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a b s t r a c t

Converting geographic features (e.g., place names) in map images into a vector format is the first step for
incorporating cartographic information into a geographic information system (GIS). With the advance-
ment in computational power and algorithm design, map processing systems have been considerably
improved over the last decade. However, the fundamental map processing techniques such as color
image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in
graphical properties of the input image (e.g., scanning resolution). As a result, most map processing
results would not meet user expectations if the user does not “properly” scan the map of interest, pre-
process the map image (e.g., using compression or not), and train the processing system, accordingly.
These issues could slow down the further advancement of map processing techniques as such un-
successful attempts create a discouraged user community, and less sophisticated tools would be per-
ceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for
automatic map processing and what types of results and process-related errors can be expected. In this
paper, we shed light on these questions by using a typical map processing task, text recognition, to
discuss a number of map instances that vary in suitability for automatic processing. We also present an
extensive experiment on a diverse set of scanned historical maps to provide measures of baseline per-
formance of a standard text recognition tool under varying map conditions (graphical quality) and text
representations (that can vary even within the same map sheet). Our experimental results help the user
understand what to expect when a fully or semi-automatic map processing system is used to process a
scanned map with certain (varying) graphical properties and complexities in map content.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Digital map processing refers to a set of techniques for con-
verting map images (created through scanning of paper maps or
produced as electronic raster maps) into the vector format. This
conversion is usually the first step for incorporating geographic
information encapsulated in maps (e.g., place names, place types,
build-up areas, contour lines) into a spatial-analytic environment,
such as a geographic information system (GIS). Since the early 80s,
various map processing systems (including both software and
hardware tools) were developed to facilitate manual map
processing tasks. Today, the efficiency, accuracy, and degrees of
automation of map processing systems have been increased con-
siderably (concerning processing speed and the capability to
process a variety of maps and map features). The systems that are
in place nowadays can be classified by their capabilities into four
categories: (1) Basic raster-to-vector conversion tools with a
minimum of automation (e.g., Esri ArcScan1), which can be applied
to a wide variety of map types with different graphical conditions
(by leveraging human vision), (2) Semi-automatic systems, which
provide some degrees of automation to reduce manual digitization
efforts (e.g., AutoCAD RasterDesign2), (3) Fully automatic systems
1 http://www.esri.com/software/arcgis/extensions/arcscan.
2 http://www.autodesk.com/products/autocad-raster-design/overview.
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for processing a specific map type; this type-dependency often has
the disadvantage that the system relies on the user to fine tune the
digitization settings (requiring expert knowledge in image pro-
cessing and graphics recognition, e.g., Map Vectorizer3), and
(4) Fully or semi-automatic systems that are not limited to a par-
ticular map type but designed to extract only specific types of map
features (e.g., map labels (Chiang and Knoblock, 2014)). The reader
is referred to Henderson (2014) and Chiang et al. (2014) for de-
tailed reviews on map processing techniques and systems.

Despite the exponential growth in computational power and
advancement in graphics recognition algorithms in the last dec-
ade, most fundamental techniques that support automatic map
processing such as color segmentation, (map) layer separation,
and object (or symbol) recognition are still limited when proces-
sing low quality or complex map images (Cherkassky and Mulier,
1998; Cordella and Vento, 2000; Llados et al., 2002). These tech-
niques are sensitive to minor variations in graphical properties of
the input image (e.g., different scanning parameters such as re-
solution) (Marr, 1982; Cherkassky and Mulier, 1998) and usually
require a priori knowledge of the map properties and content (e.g.,
size of map objects, and cartographic styles). As a result, most map
processing systems would fail if the user does not “properly”
prepare the map document for processing and train and tune the
underlying algorithms. Since the general user rarely has expert
knowledge of the underlying map processing techniques, a map
processing system is often perceived as a black box that converts a
map image into spatial data that are readily accessible in a GIS.
One significant implication is that after a few attempts to use a
map processing system, the user would give up if the results do
not meet user expectations and move to less sophisticated tools
for manual raster-to-vector conversion. Not only does this create a
discouraged user community, but it also slows down further de-
velopment of advanced map processing techniques as less so-
phisticated tools would be seen as more viable solutions.

Therefore, it is critical for a user to understand what kinds of
maps are suitable for automatic (or semi-automatic) map processing
and what types of results can be expected. This directly relates to
further questions concerning the reliability and objectivity of ac-
curacy assessments. Knowing how sensitive the performance of
map processing techniques will be based on variations in graphical
quality will inform the user how accuracy could vary across map
types and even within one map image in which target features
may show differences in graphical properties. In this article, we
shed light on such questions. We choose a typical map processing
task, text recognition, and discuss how the degree of suitability for
text recognition varies across map instances that differ graphically.
Furthermore, we carry out an experiment on text recognition in
scanned historical maps of various types and origins to demon-
strate the impact such variations can have on performance across
different levels of graphical quality. This experiment enables ac-
curacy assessment of automatic text recognition results for map
labels in a variety of graphical conditions and provides a guideline
for estimating the suitability of a given map for automatic text
processing.

In the next section, we review various types of maps tested in
the literature on text recognition using automatic or semi-auto-
matic map processing systems. These maps carry different forms
and types of text and show varying degrees of complexity due to
overlapping map layers and density of cartographic information.
Then we discuss in detail the most relevant properties of map
images affecting text recognition accuracy. Next, we introduce an
automatic text recognition system from our previous work (Chiang
and Knoblock, 2014), and describe an experiment on a set of
3 https://github.com/NYPL/map-vectorizer.
scanned historical maps including Ordnance Survey maps4 pro-
duced in the United Kingdom and several other maps produced in
the United States. The experiment demonstrates the baseline
performance of this text recognition system on maps with a
variety of text representations. We discuss how potential users can
evaluate the suitability of a map of interest for text recognition
tasks. Finally, we present future outlooks on how text processing
in digital maps should further evolve to reach higher degrees of
automation and more robust recognition results.
2. Common map types subject to automatic text recognition
and related accuracy issues

Text recognition from digital map images is one of the most
common map processing tasks, which determines the locations
(e.g., bounding boxes or center points) of text objects and gen-
erates machine editable strings for individual text labels in the
map (Ye and Doermann, 2014). A large number of studies on text
recognition in digital maps can be found in the literature (e.g.,
Nagy et al., 1997; Velázquez and Levachkine, 2004; Gelbukh et al.,
2004; Pouderoux et al., 2007; Chiang and Knoblock, 2014; Simon
et al., 2014). These studies in which typically text labels are ex-
tracted from map images and incorporated into subsequent pro-
cessing steps of Optical Character Recognition (OCR) have a wide
range of applications such as building gazetteers, carrying out
historical research on location name changes or studying changes
in the landscape and land-use. In addition, extracting and re-
moving map text can improve the recognition of other geographic
features such as cadastral boundaries (Cao and Tan, 2002), vege-
tation features (Leyk et al., 2006), elevation contours (Khotanzad
and Zink, 2003) or roads (Li et al., 2000; Chiang and Knobock,
2013).

A variety of map types that have been tested in the literature
either for text recognition or for removing map text labels include:
cadastral or land register maps (e.g., Raveaux et al., 2008), road
maps (e.g., Bin and Cheong, 1998; Itonaga et al., 2003; Dhar and
Chanda, 2006; Bucha et al., 2007; Chiang et al., 2013; Chiang and
Knoblock, 2013), hydrographic maps (e.g., Trier et al., 1997), city
maps (e.g., Chen et al., 1999), utility maps (e.g., den Hartog et al.,
1996), as well as topographic or other survey maps (e.g., Bessaid
et al., 2003; Miyoshi et al., 2004; Chen et al., 2006; Leyk et al.,
2006; Leyk and Boesch, 2009; Xin et al., 2006; Henderson et al.,
2009). We show several examples of the above map types in the
next section to illustrate key characteristics and conditions re-
levant for text recognition in detail.

Most map processing systems cannot process different types of
maps automatically, which is, in particular, true for text recogni-
tion. This is because maps have a complex layout in which text
labels appear in various forms, colors and size categories, which
requires manual identification of processing parameters and sys-
tem training. Recent studies show an increasing potential to es-
tablish text recognition systems that provide reliable solutions
across different types of maps, but their accuracy can vary sig-
nificantly across map types (e.g., Chiang and Knoblock, 2014; Si-
mon et al., 2014). Moreover, variations in text label characteristics
(e.g., text color) can also occur within maps of the same types or
even a single map page as a result of the scanning and image
compression process, differences in map complexity, and incon-
sistencies of graphical quality in the original map (due to aging or
bleaching). Thus, the same recognition method may perform dif-
ferently in various parts of one map. Understanding such re-
cognition sensitivities to variations in graphical properties can
4 http://www.ordnancesurvey.co.uk/.
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further improve the ability to forecast the potential for automatic
text recognition and highlight possible recognition errors auto-
matically. Importantly, this will also lead to realistic and objective
accuracy assessments by differentiating graphical quality levels
found among text labels in maps.
3. Key Characteristics indicating the potential for automated
text recognition in maps

Much of the potential for a certain map to be processed with a
high degree of automation is directly related to the number of
studies that focus on this type of map (e.g., more studies exist on
maps with Latin scripts compared to other languages). In this
section, we present example maps of different types and discuss a
variety of characteristics that can be used to estimate the suit-
ability of these maps for automatic text recognition and those that
would indicate the need for user intervention and manual digiti-
zation efforts.

The discussion is structured by the major characteristics of text
labels and map content: language (script), font, curvature and
spacing, print and image quality, text color as well as map com-
plexity. In general, the aim in most studies on text recognition in
maps is to detect, extract, and transfer text labels to an OCR
component, which then performs the final recognition process
(Nagy et al., 1997; Cao and Tan, 2002; Li et al., 2000; Velázquez
and Levachkine, 2004; Gelbukh et al., 2004; Pouderoux et al.,
2007; Chiang and Knoblock, 2014). How well map labels can be
identified and recognized heavily depends on the characteristics
described below.

3.1. Map language

Current OCR software packages, such as the open source Tes-
seract-OCR5 or commercial ABBYY FineReader,6 support a wide
range of language scripts, including Latin, Chinese, Korean, Japa-
nese, Hebrew, Arabic, and Indian scripts. However, most of the text
recognition work for processing raster maps is limited to Latin
scripts, including Spanish (e.g., Gelbukh et al., 2004), French (e.g.,
Pouderoux et al., 2007), and English (e.g., Chiang and Knoblock,
2014). The main reason is that the document analysis techniques
used for detecting locations of text labels in maps are well de-
veloped for Latin scripts but less so for other scripts. However, just
as OCR progresses over the years from handling only Latin scripts
(Rice et al., 1995; Smith, 2007) to more complex scripts, such as
degraded Indian scripts (Shukla and Banka, 2014), we expect fur-
ther progress in developing automatic recognition methods that
can handle a variety of scripts in maps. Of course, the performance
of text recognition methods in maps with Latin script also depends
on other graphical conditions and map characteristics. Lower le-
vels of general image quality will always impact the extraction
(e.g., coarse resolution images carry a limited potential for auto-
matic text recognition for any script).

3.2. Map fonts

Maps with common typewritten fonts usually show the best
results in automatic text recognition (Figs. 1 and 2) compared to
maps with less common fonts (e.g., Fraktur, Antiqua) or stenciled
and handwritten text. Text with uncommon typewritten fonts
requires additional training on specific character sets and yields
lower OCR accuracy (Helinski et al., 2012). Fig. 3 shows an example
5 https://code.google.com/p/tesseract-ocr/.
6 http://finereader.abbyy.com/.
map with stenciled text. Historical maps are traditionally prepared
with manually written or stenciled text, which adds to the chal-
lenges in text recognition in older cartographic documents that
can suffer from inferior graphical quality and archiving effects
(e.g., Gelbukh et al., 2004; Raveaux et al. 2007, 2008; Simon et al.,
2014).

3.3. Character spacing, label curvature and orientation

OCR software works most robustly if the input text labels are
geometrically straight (vertically positioned characters) with reg-
ular character spacing and horizontal orientation. Such text labels
also have a higher chance to be detected automatically compared
to labels with non-horizontal orientation (Fig. 2), curved labels
(Fig. 4) or labels with wide or irregular character spacing
(Figs. 3 and 5). Automatic systems often break curved labels and
labels with wide character spacing into separate string segments,
which then require manual post-processing to regroup these
string segments (e.g., Velázquez and Levachkine, 2004; Chiang and
Knoblock, 2014).

3.4. Print quality

In general, automatic map processing systems rely on superior
print quality of the original paper maps with a minimum of
blurring and false coloring to produce accurate results (Henderson,
2014; Chiang et al., 2014). However, old printing technology was
limited in quality and the final printout often suffered from such
problems. Print quality is often related to and can be further de-
creased through bleaching of the map as a direct consequence of
aging paper material and the archiving practice. How sensitive the
paper material can be to the archiving conditions becomes obvious
in historical maps of more than 100 years of age (Leyk et al., 2006).
Fig. 6 shows an example of blurring and false coloring. The quality
of a printed map also depends on the engraving techniques (e.g.,
stone and copper engraving) used to produce older maps. The
transition to modern production techniques varies among coun-
tries. Unfortunately, the original plates used for engraving have
been disposed in many cases making the paper maps the only
sources left. In summary, the degree of blurring, false coloring, and
mixed colors provides a strong indication of the potential of au-
tomated recognition on a given map. Text in maps often overlaps
with other map layers (e.g., Figs. 4 and 6), which makes text re-
cognition particularly sensitive to such general printing quality
issues.

3.5. Image quality

State-of-the-art OCR software (e.g., Tesseract-OCR and ABBYY
FineReader) requires an image resolution of the scanned input
image of at least 300 dots-per-inch (DPI) to achieve the best re-
sults in “well-conditioned” documents (e.g., see Yin and Huang
(2001), Liu (2002) and Pouderoux et al. (2007)). This number in-
creases for maps of high density and complexity such as topo-
graphic maps (see Section 3.6). Figs. 7 and 8 show a comparison of
the text appearance in a map scanned with 150 DPI and 300 DPI,
respectively. There are several instances in which images in digital
map archives would be stored with a resolution too coarse to
differentiate the smallest elements shown in a map. One of the
main reasons is hardware limitations as scanners capable of
scanning large format documents are expensive and scanning with
high resolution is a time-consuming process. Since priority is
generally given to a timely completion of a scanning project, such
key parameters are often underestimated. As a guideline, the re-
solution of a scanned map image subject to automated informa-
tion extraction should facilitate the graphical and visual

https://code.google.com/p/tesseract-ocr/
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Fig. 1. An example of typewritten fonts in a scanned map for which OCR performs well (Panama, USGS National Imagery and Mapping Agency (NIMA) Ref. no. E762X38382).

Fig. 2. An example of typewritten fonts in a computer generated map for which OCR can perform well (Kabul city center, Afghanistan Information Management Service).
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distinction of the smallest entities in that map. This guideline re-
lates to the concepts of resolution vs. detection in remote sensing
imagery, i.e., to detect an object of a certain size the resolution has
to be fine enough to be able to spatially and spectrally identify and
characterize this object and reduce mixed pixel effects. Text in
maps often has varying dimensions (i.e., line thickness) and thus
represents a highly sensitive map element regarding resolution.
Characters or character chains may become disconnected because
thin object parts cannot be represented graphically with the pixel
size given. In contrast, creating extremely high-resolution images
may result in inefficient map processing. Also, a map image should
not be processed by lossy image compression algorithms (e.g.,
JPEG7) as important structural elements become compromised
and cannot be reproduced. Fig. 9 illustrates how lossy compression
of a map image results in pixelated map objects and increased
color confusion.

In addition to image resolution, the color encoding (if the map
contains color layers) used for scanning and processing as well as
the bit-depth of the image data are also important factors with
regard to image quality. Color encoding is most relevant in pre-
processing steps such as color image segmentation (Leyk, 2010;
Leyk and Boesch, 2010) for generating clear character re-
presentations input to OCR (Chiang and Knoblock, 2014). Choices
of color spaces include RGB (red, green, and blue), HSL (hue,
7 http://www.jpeg.org/.
saturation, and luminance), or CIE 1976 L∗u∗v. The bit-depth of the
image indicates the maximum number of unique colors that can
be represented in an image, which is important in recognition
tasks in which objects to be distinguished are very similar in color.
In most text recognition tasks, the use of 24-bit data during the
scanning process is sufficient to produce clear text appearance
(e.g., crisp character edges) for OCR.
3.6. Map complexity

Maps can contain dense and overlapping map features (of the
same or different color layers) and text (e.g., Fig. 10), which makes
map images a challenging document type for recognition tasks
(Cordella and Vento, 2000; Llados et al., 2002). As a consequence,
frequent instances of mixed colors and merged map objects may
occur impeding the identification or separation of features or
symbols. For highly complex maps, such as topographic maps, an
image resolution of at least 500 DPI has been demonstrated sui-
table in recent research (e.g., Li et al., 2000; Liu, 2002; Leyk and
Boesch, 2009; Chiang et al., 2014) in order to ensure that map
processing techniques (including text recognition) produce robust
results. Issues of image and print quality (as described above) in
combination with map complexity can be found in historical maps,
which therefore represent particularly challenging documents for
recognition tasks including text recognition (Simon et al., 2014).

http://www.jpeg.org/


Fig. 3. Stenciled text in a historical map of Denmark.

Fig. 4. Examples of curved labels in an Afghanistan map. Source: United Nations.

Fig. 5. Text labels with wide character spacing in a historical map of Taiwan.

8 http://maps.nls.uk.
9 http://www.davidrumsey.com.
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3.7. Color of map features

Ideally, map features of the same type should have a distinct
color avoiding merging and color mixing effects as mentioned
above under print and image quality. However, Fig. 11 shows one
of many examples where the text labels and the road edges are
both drawn in black. In this case, the recognition task would likely
require manual post-processing for recovering the text labels that
overlap with road edges. Even if text color would be different from
other map layers, there may still be significant problems regarding
color variations and mixed colors, i.e., colors may not be clearly
differentiated everywhere as an issue of print quality. Image
quality issues (e.g., bleaching, blurring, resolution, and color space
used for scanning) may add to these points. In general, if text
appears in the same color as other map layers, the success of text
recognition will depend on the degree of complexity of the map
and the frequency of overlaps between these layers.
4. Data and experimental setting

This section describes the tested map products, the character-
istics of the map content (including map labels), and the test
system.

4.1. Tested map products and their characterization

To demonstrate the differences in text recognition outcomes
under varying graphical conditions and text properties as dis-
cussed in Section 3, we tested the performance of a text recogni-
tion tool for six different map products (Table 1), including the
1920 6-inch Ordnance Survey topographic maps from the National
Library of Scotland,8 and United States historical railway, auto road
and mileage maps from the David Rumsey Map Collection.9

Within several map pages from the Ordnance Survey six-inch
map series of the U.K., we tested ten map subsections near London
each covering 1000�1000 m2 in the TQ grid (the British National
Grid), equal to 1512�1512 pixels. For each of the historical U.S.
maps, we selected one map subsection ranging from 753�665 to
1176�1121 pixels for testing. Figs. 12–18 show examples of the test
maps, which represent a wide range of variations in map conditions
and labeling styles. Based on the criteria relevant for text recogni-
tion (see Section 3), text labels in these maps can be characterized as
follows:

4.1.1. Map language and fonts
The Ordnance Survey maps have Latin scripts (English) and use

common fonts with the exceptions of some special locations
(Figs. 12 and 13). The other historical maps have Latin scripts
(English) and use uncommon fonts (likely stenciled text) varying
within the same map (Figs. 14–18) (see Section 3.2).

4.1.2. Print and image quality
The test map subsections are relatively free from print quality

issues (discussed in Section 3.4) with the exceptions of the Map of
Missouri that shows a visible fold line (Fig. 15), and three other U.S.
maps that were scanned out of books and show bleed-through
from the back side (Figs. 15–17). The image format of the test maps
is TIFF without lossy compression. The exact scan resolutions of
the original maps were not available. We estimated the image
resolutions using the dimensions of the scanned images in pixels
and the available sizes of the map documents in inches. The es-
timated resolution for every test map was higher than 300 DPI
(Table 1). To test the impact of decreasing image quality for text
recognition, we manually scaled the image dimensions of each
map to 165%, 132%, 66% (medium), 50% (low), 33%, and 17%, re-
spectively, using the bicubic interpolation. This interpolation
method was carried out to simulate different image resolutions
and possible compression defects combined. Note that when the
map image was scaled up using the bicubic interpolation (165%
and 132%), the DPI of the image did not increase. Our goal was to
use these enlarged images to simulate the map content scanned at
a higher DPI (e.g., larger font sizes and wider character spacing).
We tested the performance of text recognition in all 15 map sec-
tions for each image quality level.

http://maps.nls.uk
http://www.davidrumsey.com


Fig. 6. An example of poor print quality in a NIMA evasion chart (EVC NH-36A, NIMA Ref. no. EVCXXNH36A).

Fig. 7. Comparison of text appearance under different image resolutions (Kunduz city map, Afghanistan Information Management Service). (a) 150 DPI. (b) 300 DPI.

Fig. 8. Comparison of text appearance under different resolutions chosen for the scanning process; NIMA tactical pilotage chart (Australia, TPC Q-15A, NIMA Ref. no.
TPCXXQ15A). (a) 150 DPI. (b) 300 DPI.
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4.1.3. Label curvature and character spacing, map complexity, and
color of map features

The map layers of most maps tested are primarily represented
in black (often blurred) color except for the contour lines, hydro-
graphy, and railroads. Other characteristics (label curvature, spa-
cing, and map complexity) showed great variation among the test
maps and were therefore (together with above characteristics)
used to divide the map labels into three groups of general map
properties relevant to recognition accuracy. These groups are de-
scribed in the next subsection.
4.2. Groups of text representations based on map characteristics

Here, we define three groups of text representations of varying
quality based on general map characteristics relevant to recognition.
Each group contains characters in different sizes. Characters with a



Fig. 9. Low image resolution and lossy image compression compromise the appearance of text and map features (United Nations Environment Programme and United
Nations Institute for Training and Research Operational Satellite Applications Programme map).

Fig. 10. A sample map with complex and dense content, text with small fonts and in different colors (Muqdisho, Somalia, NIMA Ref. no. EVTXXMUQDISHO).

Fig. 11. Both text and roads are drawn in black color; red precinct boundaries and black text labels overlap resulting in mixed colors (1920 Los Angeles precinct map, Los
Angeles City Archive). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Y.-Y. Chiang et al. / Computers & Geosciences 93 (2016) 21–35 27



Table 1
The metadata of the six tested map products.

Map title/coverage DPI (approx.) Map scale Publisher Date

Ordnance Survey Six-inch Map, London, U.K. 406 1: 10,560 Ordnance Survey 1920
Cram's Railroad and Township Map, Floridaa 336 1: 1,330,560 Cram Atlas Company 1875
Map of the Northern Pacific Railroad and connectionsb 302 1: 7,500,000 Rand McNally 1879
Map Of Missouri, Showing Line and Land Grant of the St. Louis and San Francisco Railwayc 304 1: 1,966,700 Woodward, Tiernan and Hale 1879
Auto Road Map, Coloradod 402 1: 1,700,000 Rand McNally 1927
Black and White Mileage Map, South Dakotae 379 N/A Rand McNally 1924

a http://www.davidrumsey.com/luna/servlet/s/81sbj5.
b http://www.davidrumsey.com/luna/servlet/s/gev3rb.
c http://www.davidrumsey.com/luna/servlet/s/ql012o.
d http://www.davidrumsey.com/luna/servlet/s/1oscg7.
e http://www.davidrumsey.com/luna/servlet/s/8g46i4.

Fig. 12. An example area of the tested Ordnance Survey map (TQ) (see Table 1).

Fig. 13. An example of an uncommon font in the Ordnance Survey maps.

Fig. 14. An example area of the tested Cram's Railroad and Township Map, Florida (see Table 1).

Y.-Y. Chiang et al. / Computers & Geosciences 93 (2016) 21–3528
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Fig. 15. An example area of the tested Map of the Northern Pacific Railroad and connections (see Table 1).

Fig. 16. An example area of the tested Map of Missouri, Showing Line and Land Grant of the St. Louis and San Francisco Railway (see Table 1).
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larger font size do not guarantee to have better recognition results
than characters with a smaller font size in a map despite the common
expectation that large font size would provide advantages for re-
cognition similar to higher resolution. This is because map text that
contains characters with larger font size typically shows wider char-
acter spacing, which makes processing this text label very difficult
independently on resolution (Section 3.3). The recognition results of
each group in Section 5 will demonstrate the impact of the map
properties discussed in this article on the recognition accuracy.

4.2.1. Group 1 “suitable” (with high suitability for text recognition):
These are mostly clear and clean (unblurred and saturated) text

labels with characters that are in either common, uncommon, or
stenciled fonts, do not overlap with other map features, are not
surrounded by or close to groups of non-text features, are only
slightly curved or multi-oriented, or have regular or slightly wider
(than usual) character spacing (Fig. 19).

4.2.2. Group 2 “processable” (with moderate suitability for text
recognition):

These are text labels that are slightly distorted, moderately
curved, or may be surrounded by or close to (but not overlapping
with) one or more non-text objects similar in size compared to a
character (e.g., tree symbols) (Fig. 20).

4.2.3. Group 3 “unsuitable” (with low suitability for text
recognition):

These are text labels with characters that overlap with non-text
objects (Fig. 21), are significantly curved10 (Fig. 22), or have wide
character spacing (Fig. 23).

4.3. A brief description of the text recognition method used

In order to conduct the experiment we used an open source
text recognition tool, Strabo, developed in our previous work
10 A word that deviates more than 30% from a straight label (Chiang and
Knoblock, 2014).
(Chiang and Knoblock, 2014)11 that has been tested with a variety
of map types (Chiang et al., 2014; Fernandes and Chiang, 2015;
Honarvar Nazari et al., 2016). Strabo is a semi-automatic tool that
can be trained by a user for processing a map of a certain type for
text recognition. Strabo has two main components: (1) A text
detector that exploits cartographic labeling principles to identify
text pixels, groups the identified text pixels into characters, and
then merges characters into text strings, and (2) A text recognizer
that automatically determines the orientation of each detected
string using a skew detection algorithm, rotates the string to the
horizontal direction, and then uses Tesseract-OCR to convert the
horizontal labels to machine-readable datasets. A detailed tech-
nical description of Strabo can be found in our previous publica-
tion (Chiang and Knoblock, 2014).

Recent efforts on integrating the text recognition capabilities in
Strabo with a GIS (Chiang et al., 2014; Fernandes and Chiang, 2015)
attempt to establish an end-to-end map digitization process from
text label detection to OCR to result curation within a single
software platform. This direct transition eliminates the need for
manual data export/import procedures between GIS and OCR
software and facilitates a broader use of such technologies in ap-
plied research (e.g., extracting historical location names from
maps to better understand landscape conversions).

To train Strabo, the user delineates an example area that con-
tains a map label. Then Strabo detects text pixels in the example
area and learns the colors that represent text in the map.12 In this
experiment, since the text layers are primarily in black, we did not
need to train Strabo. We used manually identified color thresholds
to extract the black layer from the Ordnance Survey maps. We
used an automatic color binarization method (Bradley and Roth,
2007) to extract the black layers from the other test maps to save
manual effort. Both the manual and automatic color binarization
methods generated clear text layers.

In this comparative study we used parameter settings for
running processes in Strabo as suggested in Chiang and Knoblock
11 https://github.com/spatial-computing/strabo-command-line-pub.
12 Details of Strabo training steps and demonstration videos can be access from

http://spatial-computing.github.io/#projects.

https://github.com/spatial-computing/strabo-command-line-pub
http://spatial-computing.github.io/#projects


Fig. 17. An example area of the tested Auto Road Map, Colorado (see Table 1).

Fig. 18. An example area of the tested Black and White Mileage Map, South Dakota (see Table 1).
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(2014) without parameter tuning for each test map, as follows:

– Two text pixels can only be connected to one another if they are
in direct adjacency.

– A character can only be connected to another character (for
constituting a text label) if the ratio of sizes between the two
characters (larger character divided by the smaller character) is
less than two. The size of a character refers to the character
width or height whichever is larger.

– In a text label, the space between two connected characters is
less than 1/5 of the size of the larger character.

– A text label that is curved and deviating more than 30% from a
straight label (i.e., 234°) will be broken into shorter labels for
recognition.

As mentioned, the above steps in Strabo did not require train-
ing. For character recognition, we used the Tesseract-OCR engine
with its default training data for English script without any addi-
tional training on the map font. To demonstrate the impact of pure
map characteristics on text recognition, we did not use a dic-
tionary to post-correct the results.
5. Experimental results and discussion

We manually transcribed text labels in the test maps and
identified their suitability for text recognition (i.e., groups) to
create the ground truth for validating the experiments.13 The 15
test areas from the six map products of various types contain a
total of 5700 characters. The overall character-level precision, re-
call, and F-Score (the harmonic mean of precision and recall) for
the original resolution were 37.32%, 61.79%, and 46.53%, respec-
tively. All three measures dropped when the image resolution was
reduced (Fig. 24). Precision, recall, and F-Score dropped with de-
creasing resolution (e.g., the F-Score decreased by 11.98% from the
original to the medium resolution and by 5.08% from the medium
to the lowest resolution). The F-Score dropped to a mere 0.28%
when the image was resized to 17% of the original dimensions.
13 Test maps and ground truth are available at: https://github.com/spatial-
computing/map-ocr-ground-truth.
Recall dropped sharply from 61.79% to 42.47% from the original to
the medium resolution. The main reason for this observation is
that after the first bicubic resampling, the resolution of every test
map was lower than 300 DPI, which represents a critical bench-
mark for OCR (See Section 3.5) in general. Furthermore, resam-
pling introduces noise that reduces graphical quality such as
character clarity. This type of noise is similar to the type of error
that can be introduced during the original sampling stage (scan-
ning). Also, if the resampling process incorporates a lossy com-
pression algorithm, the medium- and low-resolution images
would show even nosier character representations and would
have a lower recognition rate.

Fig. 25 shows two example results. In these instances, Strabo
detected the text locations correctly at all resolution levels, but
Tesseract-OCR could not recognize some of the characters in the
medium- and low-resolution images. Comparing the two cases,
although “Wolsey” has a wider character spacing it has a cleaner
representation (fewer smudges and bleedings) than “MADISON” in
the original image. Therefore, when the image resolution was re-
duced to less than 300 DPI, the OCR tool showed a better re-
cognition result for the down-sampled text label “Wolsey” than for
“MADISON”.

Table 2 shows the character-level precision, recall, and F-Score
for each character group (groups 1–3; see Section 4.2) at each of
the tested image dimensions, including the original, medium, and
low resolutions. Group 1 contains 2024 characters (35.51% of the
total number of characters). Group 2 contains 896 characters
(15.72% of the total number of characters). A closer look at the
results for Group 2 reveals that non-text objects near existing
words could be incorrectly detected as characters and hence a text
label could be incorrectly broken into several parts (Fig. 26). Also,
it should be noted that the F-Score of Group 2 in the original re-
solution was close to the F-Score of Group 1 in the medium re-
solution. This illustrates that an improperly prepared map scan
could largely reduce the prospect of using an automatic/semi-au-
tomatic map processing tool even if the map labels were clean,
clear, and noise-free. In addition, when the resolutions were lower
than 300 DPI, non-text objects were more likely to be grouped
with nearby characters, so the precision of Group 2 was even
lower than Group 3 in both the medium and low resolutions.

The third group contains 2780 characters (48.77% of the total
number of characters). In the experiment, this group included

https://github.com/spatial-computing/map-ocr-ground-truth
https://github.com/spatial-computing/map-ocr-ground-truth


Fig. 19. Example labels that are highly suitable for text recognition (Group 1).

Fig. 21. Example labels that overlap with other feature layers (Group 3).
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mostly text labels that overlap with (or touch) other map features
(e.g., lines) or appear significantly curved. Strabo employed a re-
cent method for detecting text labels overlapping with other fea-
tures (Honarvar Nazari et al., 2016), but such overlaps still pose a
major difficulty for OCR. As expected, Group 3 had the lowest
values for recall and F-Score across the three image resolutions.

Further, when the image dimension was increased (132% and
165%), the recognition results showed a decrease in all accuracy
measures compared to the results from the original resolution.
This shows that after scanning, we could not add more informa-
tion (i.e., to increase the DPI) to the map image for improving the
recognition results (by upscaling the image). Table 2 also shows
that when the image resolution dropped to 17% of the original
resolution (less than 100 DPI), we could not correctly detect any
character in Group 2. This was due to the fact that beyond 100 DPI,
most of the characters became too blurry to be detected after the
bicubic resampling.

Fig. 27 shows some example recognition results for text labels from
every group at the three different resolutions. The word “Milk” was
only correctly recognized in the original resolution. The uncommon
character style of “Milk” resulted in poor OCR results when the re-
solution decreased. The curved words “Ft. Assinaboine” and “Missouri”
were broken into smaller parts during the text detection steps, so only
parts of themwere recognized by OCR. Moreover, curved strings were
Fig. 20. Example labels that are in noisy areas where nearby non-text symbols (e.g., trees
algorithms (top), are slightly distorted or moderately curved (bottom) (Group 2).
difficult for OCR to process. As an example, all characters except one of
the detected label “Ft. Assina” in the medium resolution were re-
cognized incorrectly. As can be seen in Fig. 27(c), when the resolution
was reduced, Tesseract-OCR was unable to correctly segment
, terrain features, circular symbols) could mislead the text detection and recognition



Fig. 22. An example text label that deviates more than 30% from a straight label
(Group 3).

Fig. 23. An example label that has a wide character spacing (Group 3).
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individual characters in a detected label because the character spacing
was too small. For example, the word “Caroll” was recognized as
“cmau” in the low-resolution image because Tesseract-OCR grouped
some adjacent characters as single characters. Also, the characters “Ri”
in the lower occurrence of the label “River”were incorrectly segmented
into the two characters “IN”. The problem of erroneous character
segmentation becomes more problematic when a word overlaps with
other map features. For example, the characters “Ri” in the top occur-
rence of the label “River” were incorrectly segmented into the three
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Fig. 24. Experimental results b
characters “J E” in the original resolution because of the grid line be-
tween “R” and “i”. When the resolution decreased to medium, the
characters “Ri”were segmented into “Rii” because the number of pixels
between “R”, the gridline, and “i” were smaller (than in the original)
and hence the space character was not in the recognition result.

As can be seen in Table 2, evenwhen a map was carefully prepared
(scanned) such that high levels of image quality could be warranted,
significant challenges remain in recognizing map text in a fully auto-
mated setting due to the complexities and variations in map proper-
ties. These graphical properties, here of characters and text labels,
could even vary considerably across one map sheet, and the perfor-
mance of map processing techniques directly relates to such proper-
ties. Such variations would remain hidden if accuracy would only be
assessed over all labels as a whole without distinguishing between
levels of graphical quality, feature representations, and map products.
If incorporated into accuracy assessments this knowledge provides a
more objective basis to estimate the suitability of a considered map for
automatic processing (e.g., text recognition). For example, if the vast
majority of characters or text labels in the map of interest belong to
Group 1 and the resolution satisfies basic benchmarks for robust OCR
performance the user could expect a good potential for automated or
semi-automated map processing. In contrast, if most characters would
be categorized as Group 3 the potential for automation would be ex-
pected to be very lowwithout further tuning or training. This potential
would be expected to further decrease for lower levels of image
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(a) The label “MADISON” in the test map of Florida  

(b) The label “Wolsey” in the test map of South Dakota

Or iginal

Medium
Resolution

Low
Resolution

Or iginal

Medium
Resolution

Low
Resolution

Fig. 25. Comparison of text recognition results for the same text label at three
different image resolutions for two cases. The color images (top in (a) and left in
(b)) show the map labels. The purple (a) and green (b) areas in the result images
(bottom in (a) and right in (b)) are the Strabo-identified text locations. The black
characters on top of the identified locations are the recognition results. (a) The label
“MADISON” in the test map of Florida. (b) The label “Wolsey” in the test map of
South Dakota. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).

Table 2
Experimental results by character groups and image resolutions.

Image dimension and character groups Precision Recall F-score

165% of the original image dimensions
Group 1 41.31% 51.55% 45.87%
Group 2 24.56% 41.02% 30.72%
Group 3 28.82% 21.07% 24.34%
132% of the original image dimensions
Group 1 44.74% 47.65% 46.15%
Group 2 27.84% 38.41% 32.29%
Group 3 32.71% 23.18% 27.13%
Original image (original resolution)
Group 1 47.55% 83.50% 60.60%
Group 2 29.57% 71.65% 41.87%
Group 3 32.05% 42.81% 36.65%
66% of the original image dimensions (medium resolution)
Group 1 37.32% 57.91% 45.39%
Group 2 20.46% 46.43% 28.41%
Group 3 26.51% 29.96% 28.13%
50% of the original image dimensions (low resolution)
Group 1 31.30% 40.51% 35.31%
Group 2 16.84% 31.92% 22.05%
Group 3 23.07% 20.79% 21.87%
33% of the original image dimensions
Group 1 19.02% 4.34% 7.07%
Group 2 4.28% 0.26% 0.49%
Group 3 9.09% 1.04% 1.86%
17% of the original image dimension
Group 1 1.67% 0.06% 0.13%
Group 2 0.00% 0.00% 0.00%
Group 3 3.65% 0.26% 0.48%

(a) The detected text labels (text is part of the black layer)
in purple boxes and the recognition results
(the text labeled inside the purple boxes in Arial)

(b) Four of the detected text areas

Fig. 26. A noisy text area (Group 2) and the text detection and recognition results
for these characters and strings are shown. (a) The detected text labels (text is part
of the black layer) in purple boxes and the recognition results (the text labeled
inside the purple boxes in Arial). (b) Four of the detected text areas. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article).
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resolution.
Overall, in the described experiments additional OCR training

and incorporating and tuning symbol recognition algorithms to
remove non-text objects would likely improve the recognition
accuracy in Groups 1 and 2 but still require user intervention to
some degree. In Group 3, additional text/graphics separation
techniques and dictionaries could be used to recover overlapping
text in the OCR step, but this would require great amounts of effort
by the user. For example, in a string “House”, if the character “s”
was removed due to overlapping features and “Hou e” was re-
cognized, a dictionary containing the word “House” could facilitate
the reconstruction of the full word. Finally, crowdsourcing ap-
proaches such as CAPTCHA14 could be used to scale up the result
curation task and make it possible for an organization or user to
process large volume map series with reasonable degrees of
efficiency.
14 http://www.captcha.net/.
6. Summary and outlook

This article discussed a variety of criteria to evaluate the suit-
ability of scanned and digitally produced maps for automatic map
processing using text recognition as the target application. This
discussion fills an important gap in the literature which to-date
has not seen an explicit and systematic assessment of the potential
impacts of graphical quality issues on automatic or semi-auto-
matic map processing tasks. The usefulness of the map/text cri-
teria was demonstrated in an extensive experiment to test a
common text recognition tool for maps, Strabo, for different map
products at varying image resolutions. The results for each re-
solution were assessed, separately, for three groups of text

http://www.captcha.net/


Fig. 27. Example text labels and their recognition results (text labels in red) across the three test image resolutions. The images of the medium and low resolution are
enlarged here to better illustrate the results. The labels “Milk” (deformed characters), “River” (top, overlapping with a grid line), “Ft. Assinaboine” (curved over 30%), “Missouri”
(overlapping with the grid line and curved over 30%) belong to Group 3. The label “River” (bottom right, uncommon font) belongs to Group 2 and the label “Carroll” is an
example of Group 1. (a) Original resolution. (b) Medium resolution (66%). (c) Low resolution (50%). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).
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representations defined based on the graphical characteristics of
map text. This study is meant to support potential users of map
processing tools to better understand (1) whether or not the map
images of interest are suitable candidates for higher degrees of
automation in map processing, (2) how much user intervention
would be required and (3) how much variation in methods per-
formance and thus in intervention needs can be expected. We
view this article as a first step to systematically evaluate the po-
tential to successfully process different maps and map series using
an automatic or semi-automatic recognition system. Such a state-
of-the-art introduction manual, here focused on text recognition,
will help users interested in applying digital map processing sys-
tems to better understand current possibilities from the perspec-
tive of graphical quality and inherent uncertainty. This discussion
could be further extended to other processing techniques such as
line detection or symbol recognition in scanned maps.
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