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a b s t r a c t

Conic map projections are appropriate for mapping regions at medium and large scales with east–west
extents at intermediate latitudes. Conic projections are appropriate for these cases because they show
the mapped area with less distortion than other projections. In order to minimize the distortion of the
mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of
thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules
of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more
sophisticated methods that determine standard parallels such that distortion in the mapped area is
minimized. These methods are computationally expensive and cannot be used for real-time web map-
ping and GIS applications where the projection is adjusted automatically to the displayed area. This
article presents a polynomial model that quickly provides the standard parallels for the three most
common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic
projection. The model defines the standard parallels with polynomial expressions based on the spatial
extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian
segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The
polynomial model was derived from 3825 maps—each with a different spatial extent and computa-
tionally determined standard parallels that minimize the mean scale distortion index. The resulting
model is computationally simple and can be used for the automatic selection of the standard parallels of
conic map projections in GIS software and web mapping applications.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Conic map projections with a normal aspect show meridians as
straight, radiating lines and parallels as concentric arcs. They are
used to map regions at medium and large scales with greater east–
west extents than north–south extents at intermediate latitudes.
In these cases, conic projections have advantageous distortion
properties (minimizing distortion) and the directions of the mer-
idians indicate the location of the nearest pole. The Albers equal-
area and Lambert conic projections are suggested for mapping a
continent, ocean, or smaller region in Snyder's selection guide
(Snyder, 1987), which is the most sophisticated and generally re-
commended map projection selection guideline currently avail-
able. Conic projections with carefully selected standard parallels
minimize variations in the distortion of the mapped area. Rules of
, and Atmospheric Sciences,
thumb exist for placing the standard parallels (Bugayevskiy and
Snyder, 1995; Maling, 1960, 1992; Snyder, 1987) and they are dis-
cussed in the following section. The standard parallels can also be
defined with more sophisticated methods. For example, Adams
selected standard parallels for the 48 conterminous United States
by minimizing the distortion values at the center and along the
borders of the map for the Albers equal-area projection (Deetz and
Adams, 1934, p. 91; Snyder, 1987). Another example is the work
done by Kavrayskiy, who used a least-square error in scale dis-
tortion to determine standard parallels for the equidistant conic
projection for mapping the European part of the Soviet Union
(Maling, 1960, p. 242; Snyder, 1987).

Such sophisticated and computationally expensive methods are
not applicable when the standard parallels have to be selected on
the fly, for example, in web maps where the map user can change
the displayed spatial extent by panning or zooming, or by ad-
justing the width-to-height ratio of the map. The computations
would take too long and prevent smooth interactions on a web
map. Instead, the few existing web maps with adaptive composite
map projections use rules of thumb to select standard parallels for
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Fig. 1. The fan-shape of the mapped area defined by the maximum and minimum
latitude of the mapped central meridian segment with both standard parallels.
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conic projections. For example, Jenny (2012) places standard par-
allels at one-sixth of the angular length of the mapped central
meridian segment from the upper and lower map borders. This
rule of thumb was suggested by Deetz and Adams (1934, p. 79, 91),
as discussed further in the next section. Such rules of thumb
simplify the selection of standard parallels, but do not generally
select the optimal standard parallels to minimize map distortion.

The main objective of the research presented in this article is to
develop a mathematical model for selecting the standard parallels
of conic projections based on the spatial extent of the mapped
area. This model is to be used for selecting standard parallels when
the projection is selected on the fly in a web map, GIS, and other
geospatial software with adaptive projections. The development
idea is to first create a systematic variety of mapping scenarios
using three parameters that define the spatial extent of the
mapped area: the length of the mapped central meridian segment,
the central latitude of the displayed area, and the width-to-height
ratio of the map. The standard parallels are determined to mini-
mize the scale distortion for each scenario. From the results of this
distortion analysis, a simple mathematical model is derived that
returns the optimal standard parallels for a given spatial extent of
a map.

This article first documents the existing recommendations and
rules of thumb for placing the standard parallels of conic projec-
tions. In the Section 3, the parameters of the spatial map extent,
the mapping scenarios, the distortion measure used, the compu-
tation of optimal standard parallels, and the derivation of the
mathematical model are explained. The Section 4 presents the
polynomial model defining standard parallels for the three conic
projections, documents the evaluation of the model, and details
the implementation steps for using the model. In the conclusion,
the major advantages of the model are pointed out and possible
applications are given. This article has one Appendix, which details
the partial derivatives of the three conic projections used for
computing the distortion parameters.
2. Existing recommendations

In the past, a few rules of thumb have been suggested for se-
lecting standard parallels for conic projections. The equatorial (or
lower) and polar (or upper) standard parallels can be determined
using the following simple formulas:
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where ϕ1 is the equatorial parallel, ϕ2 is the polar parallel, ϕmax is
the maximum latitude of the mapped central meridian segment,
ϕmin is the minimum latitude of the mapped central meridian
segment, and K is a constant (Bugayevskiy and Snyder, 1995;
Maling, 1992). Fig. 1 illustrates the parameters for Eq. (1). For the
southern hemisphere, the equatorial parallel is computed by
subtracting the fraction with constant K from the maximum lati-
tude ϕmax. The polar parallel is computed by adding the fraction
with constant K to the minimum latitude ϕmin.

Hinks (1912, p. 87) suggested =K 7, which places the standard
parallels at one-seventh of the length of the mapped central
meridian segment from the maximum and minimum latitude of
the mapped central meridian segment (Fig. 1). Deetz and Adams
(1934, p. 79, 91) suggested =K 6. Both of the above suggestions
assume that the mapped area completely fills the fan-shape
(Fig. 1) (Maling, 1992, p. 242), while most maps (including web
maps) have a rectangular shape. The value of the constant K does
not change with the spatial extent of the area to be mapped.

According to Bugayevskiy and Snyder (1995) and Maling (1960,
1992), in 1934 Kavrayskiy suggested four K values for mapping
areas with different extents: (1) =K 7 for areas with a larger
extent in longitude, (2) =K 5 for areas with a larger extent in
latitude, (3) =K 4 for areas with circular or elliptical outlines, and
(4) =K 3 for areas with square outlines. Kavrayskiy's K values
assume that the area to be mapped is symmetrical along the
central meridian and central latitude. The different K constants
improve the models suggested by Deetz and Adams (1934), and
Hinks (1912), because they take the shape of the area to be
mapped into consideration. However, descriptions of Kavrayskiy's
constants are vague, and the shape of the mapped area changes
when the area is projected. In addition, the area of interest to be
mapped can also be asymmetrical relative to the central latitude
and longitude.

One way to improve Kavrayskiy's model and take different
asymmetric distributions of the area into account is by applying
different values to each of the standard parallels. Hrvatin (2011)
used this “double criterion” for defining standard parallels for
mapping continents with the Albers equal-area projection. For
each part of the mapped area above and below the central latitude,
he defined a constant value that matched best with Kavrayskiy's
descriptions of the area and used it to compute the standard
parallels.

Kavrayskiy's constant values and Hrvatin's “double criterion”
take into account the shape of the area being mapped. However,
none of the existing models take both the shape and the central
latitude of the mapped area into consideration.
3. Methods

To derive a mathematical model for the automated selection of
standard parallels, different mapping scenarios were analyzed for
the Albers equal-area conic, the Lambert conformal conic, and the
equidistant conic projections. For each projection, the optimal
standard parallels were computed first for each mapping scenario.
Those optimal standard parallels were later used as a basis to
define approximating models using polynomial equations. The
resulting models—one for each of the three projections—return
standard parallels according to the length of the mapped central
meridian segment, the central latitude, and the width-to-height
ratio of the map. This section details the derivation of the math-
ematical model.

3.1. Parameters of the spatial map extent and their ranges

To define the extent of the area displayed on the map, three
parameters are used: the length of the mapped central meridian
segment, the central latitude of the displayed area, and the width-
to-height ratio of the map (Fig. 2). These three parameters re-
present the input variables for the mathematical models presented



Fig. 2. Input variables for the mathematical model: width and height of the width-
to-height ratio (α), the length of the mapped central meridian ( ϕ∆ ), and the central
latitude (ϕC ) of the area to be mapped.

Fig. 3. The lengths of the mapped central meridians and central latitudes for 425
mapping scenarios. The same scenarios were used for all 9 width-to-height ratios.

Fig. 4. An example of a regular grid of sample points with 5 rows. The longitude
and latitude intervals are the same length in degrees. The central meridian is
placed in-between the two central columns of points.
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in this article. For the purposes of this article, the term the length of
the mapped central meridian refers to the parameter defining the
length of the mapped central meridian segment in angular units.

Conic projections are appropriate for large-scale maps (Snyder,
1987), therefore we limit the maximum possible length of the
mapped central meridian in our model to °45 . The minimum
length of the central meridian is °2.5 in our model.

Snyder (1987) suggests conic projections for areas away from
the equator. Central latitudes between °15 and °75 are used for our
model.

Our model uses map width-to-height ratios between 1 and 3. A
width-to-height ratio of 1 represents an equal extent, and azi-
muthal projections would be more appropriate to use in this case.
A width-to-height ratio of 3 results in a map that has a small la-
titudinal, but large longitudinal extent. When the length of the
mapped central meridian is large, a width-to-height ratio of 3 can
result in a mapping scenario where a medium-scale projection,
e.g. an azimuthal projection, would be more appropriate.

3.2. Mapping scenarios

A total of 425 scenarios for each possible width-to-height ratio
were created by varying the maximum and minimum latitude
values of the mapped central meridian segment for every °2.5 . In
total, 9 width-to-height ratios were used in the analysis: 1, 1.25,
1.5, 1.75, 2, 2.25, 2.5, 2.75, and 3. Altogether, 3825 different map-
ping scenarios were created for each of the three conic projections.
Fig. 3 shows the lengths of the mapped central meridians and
central latitudes for one of the width-to-height ratios that was
used in the analysis. The top right corner of the graph excludes a
few examples, since the northern latitude of their mapped central
meridians exceeded °90 .

3.3. Distortion measure

To find the optimum standard parallels for each mapping sce-
nario, a distortion measure is needed. For the purposes of this
research, Canters and Decleir's (1989) weighted mean error in the
overall scale distortion Dab after Canters (2002) was used (Eq. (2)).
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Eq. (2) computes the index Dab by summing the weighted scale
distortion for k sample points. The latitude of a sample point is ϕi,
and the maximum and minimum scale distortions at the sample
point are ai and bi. The sum of all area weight factors is computed
with ϕ= ∑ =S P cosi
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Canters and Decleir (1989) introduced this distortion measure
for comparing small-scale projections (Canters, 2002). In other
research, this index is used for comparing projections, for example,
Jenny et al. (2008, 2010) evaluate projections designed in Flex
Projector, Šavrič and Jenny (2014) compare pseudocylindrical
projections, and Jenny et al. (2015) analyze cylindrical projections
for world maps. Mulcahy (2000) uses a similar index by Canters
and Decleir (1989) with maximum angular distortion instead of
scale distortion for evaluating pixel changes while projecting the
global raster data. Using the factor Pi, one can restrict the distor-
tion measure to an area of interest (Canters, 2002). To compute the
weighted mean error in the overall scale distortion, only sample
points that are inside of the mapped area in each scenario were
used.

A regular grid of sample points was defined using the same
interval for the latitude and longitude. The interval was computed
separately, based on the length of the mapped central meridian for
each mapping scenario. 50 rows of sample points, where the
central meridian is placed in-between the two central columns of
points, were used for the purposes of this study. Fig. 4 shows an
example of a regular grid with 5 rows of sample points.



Fig. 5. Computing optimal standard parallels for the map extent for a rectangular
map. Dashed parallel lines show tested parallels in the first step. Short solid black
lines demonstrate the second step when 10% of the mapped central meridian
length above and below the resulting parallels in the first step is analyzed again.
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3.4. Computing optimal standard parallels

The optimal standard parallels were computed in two steps for
each mapping scenario. In the first step, polar and equatorial
standard parallels were computed for each 5% of the central
meridian length (dashed parallel lines in Fig. 5). The polar parallels
were tested between the maximum mapped latitude on the cen-
tral meridian and the central latitude value. For the equatorial
parallels, tested values ranged between the central latitude down
to five standard parallels below the minimum mapped latitude on
the central meridian (see Fig. 5). These extra five parallels were
included in the test since some mapping scenarios with high
width-to-height ratios have better distortion measures with a
standard parallel below the minimum mapped latitude. For all
possible combinations of standard parallels, the weighted mean
error in the overall scale distortion was computed, and the com-
bination with the smallest distortion measure was recorded. Fig. 5
demonstrates resulting standard parallels of the first step with
solid black parallel lines.

In the second step, 10% of the mapped central meridian length
above and below the resulting parallels was analyzed again to
more accurately define the standard parallels. On Fig. 5, short solid
black lines along the central meridian demonstrate the second
step. The parallel interval was set at 1% instead of 5% of the central
meridian length. Again, all possible combinations were tested and
the one with the smallest weighted mean error in the overall scale
distortionwas selected as having the optimal standard parallels for
the examined mapping scenario.

The methodology used for computing the optimal standard
parallels was computationally expensive, and it took about four
days to analyze all 3825 different mapping scenarios for one conic
projection. There were three main reasons for why the computa-
tion was so expensive: (1) a large number of sample points were
used to compute the distortion measure, (2) computationally ex-
pensive functions, e.g. sine, cosine, and tangent, were used to
project sample points and compute numerical derivatives, and
(3) there were many possible combinations for both standard
parallels. A high number of sample points was required to ensure
that the distortion measures were of good quality. To accelerate
the computation speed, partial derivatives were analytically de-
rived from the original projection formulas and were used instead
of a numerical approximation. Appendix details the analytical
derivatives for the three conic projections used in this research. To
minimize the number of possible combinations to test, the optimal
standard parallels were defined in the two-step method described
previously. All together, only about 200 combinations needed to be
tested for each mapping scenario, instead of all 2500 possible
combinations with the parallel interval set at 1% of the central
meridian length.

The results of this two-step method were two standard paral-
lels for each mapping scenario and for each of the three conic map
projections. In the following steps, the latitude distance between
the equatorial parallel and the minimum latitude of the mapped
central meridian, and the latitude distance between the polar
parallel and the maximum latitude of the mapped central mer-
idian were computed. These distances to equatorial and polar
parallels were used for the approximation of the mathematical
model. Fig. 6 shows the resulting distances to the equatorial par-
allels and Fig. 7 shows the resulting distances to the polar paral-
lels, both for the equidistant conic projection.

3.5. Derivation of the mathematical model

By visualizing the distances between the latitude limits of the
mapped central meridian and the standard parallels (Figs. 6 and
7), it is apparent that they are changing with all three variables
used to define the mapping scenarios: the length of the mapped
central meridian ( ϕ∆ ), the central latitude (ϕC), and the width-to-
height ratio of the map (α) (Fig. 2). In order to develop a model for
the placement of standard parallels for conic projections, an ap-
proximation method using the least squares adjustment of indirect
observations (Mikhail and Ackerman, 1976) with polynomial
functions was used. The idea was to find two polynomials for each
of the conic projections that would return appropriate standard
parallels for the three given variables ( ϕ∆ , ϕC , α). The goal was to
approximate the distances with up to 6 polynomial terms for each
of the standard parallels. The polynomials should have the same
number of terms, and the terms should have variables with the
same polynomial degrees for each conic map projection, while the
polynomial coefficients could change among projections. This
section presents how the final mathematical model for the stan-
dard parallels was derived.

3.5.1. Initial polynomial equations
Polynomials of varying degrees for each variable were selected

and tested on how well they approximated the original values of
the optimal standard parallels. In this trial-and-error process, a
polynomial approximation with a minimum number of terms was
determined for every standard parallel separately. To approximate
distances to the equatorial parallel, a polynomial degree of two for
all three variables was selected (Eq. (3)). The approximation of the
distances to the polar parallel required a polynomial degree of
three for the central latitude and the length of the mapped central
meridian (Eq. (4)).
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where ϕ∆ 1 is the distance between the equatorial parallel and
the minimum latitude of the mapped central meridian, ϕ∆ 2 is the
distance between the polar parallel and the maximum latitude of
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Fig. 6. Distances between the minimum latitude of the mapped central meridian and the equatorial parallels for all nine analyzed width-to-height ratios in the equidistant
conic map projection. The width-to-height ratio grows from 1 at the top-left to 3 at the bottom-right.
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the mapped central meridian, α is the width-to-height ratio of the
map, ϕ∆ is the length of the mapped central meridian in radians,
ϕC is the central latitude, and …P P, ,1,1 2,11 are the polynomial
coefficients.

3.5.2. Simplification of the polynomial equations
The mathematical model presented in Eqs. (3) and (4), would re-

quire 20 polynomial coefficients for one conic projection. The expanded
version of Eq. (3), where each term in the parentheses is multiplied out
by all terms in the other parentheses, consists of 27 polynomial terms;
the expansion of Eq. (4) has 48 polynomial terms. This model can be
simplified to make the programming of the method easier.

Before starting the simplification, the polynomials from Eqs.
(3) and (4) were expanded. The simplification of each polynomial
was a separate iterative process in which polynomial terms with
small contributions were removed. The iteration consisted of the
following four steps:

(1) Each polynomial term was separately removed from the
function, and a new least squares adjustment was computed
for all three conic projections.
(2) For each adjustment, the residuals (the differences between
the original and approximated distances to the parallel) were
computed and scaled to the length of the mapped central
meridian.
(3) For each removed polynomial term, the combined reference
variance for all three conic projections was computed from the
scaled residuals.
(4) The polynomial term that had the smallest combined
reference variance was removed from the polynomial
function.
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Fig. 7. Distances between the maximum latitude of the mapped central meridian and the polar parallels for all 9 analyzed width-to-height ratios in the equidistant conic
map projection. The width-to-height ratio grows from 1 at the top-left to 3 at the bottom-right.
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This iterative process continued until there were six or less poly-
nomial terms left in each polynomial modeling the standard parallels.
An additional measure used in this process was the reference variance
for each of the conic projections and standard parallels. While re-
moving polynomial terms, the goal was to keep all six (three for each
of the two standard parallels) reference variances under 2%.
4. Results

4.1. Polynomial models for selecting standard parallels

The distances between the equatorial parallel and the minimum
latitude of the mapped central meridian were approximated with a
5-term polynomial, and the distance between the polar parallel and
the maximum latitude of the mapped central meridian was
approximated with a 6-term polynomial. Table 1 details the poly-
nomial terms and their coefficient values for each of the standard
parallels and conic map projections. Table 1 also details the average
residuals and reference variance of the least squares adjustment for
each approximation. The Albers equal-area projection has the highest
average residuals and reference variance for the distances to the
polar parallels and the lowest measures for the distances to the
equatorial parallels. The average residuals and reference variance for
the Lambert conformal conic projection are the highest for the dis-
tances to the equatorial parallels and the lowest for the distances to
the polar parallels. The average residuals and reference variance for
the equidistant conic projection have intermediate values.

Using the polynomial terms and their coefficients presented in
Table 1, standard parallels for all three conic map projections can
be determined for the northern hemisphere with Eq. (5).



Table 1
Polynomial terms and their coefficients for computing the distances between the latitude limits of the mapped central meridian and the standard parallels. ϕ∆ 1 is the
latitude distance to the equatorial parallels, ϕ∆ 2 is the latitude distance to the polar parallel, α is the width-to-height ratio of the map, ϕ∆ is the length of the mapped central

meridian in latitude, ϕC is the central latitude, σ̂0
2 is the reference variance of the least squares adjustment relative to the length of the mapped central meridian, and ̅v is the

average of the residuals from the least squares adjustment.

Polynomial term Albers equal-area Equidistant Lambert conformal

ϕ∆ 1 ϕ∆ 2 ϕ∆ 1 ϕ∆ 2 ϕ∆ 1 ϕ∆ 2

α ϕ ϕ·∆ · C
2 3 2 �0.013735 �0.030964 �0.045199

α ϕ ϕ·∆ · C
2 2 �0.038187 �0.041097 -0.045357

α ϕ ϕ·∆ · C
2 3 �0.042567 0.0016111 0.043362

α ϕ ϕ·∆ · C
2 2 �0.12311 �0.12481 -0.12699

α ϕ ϕ·∆ · C
2 0.066481 0.244 0.088351 0.23467 0.11504 0.22637

α ϕ·∆ 3 �0.022273 �0.013771 �0.0061132

ϕ ϕ∆ · C
2 2 0.21952 0.16272 0.09789

ϕ ϕ∆ · C
2 �0.22285 �0.19724 �0.1766

ϕ∆ 0.24185 0.24137 0.23488 0.23863 0.22895 0.23604

σ̂ [ ]%0
2 0.9614 1.8322 1.239 1.2785 1.6904 1.0711

̅ [ ]v % 0.74004 0.94025 0.85051 0.82632 0.97691 0.78703
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where ϕ1 is the equatorial parallel, ϕ2 is the polar parallel, ϕmax is
the maximum latitude of the mapped central meridian, ϕmin is the
minimum latitude of the mapped central meridian, α is the width-
to-height ratio of the map, ϕ∆ is the length of the mapped central
meridian in radians, ϕC is the absolute value of the central latitude
in radians, and …A A1 5 and …B B1 6 are the polynomial coefficients in
Table 1. For the southern hemisphere, the equatorial parallel is
computed by subtracting the distance ϕ∆ 1 from the maximum
latitude ϕmax. The polar parallel is computed by adding the
Fig. 8. The locations of standard parallels for the Albers equal-area projection, changing w
width-to-height ratio of the map is 1.6.
minimum latitude ϕmin to the distance ϕ∆ 2.
To reduce the amount of multiplication required, the poly-

nomial equations for the distances ϕ∆ 1 and ϕ∆ 2 can be simplified
with Eqs. (6) and (7). Eq. (6) has only 7 (instead of 13) multi-
plications and Eq. (7) has only 11 (instead of 18) multiplications.

( )( )( ) ( )ϕ ϕ ϕ ϕ ϕ α α α∆ = ∆ · +∆ · · · + · + · + · ( )A A A A A 6C C1 1 2 3 4 5

( )( )( )( ) ( )ϕ ϕ ϕ α ϕ ϕ α α ϕ ϕ ϕ∆ = ∆ · +∆ · · ·∆ + · + · + · ·∆ · + · 7B B B B B BC C C2 1 2 3 4 5 6
2

Figs. 8 and 9 show two examples of how the standard parallels
change with the length of the mapped central meridian and the
central latitude of the map. Fig. 8 is an example of the Albers
equal-area projection, where the central latitude is 38.5° and the
width-to-height ratio of the map is 1.6. The positions of the
standard parallels vary with the length of the mapped central
meridian (map extent) between 5° and 45°. This example de-
monstrates the change in the standard parallels when the user of a
web map zooms out of a specific area at intermediate latitudes.
ith the length of the mapped central meridian. The central latitude is 38.5° and the
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Fig. 9. The locations of the standard parallels for the Lambert conformal conic projection, changing with the central latitude of the map. The length of the mapped central
meridian is 25° and the width-to-height ratio of the map is 2.5.

Table 2
The minimum, maximum, average, and standard deviation of the percentage dif-
ferences of the weighted mean error in the overall scale distortion for all three
conic projections. The polynomial model improves the scale distortion compared to
Deetz and Adams' (1934), and Kavrayskiy's (Maling, 1960, 1992) models.

Model Projection Min. [%] Max. [%] Average [%] Std. dev. [%]

Deetz and
Adams

Albers �2.7 �28.8 �14.9 3.2
Equidistant �11.3 �30.9 �16.2 3.9
Lambert �11.1 �36.8 �17.8 5.7

Kavrayskiy Albers �4.7 �29.4 �18.5 6.1
Equidistant �2.1 �31.5 �19.4 7.0
Lambert �2.4 �36.5 �20.8 8.1
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The locations of both standard parallels slightly change, while the
displayed parallels are more curved due to the larger area on a
web map.

Fig. 9 shows a more extreme example for the Lambert conformal
projection, where the length of the mapped central meridian is 25°
and the width-to-height ratio of the map is 2.5. The positions of the
standard parallels vary with the central latitude of the map
between 15° and 75°. This example demonstrates the change in
the standard parallels when the user pans on a web map along the
central meridian towards the pole. While the user pans closer to the
North Pole, the positions of the standard parallels move further
south on the map and the standard parallels become more curved.

4.2. Evaluation of the model

Two approaches were used to evaluate our polynomial models
for the standard parallels. In the first approach, Deetz and Adams'
(1934) and Kavrayskiy's (Maling, 1960, 1992) models were com-
pared with the polynomial model introduced in this article. Can-
ters and Decleir's (1989) weighted mean error in the overall scale
distortion is used for this analysis. The second evaluation approach
compares the projected land features and the scale distortion
isolines of three specific examples.

For all mapping scenarios used to approximate the polynomial
models, standard parallels were determined using Deetz and
Adams' (1934), Kavrayskiy's (Maling, 1960, 1992), and the poly-
nomial (introduced in this article) models. Kavrayskiy’s model
uses =K 3 for mapped regions with square outlines and =K 7 for
mapped regions with a larger extent in longitude. In this analysis,
we followed Kavrayskiy's suggestion and the constant =K 3 was
used for the width-to-height ratios 1 and 1.25, since they display
regions with close to square outlines, and =K 7 was used for
other width-to-height ratios, because their mapped regions have a
larger extent in longitude. The weighted mean error in the overall
scale distortion was then computed for every mapping scenario
and the polynomial model was compared to the other two models.
The percentage differences between the polynomial model and
other two models were calculated. For each mapping scenario, the
polynomial model resulted in a smaller weighted mean error in
the overall scale distortion value. Table 2 details the averages and
standard deviations for all three conic projections and both com-
parisons to the polynomial method.

Compared to the Deetz and Adams (1934) model, the poly-
nomial approach improves the weighted mean error in the overall
scale distortion between 2.7% and 28.8% for mapping scenarios in
the Albers conic projection, between 11.3% and 30.9% in the case of
the equidistant conic projection, and between 11.1% and 36.8% in
the Lambert conic projection. On average, the weighted mean er-
ror in the overall scale distortion is improved between approxi-
mately 14.9% and 17.8% (Table 2).

The polynomial model presented in this article also improves
the weighted mean error in the overall scale distortion compared
to Kavrayskiy's method (Maling, 1960, 1992). The results show that
the weighted mean error in the overall scale distortion improved
between 4.7% and 29.4% for mapping scenarios in the Albers conic
projection, between 2.1% and 31.5% in the case of the equidistant
conic projection, and between 2.4% and 36.5% in the Lambert conic
projection. As shown in Table 2, on average the weighted mean
error in the overall scale distortion improved between 18.5% and
20.8%.

Three specific examples are used to evaluate the visual differ-
ences in projected land features and scale distortion isolines on
the map: (1) the contiguous United States projected with the
Lambert conic projection (Fig. 10, top), (2) Europe projected with
the equidistant conic projection (Fig. 10, middle), and (3) Russia
projected with the Albers equal-area conic projection (Fig. 10,
bottom). For each of the examples in Fig. 10, the projected land-
forms and distortion lines in red are those using the polynomial
model to define the standard parallels. Blue represents the other
method to which the polynomial model is compared. The con-
tiguous United States example compares the polynomial model to
the parallels at 33° and 45° north, as suggested by Snyder (Snyder,
1987, p. 104). The example of Europe compares the model to the



Fig. 10. Three examples showing the visual differences in projected land features and scale distortion isolines. Red shows landforms and distortion isolines with standard
parallels defined using the polynomial model. Blue represents landforms and distortion isolines with the standard parallels defined using the models specified in the text.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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parallels at 43° and 62° north, as used in Esri's ArcMap projection
library. The example of Russia compares the polynomial model to
Deetz and Adams' (1934) approach, using the Kavrayskiy constant

=K 6, resulting in parallels at 47° 50′ and 75° 10′ north.
In the case of the contiguous United States and Europe, the

visual differences are very small and barely noticeable. The stan-
dard parallels defined with the polynomial model result in maps
where projected land features match closely to the land features
projected with standard parallels suggested by Snyder or used in
Esri’s projection library. Some differences can be seen when the
scale distortion properties are compared. The polynomial model
results in slightly larger scale distortion in peripheral areas, while
the center of the map is less distorted.

The visual differences are more apparent in the example of
Russia projected with the Albers equal-area conic projection. This
example shows a mapping scenario with a larger geographic ex-
tent and a central latitude closer to the pole. The width-to-height
ratio of the map is relatively high, about 2.06, the central latitude
is 66°, and the length of the mapped central meridian is 41°. The
biggest differences in the projected land features are on the per-
ipheral parts of the map, which is the expected result. The scale
distortion characteristics are similar to the other two examples –

the peripheral areas have slightly greater distortion and the center
of the map is less distorted. Due to the larger area being mapped,
the scale distortion values are larger than the distortion values of
the other two examples.

4.3. Implementation of the model

The automatic computation of standard parallels using the
polynomial model can be executed in two steps. The bounding box
of the geographic area to be mapped is established using the
width-to-height ratio, the central latitude, and the length of the
mapped central meridian, which are approximated using Eq. (8).

φ φ φ φ
φ φ

α φ
λ λ

∆ = − =
+

= ∆
−

( )∼,
2

, 8max min C
max min

max min

where ϕ∆ is the approximated length of the central meridian, ϕC̃ is
the approximated absolute value of the central latitude, α ̃ is the
approximated width-to-height ratio of the map, ϕmax is the max-
imum latitude of the geographic area to be mapped, ϕmin is the
minimum latitude of the geographic area to be mapped, λmax is the
maximum longitude of the geographic area to be mapped, and λmin

is the minimum longitude of the geographic area to be mapped.
The geographic area is then projected with the conic projection

using the standard parallels defined by the approximated para-
meters. In cases where the approximated parameters exceed the
valid range, the closest limit value can be used instead. The
bounding box of the geographic area projected with a conic map
projection has a fan shape. In order to include the whole projected
bounding box, the mapped central meridian segment must exceed
the maximum latitude of the geographic area. In the next step, a
new maximum latitude (or a minimum latitude when mapping
the southern hemisphere) for the mapped central meridian is
determined using an inverse projection equation, and the length of
the mapped central meridian and central latitude are recomputed
using Eq. (8). The projected geographic bounding box does not
result in the same width-to-height ratio of the map as it was ap-
proximated in the first step. A new value for the width-to-height
ratio of the map is also defined from the projected geographic
bounding box. Using these new parameter values, the standard
parallels are defined and the geographic area is projected again.
The second step can be repeated to ensure that the parameters for
determining the standard parallels are defined accurately. In most
cases, a third iteration is not required.
5. Conclusion

The polynomial model presented in this article extends the
existing recommendations and rules of thumb for placing the
standard parallels of the three most common conic projections.
The major advantage of the polynomial model is that it also takes
both the central latitude and the extent of the mapped area into
account, which has not been the case in any of the pre-existing
models. Another advantage is that this method does not assume
the same model for equatorial and polar standard parallels. Both
parallels are defined with different polynomials.

The polynomial equations determine the standard parallels of
conic projections based on the length of the mapped central
meridian, the central latitude, and the width-to-height ratio of the
map. The equations have the same polynomial terms for the three
conic projections. However, they have different polynomial coef-
ficients. Using Eqs. (5)–(7), the standard parallels are computed
with 11 additions and 18 multiplications per mapping scenario.
Since the standard parallels are determined only once for any
change of parameters, the polynomial method is fast enough for
projecting data on the fly within a web mapping framework. This
method can also be used in automated map projection selection
tools or in GIS software.
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Appendix. Partial derivatives
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where for the Albers equal-area conic projection the variables
are:
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where for the Lambert conformal conic projection the variables
are:
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where for the equidistant conic projection the variables are:

ρ
ϕ

∂
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= − 1

ρ ϕ= ( − )G

( )θ λ λ= · −n 0

ϕ ϕ= +G ncos /1 1
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and where for all three conic projections x and y are the
projected coordinates, ϕ and λ are the latitude and longitude, λ0 is
the longitude of the central meridian, ϕ1 is the equatorial parallel,
and ϕ2 is the polar parallel.
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