly sensible to some extent that our metric AveRaComp
measures the shape regularity of spherical tessellations.

2.5. Adaptation for spheroids

The derivations of formulae in Section 2.2 assume the Earth to
be a sphere, however, the Earth is not an ideal sphere. Spheroids
provide better approximations than sphere for the Earth. Given ,



Fig. 9. Different level of subcells on a sphere. Even though a coarse cell exhibits some degrees of roughness on boundary, its subcells eliminate this factor by recursive
subdivisions.
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a reference ellipsoid, Snyder (1987) gives factors cm and cp to
correct h and k (see Eqs. (8) and (9)), respectively.

( ) ( )ϕ ϕ( ) =
−

−
( )

c
R

a e
e

1
1 sin ,

15
m 2
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ϕ ϕ( ) = − ( )c
R
a
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where R is the mean radius of , a is the radius along the semi-
major axis of , e is the eccentricity of , and ϕ is latitude.

The calculations in Eqs. (1)–(5) depend on the assumption of
the Earth being a sphere. When considering ellipsoid, small circle
arcs in Eq. (5) turn to be elliptic arcs. The length of elliptic arcs
could be calculated by using elliptic integral methods. But nu-
merical integral is time consumed. So we simplify the process of
calculating ρ ( )iCP to adapt for ellipsoids (see Eqs. (17)–(19)). The
simplification is numerical equivalent to Eqs. (1)–(5), while neither
integral nor differential calculus) is introduced.
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where i is the index of a spherical cell ♢P P P P1 2 3 4, and
⎯ →⎯⎯⎯⎯
P Ps t is the

vector connecting points Ps, and Pt.
According to the analyses in Section 2.4, arcs on sphere ap-

proach to straight lines when cells are subdivided into in-
finitesimal ones. As a result, it makes sense that using the lengths
of straight lines (see Eq. (18)) and the directions of straight lines
(see Eq. (19)) to calculate our AveRaComp metric.

According to the correlation coefficient between ρCP and ρ̃CP
(see Table 1), we find the simplified version of our AveRaComp
metric could represent the original AveRaComp well

ρ ρ[ ( ˜ ) > ]PPMCC , 0.99998CP CP .
3. Experimental results and analyses

3.1. Overview of different tessellation methods

Table 3 summarizes some qualitative comparisons of dif-
ferent spherical tessellation methods. Here, eleven typical
methods and their own inherent characteristics are listed.
Other methods (Majewski et al., 2002; Platings and Day,



Table 3
Qualitative comparisons of 11 typical spherical tessellation methods.

Method Author(s) (Year) Category Initial polyhedron Shape of cells NCBa BGa AEa SRa

NUG Rosca (2010) MP-based Two-hemispheres Quadrilateral n No Yes No
USG Roşca and Plonka (2011) MP-based Cube Quadrilateral n No Yes No
Unicube Ho et al. (2011) MP-based Cube Quadrilateral n Yes No No
C-Sph Ronchi et al. (1996) MP-based Cube Quadrilateral n Yes No No
Isocube Wan et al. (2007) MP-based Six-faces Quadrilateral n No Yes No
OEAP Holhoş and Roşca (2014) MP-based Octahedron Triangleb n No Yes No
O-QTM Dutton (1996) MP-based Octahedron Triangleb n No No No
SQT Fekete and Treinish (1990) DSS-based Icosahedron Triangleb 2kc Yes No Yes
HEALPix Górski et al. (2005) MP-based Twelve-faces Quadrilateral n No Yes No
CitcomS Zhong et al. (2000) DSS-based Rhombic dodecahedron Quadrilateral 2kc Yes No Yes
Crusta Bernardin et al. (2011) DSS-based Rhombictriacontahedron Quadrilateral 2kc Yes No Yes

a NCB represents the number of cells on the boundary of one initial cell, where n is any positive integer, and k is any non-negative integer, BG represents whether the
boundaries are geodesic or not, AE represents whether areas are equal or not, and SR represents whether subdivisions are recursive or not.

b It is possible to combine two adjacent triangular cells (e.g., Fekete and Treinish, 1990; Dutton, 1996; Holhoş and Roşca, 2014) as a quadrilateral cell. These varieties are
denoted as SQT/Quad, O-QTM/Quad, and OEAP/Quad. The approach used by Majewski et al. (2002) is similar to Fekete and Treinish (1990).

c These methods subdivide a cell into four sub-cells, so the total number of cells in these methods could only be ·N4k
0, where N0 is the number of initial cells, and k is the

time of tessellations. These methods are regarded as aperture-4 (Sahr et al., 2003) [or 4-fold Kimerling et al., 1999] subdivisions.

Fig. 10. Perspective views of different spherical tessellation methods [i.e., eight quadrilateral tessellations, three variants (named with a postfix “/Quad”) of triangular
tessellations, and a variant (named with a postfix “/Diag”) of quadrilateral tessellations]. The variants of triangular tessellations are constructed by combining adjacent
triangular cells. The variant USG/Diag is constructed by using diagonals of USG. Only aperture-4 subdivisions are illustrated. The dark black lines represent the first level of
tessellations. The grids of Crusta are subdivided into the second level, and the grids of NUG are subdivided into the fourth level, while other grids are subdivided into the
third levels of their own.
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2004; Westerteiger et al., 2011) that are similar to some
methods listed in Table 3 are not included. The methods in
Table 3 involve commonly used polyhedrons, e.g., cube, oc-
tahedron, icosahedron, rhombic dodecahedron, and rhombic
triacontahedron.

Fig. 10 depicts the perspective views of eight spherical
quadrilateral tessellations listed in Table 3. In addition, USG/
Diag (which is based on rhombic dodecahedron) and variants
(i.e., SQT/Quad, O-QTM/Quad, and OEAP/Quad) of three trian-
gular tessellations are also illustrated in Fig. 10.

3.2. Evaluation of shape regularity and distortions of texels

Fig. 11 illustrates the distributions of our metric AveRaComp for
some more tessellation methods besides those methods depicted
in Fig. 6. Due to symmetry, we only plot one initial cell [see Fig. 11
(d)] for each method. From Fig. 11(a)–(c), we note that our metric
is discontinuous in some DSS-based methods. Further analysis
implies that distributions of normalized areas for DSS-based
methods are also discontinuous. Hence, DSS-based tessellations
are not preferred choices to some extent.

When considering MaxAveRaComp according to Eq. (6), the
evaluation results are illustrated in Fig. 12. For all methods we
investigated, the number of cells to be evaluated is up to one
billion cells (i.e., ≈ ×4 10.7 1015 8) The horizontal axis of Fig. 12
represents the logarithm of the number of cells to the base of 4.

From Fig. 12, the metric MaxAveRaComp is a monotonically
increasing function, so we could calculate the rankings of different
spherical tessellation methods according to the supremum of the
metric MaxAveRaComp (denoted by ρsup CP).

The metric ρsup CP reflects the shape regularity of spherical
tessellation methods. From Fig. 12, two DSS-based tessellations
[i.e., rhombic dodecahedron based CitcomS (Zhong et al., 2000),
and rhombic triacontahedron based Crusta (Bernardin et al., 2011)]
surpass other methods we investigated according to ρsup CP . In
addition, cube-based USG (Roşca and Plonka, 2011), USG/Diag



Fig. 11. Distributions of our AveRaComp metric as a supplementary illustration to Fig. 6 for more DSS-based tessellations. It should be noted that DSS-based tessellations
exhibit some degrees of discontinuity in both shape regularity and area uniformity (from further calculations).

Fig. 12. Comparisons of shape regularity for different spherical tessellation methods up to one billion cells. The numbers in parentheses are the rankings of 11 different
quadrilateral grids. The horizontal axis uses the logarithm of the number of cells to the base of 4 because aperture-4 subdivisions are investigated.
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(which is based on rhombic dodecahedron), and cube-based C-Sph
(Ronchi et al., 1996) are also good tessellations with quasi-reg-
ularity of shape.

Quadrilateral grids are suitable to construct quadtrees and map
textures. This is commonly used in mapping a globe or environ-
ment mapping.

Generally, texels are squares in typical applications even when
triangular cells are used because square texels are suitable for
storage. In applications with textures, if a grid distorts to be
rhombic, the texel distorts too. Therefore, the metric AveRaComp
of quadrilateral grids (derived from triangular grids, or innate
quadrilateral grids) may reflect the distortions of texture mapping.

To examine the distortions of texture mapping, we use NASA
Blue Marble Next Generation (BMNG) dataset to map different
spherical grids. Here, we examine two equal-area tessellation
methods (USG and OEAP/Quad). The comparison of two equal-area
methods eliminates the influences of non-uniformity of areas. The
results of comparison are illustrated in Fig. 13.

In Fig. 13, BMNG dataset is firstly down-sampled to appropriate
resolutions and then re-sampled according to specific projections
[see Fig. 13(a) and (b)]. The times of texture re-sampling are ap-
proximately equal (i.e., δ δ× ≈ ×4 61

2
2
2) for both USG and OEAP/

Quad.
Next, the sampled textures are mapped on cells of the Earth.

Local views of the Earth are demonstrated in Fig. 13(c)–(f).
From Fig. 13, OEAP/Quad exhibits more distortion and more

aliasing than USG due to the shape irregularity of OEAP/Quad.
From above comparisons, we obtain that our shape metric
measure the regularity of quadrilateral cells, and also reflect the
associated distortions of texture mapping.

3.3. Evaluating qualities of spherical cells considering both shape
regularity and area uniformity

The purposes of tessellations are both shape regularity and area
uniformity. But it is impossible to achieve absolute perfection in
both aspects (Kimerling et al., 1999; Platings and Day, 2004). A
similar fact is that distortions are inevitable in any map projection
(Snyder, 1987; Mulcahy and Clarke, 2001).

In addition to our shape metric, we also use χA, the coefficient
of variation of spherical areas to evaluate the area uniformity of
cells. Five equal-area tessellation methods [i.e., USG (Roşca and
Plonka, 2011), HEALPix (Górski et al., 2005), Isocube (Wan et al.,
2007), and OEAP (Holhoş and Roşca, 2014), and NUG (Rosca,
2010)] and the variants of these equal-area methods surpass other
non-equal area methods we investigated. Following to those
equal-area methods, Crusta (Bernardin et al., 2011; Ho et al., 2011),
Unicube, and Unicube/Diag are quasi-equal-area methods.

Fig. 14 illustrates shape regularity and area uniformity of dif-
ferent tessellation methods on a two dimensional coordinate
system. Here, we employ χsup A, the supremum of the coefficient
of variation of spherical areas to evaluate area uniformity. From
characteristics of rotation-invariant mentioned above, and further
calculations of areas, variants of methods with a postfix “/Diag”
that are listed in Table 2 have the same qualities (same positions in
Fig. 14) as their original methods.



Fig. 13. Texture distortions of two equal-area tessellations (OEAP/Quad and USG). The first row illustrates the sampled textures of OEAP/Quad (resolution is δ×4 1
2) and USG

(resolution is δ×6 2
2), respectively. The last two rows give local views (looking at coast of Nigeria in western Africa from 10 km height and using 120° as the vertical field of

view) of the Earth. We sample textures with approximately equal resolution for both OEAP/Quad and USG, i.e., E105 million pixels for the second row, and E590 million
pixels for the third row. For a visually detectable comparison of local views, the texture sampling in the second row is insufficient. There is a detectable aliasing along
horizontal coastline in (c), while aliasing is not obvious in (d). Green arrows in the last two rows indicate four cells to be measured via the metric ρ ( )iCP . Although the metrics
ρ ( )iCP of these local views (i.e., about 1.97 for OEAP/Quad, and about 1.23 for USG) are less than the metrics ρsup CP (i.e., about 2.10 for OEAP/Quad, and about 1.36 for USG),
OEAP/Quad exhibits more distortions and more aliasing than USG. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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We also evaluate spherical tessellations on WGS84 reference
ellipsoid by using our AveRaComp metric and area uniformity
metric. The area of cells is corrected by multiplying area by the
product of cm and cp (see Eqs. (15) and (16)). The AveRaComp of
cells are calculated by using Eqs. (17)–(19).

From Fig. 14, we find that USG (Roşca and Plonka, 2011) and its
variants ( ρ ≈sup 1.36D3 and χ =sup 0A ) are good tessellations
among methods we investigated when we consider both χsup A
and ρsup CP .

Another three methods, i.e., Crusta (Bernardin et al., 2011),
Unicube (Ho et al., 2011), and Unicube/Diag (that is not illustrated
in Fig. 14), are also good choices [both (quasi) equal-area and
quasi-regular tessellations] to some extent.

There is no significant difference between cells on sphere
and cells on reference ellipsoid, compared to the difference among
different tessellation methods. But a fact is that reference ellipsoid
has relatively obvious influences for some methods (e.g., CitcomS).

4. Conclusions

The averaged ratio between complementary profiles (AveR-
aComp) is introduced to measure the distortion of map



Fig. 14. Comparisons of shape regularity and area uniformity. We recommend USG
for its advantages of quasi-regularity in shape and equal-area. Green markers in-
dicate the results of evaluation when considering WGS84 reference ellipsoid. The
difference between cells on sphere and cells on reference ellipsoid is minor,
compared to the difference among different tessellation methods. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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projections, and consequently, the shape regularity of spherical
cells. Numerical analyses indicate that our metric AveRaComp re-
sults in high correlated distributions to differential calculus. It
balances computational complexity and accuracy. Meanwhile, our
metric avoids the mandatory restriction to map projection based
tessellations when we employ Tissot indicatrix or differential
calculus. Our shape metric is unified in form for map projection
based or non-map-projection based tessellations (e.g., direct
spherical subdivisions) and effective for evaluating different kinds
of quadrilateral or triangular cells, although it is not suitable for
hexagonal cells. A simplified version of AveRaComp metric is in-
troduced to evaluate cells on ellipsoids. It provides a concise and
general form to evaluate map projections and spherical tessella-
tions. Our metric could also reflect the distortions of texels when
we apply texture mappings to quadrilateral or triangular cells.

We quantitatively evaluate 11 typical spherical tessellation
methods and some variants of these methods according to our
shape metric and an essential area metric (χA, coefficient of var-
iation of spherical areas). Further evaluation could also be applied
to other existing or unborn methods.

Considering the maximum values of AveRaComp, rhombic do-
decahedron based CitcomS, rhombic triacontahedron based Crus-
ta, cubed-based Uniform Spherical Grids (USG) and Cubed Sphere,
and rhombic dodecahedron based USG/Diag produce lower de-
grees of shape distortions than other methods we investigated.

Considering both shape regularity ρ( )sup CP and area uniformity
χ( )sup A on a two dimensional coordinate system, we recommend

Uniform Spherical Grids and its variant for their optimal perfor-
mances of areas uniformity and suboptimal performances of shape
regularity. In addition, Crusta, Unicube map, and a variant of
Unicube map are also preferred tessellation methods for their
characteristics of (quasi) equal-area and quasi-regular.
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Appendix A. Modification of O-QTM/Quad

Firstly, we construct a 2D smooth and continuous transforma-
tion (see Eq. (A.1)) from ( )x y, to ( )u v, on a planar region, where

∈ [ ]x 0.25, 0.5 and ∈ [ ]y 0.25, 0.5 .

⎧⎨⎩
π π
π π

= ( − ) +
= ( − ) + ( )

u A k x k y

v A k y k x

sin 4

sin 4
,

A.1

where >A 0 represents the amplitude of the sine function, and
=k 2n represents the frequency, = …n 1, 2, .
A planar tessellation using Eq. (A.1) is illustrated as Fig. A1

where parameter A¼0.005, and k¼4. Red cells represent primitive
squares with equal areas on projection plane, blue cells are mod-
ified tessellation following Eq. (A.1). The cells are progressively
refined from left to right, and could be subdivided further. In Fig.
A1, black circles represent fixed corner points. It should be noted
that the number of fixed points is finite.

If we want to increase the number of fixed points, we could
increase the parameter k. The larger the parameter k, the more
fixed points present. However, we notice that, in our example,
when ≥ ×N k4 2, the corners of blue cells deviate from the corners
of red cells. When we choose a larger parameter k, another
drawback is that boundaries exhibit a wavelike appearance when
N is small. We could decrease amplitude parameter A, however,
the wavelike appearance could not be fully eliminated since >A 0.

In addition to Eq. (A.1), we could construct other transforma-
tions that modify boundaries of cells. However, one could not
make sure that all midpoints are fixed for all levels of tessellation.
When N is large enough, the deviation of midpoints is inevitable.

The next step is constructing cells on the sphere. We could
construct a variety of spherical cells by using different transfor-
mations. Here, we map the coordinate from ( )u v, to ϕ λ( ), via
inverse ZOT projection formulae (Dutton, 1991). Due to symmetry,
we only consider cells on the north hemisphere.

Finally, we use our shape metric MaxAveRaComp to evaluate
the shape regularity of modified cells illustrate in Fig. A1. The re-
sult of calculation is shown in Fig. A2. When k¼8, our metric is
larger than 3.5, the cell corresponding to the worst metric is illu-
strated as a blue cell in Fig. A2. The distortion of the blue cell is
more severe than cells illustrated in Fig. 13.

From Fig. A2, we obtain that
(1) When ≥ ×N k16 2 (see black circles), the metrics of modified

cells are larger than the metric of primitive cells (the red line).
(2) There is a steep change when k¼8. The larger the para-

meter k, the more steepness, and the larger the upper bound (over
3.5) of our metric.

The steepness and larger upper bound are caused by the wa-
velike feature of sine function mentioned above. If we would not
like that to happen, we could decrease the amplitude parameter A.
So, we keep the product of A and k, and reconstruct cells on the
sphere. The results of keeping · =A k 0.01 is that our metrics con-
verge to a similar upper bound (about 1.78) for different A and k.
However, a larger upper bound than primitive cells is
inevitable (see red line in Fig. A2).

The above process is made to show that we could construct a
tessellation with a finite number of fixed midpoints. However,
when cells are subdivided further, the midpoints of cells must
deviate from primitive cells. More seriously, cells could distort too
much in the case of constructing a modified tessellation as men-
tioned above.



Fig. A1. Equally spaced cells on plane (in red), and modified cells with A¼0.005, and k¼4. Black circles indicate fixed corner points. When N exceeds a given value, the
corners of blue cells are deviated from the corners of red cells. If we choose a larger parameter k, we obtain more fixed corner points. But boundaries exhibit a wavelike
appearance when N is small. That is a drawback caused by keeping more points fixed. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. A2. The results of evaluating for spherical cells corresponding to planar cells
shown in Fig. A1 via our metric MaxAveRaComp. The cell in blue is the worst cell
when A¼0.005, and k¼8. This cell would exhibit more distortions than cells in
Fig. 13(c). The cell in red is the primitive cell corresponding to the cell in blue. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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