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Combining data originating from two or more geochemical surveys can be highly beneficial for establishing
geochemical maps with increased resolution and/or coverage area. However this practice requires assessing
the equivalence between datasets and, if needed, applying data leveling to correct possible biases between
datasets. Here we propose two original methods for assessing equivalence and for leveling data when datasets
contain records that are located within the same perimeter. The first method is designed for datasets that are
similarly spatially distributed and is based on the Kolmogorov-Smirnov test and quantile regression. The second
method does not require datasets to be similarly spatially distributed and is based on prior knowledge about the
factors explaining the geochemical concentrations and on BLS (Bivariate Least Squares) regression. The scope of
application, pros, cons and detailed practical recommendations are presented for each method. Both methods
were applied to a case study involving Fe, V and Y datasets originating from two European geochemicalmapping
projects: theGeochemicalMapping of Agricultural Soils of Europe (GEMAS) and the Baltic Soil Survey (BSS). Both
methods for assessing the equivalence and obtaining leveling equations yielded comparable results thereby
illustrating their effectiveness and their feasibility.
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1. Introduction

A steadily increasing number of geochemical mapping projects orig-
inating from governmental or industrial organizations have appeared
within the last few decades. This growing interest comes from the
many social benefits of geochemical mapping applications that include
geochemical prospecting, environmental monitoring, land use planning
andmedical geology. Therefore, a large number of geochemical datasets
are currently available, which range from geochemical atlases datasets
(examples listed in Garrett et al., 2008) to datasets originating from reg-
ulations requiring sample analysis (e.g. in Europe: VanMeirvenne et al.,
2008; Vandeuren et al., 2013; Baize et al., 2006). As a consequence, in
many parts of the world, multiple geochemical datasets are available
for cartographers when mapping a region. Using multiple geochemical
datasets allows the cartographer to extend the area that can bemapped
and/or to improve the resolution of themap by increasing the density of
available data. However, even small differences in sample materials,
sampling methods, sample preparations or analytical procedures can
have a major impact on the measured chemical concentrations
(Reimann and de Caritat, 2012). Therefore, these differences can make
it problematic to use multiple datasets for geochemical mapping.
a).
Biases between geochemical survey datasets and procedures for
dataset leveling are issues that have been discussed for a long time.
Darnley et al. (1995) provide, to our knowledge, the first study that
exhaustively discusses and formalizes these issues. Considering that
sample preparation and chemical analysis phases can be the most
expensive part of a geochemical mapping project (Johnson, 2011), the
proper use of already-existing datasets should be considered as an
urgent subject for study. This subject was previously addressed by the
authors as they provided a generic method for creating new datasets
for geochemical mapping based on multiple pre-existing geochemical
datasets (Pereira et al., 2015). The proposed generic method first pre-
sents a series of quality checks that evaluate the relevance of existing
data for the intended geochemical map. It then outlines a procedure to
determine if the datasets should be considered as equivalent, and if
not, a method to level the datasets. The purpose of the present paper
is to provide better insight into the assessment of dataset equivalence
and data leveling. In the literature, the assessment of geochemical
dataset equivalence is usually based on expert judgment. Here, we
propose to use methods based on statistical procedures for assessing
the equivalence.

In some scientific fields, such as pharmacology, “equivalence” gener-
ally refers to open intervals used to define the meaning of equivalence
(Ennis and Ennis, 2010). In the statistical tests proposed for assessing
this kind of equivalence, the null hypothesis is the non-equivalence
and the alternative hypothesis is that the items tested are equivalent
within the defined intervals. The equivalence is proved if this null
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hypothesis is rejected. By contrast, in other scientific fields like mea-
surement/methods comparisons by linear statistical relationships,
“equivalence” refers to similar measures notwithstanding the random
measurement errors (Francq and Govaerts, 2016). The null hypothesis
is the equivalence and the alternative hypothesis is that there is a bias
between the measurement methods. If the null hypothesis is rejected,
the two methods are considered as not equivalent. If it is not rejected,
equivalence is not proven, but assessed using a confidence interval
approach. The size of the interval is directly linked to the randommea-
surement errors and the sample size. In our work we choose to use this
second definition of equivalence. When several datasets are chosen to
be combined for geochemical mapping, we consider them as equivalent
unless the contrary can be proven. Predefining intervals to define the
equivalence as in the other equivalence definition is not relevant here
because the magnitude of the tolerable interval will depend on several
factors such as the analytical and sampling procedure used as well as
on the type of sample material which varies from case to case.

Two methods for assessing the equivalence between datasets and
for leveling data in geochemical mapping are proposed in this paper.
The first method, referred to as the SSD method hereafter, derives
from the formulation of general principles found in the literature. This
method is based on the comparison of all the records located within a
geographical area in which geochemical datasets are similarly spatially
distributed. The second method, referred to as the SCU method hereaf-
ter, derives from the same general principles, but having undergone
some improvements and adaptations that make its application more
suited to real-life case studies. This method is based on the comparison
of datasets on several geographical entities called Spatial Comparison
Units (SCUs) by linear regression analysis. Both methods are then ap-
plied to a case study focusing on three European geochemical datasets.
Finally, advantages and limitations as well as fields of application of the
two methods are discussed.

2. Comparing and leveling of geochemical datasets

2.1. What do we mean by “geochemical dataset equivalence”?

Answering this question requires us to define, as a first step, what is
actually being compared. In this article, a geochemical dataset will des-
ignate a data table where each record comprises at least the XY location
and the concentration of the sampledmaterial for one targeted element
or chemical compound. In a particular dataset, each record concerns
the same type of sampled material, and the samples were collected
according to the same sampling protocol. Also, the measurements of
the chemical content in the samples must have been performed by
the same laboratory with the same analytical measurementmethod. Fi-
nally, measurements must have been carried out over a relatively short
andwell defined time period. Based on a combination of the terminolo-
gy and notations commonly used in geostatistics (e.g. Goovaerts, 1998)
and chemistry (e.g. IUPAC, 2014), we can define a dataset as a set of n
measurements z(ui) for the target element or chemical compound,
where ui is the vector of spatial coordinates [xi yi] of the measurement
i (i=1,… ,n). The relation between the n measurement results z
with the true value τ, the error e, the bias Δ, the random error δ, and
the limiting mean μ can be formulated as follows:

z uið Þ ¼ τ uið Þ þ e uið Þ ¼ τ uið Þ þ Δ uið Þ þ δ uið Þ ¼ μ uið Þ þ δ uið Þ ð1Þ

The true value τ(ui) is always unknown, because there is no certified
reference value for a particular ui location. The error e(ui), is the differ-
ence between the measured value z(ui) and the true value τ(ui). The
total error may be decomposed into two components, the bias Δ(ui),
and the random error δ(ui). The random error δ(ui) is centered on
zero. It depends on themeasurement uncertainty which, in turn, is pro-
portional to the sampling and analytical variances (see Demetriades,
2011).
The limiting mean μ(ui) is the value that is approached as the
number of measurement z at the same ui location approaches infinity.
This can be stated as

μ uið Þ ¼ E z uið Þ½ � ð2Þ

i. e. the limiting mean corresponds to the expectation of the measure-
ment results z at location ui.

The bias Δ(ui) is the systematic error, i.e. the difference between
τ(ui) and μ(ui). Δ(ui) remains unknown because τ(ui) is unknown.
Basing on this general terminology, we define as “equivalent” two
datasets Z1 and Z2 containing, respectively, n records z1(ui) , i=1,… ,n
and m records z2(uj) , j=1,… ,m, for which at any XY location the
limiting means μ1(ui) and μ2(ui) are equal:

∀ui ¼ uj ; μ1 uið Þ ¼ μ2 uj
� � ð3Þ

notwithstanding the measurement errors δ(ui) and δ(uj). In practice,
comparing datasets and assessing their equivalence would thus require
that both datasets contain records located at the same XY locations.
However, this situation is infrequent in real-life situations and will
thus not be considered here. In this paper the comparison of datasets
will only require that datasets contain records located within the
same geographical area. As a basic principle, geochemical concentra-
tions are explained by space-dependent factors. These factors can be
geology, lithology, topography, proximity to ocean, climate, broad
changes in vegetation, and contamination from anthropogenic sources
(Garrett et al., 2008). Depending upon each specific study area, various
factors will be of differing influence. Datasets with sampled materials
located within the same geographical area thus have similar factors
explaining the geochemical concentrations. If the sets of sampled
material have been similarly influenced by the factors explaining
concentrations, they should show similar geochemical population
distributions provided they are equivalent. The proposed methods
discussed hereafter are premised on this rationale. Several papers in
the literature rely on the same rationale, without being strictly formal-
ized. For example, Daneshfar and Cameron (1998) and Appleton et al.
(2008) have leveled geochemical datasets based on the assumption
that data distribution from two datasets should be similar when the
data of both datasets were located in the same geological context or in
the same area. Most recently, Reimann et al. (2014) discussed the effect
of land use on geochemical concentrations by comparing two geochem-
ical datasets where each dataset corresponds to a land use (agricultural
soils and grazing land soils) and covers approximately the same area
(Europe).

2.2. Leveling biased datasets by linear transformation

Dataset leveling is a concept that should not be confused with
dataset alignment. In computer science, the term “alignment” is used
to refer to the integration of heterogeneous database that have to be
consistent and coherent with one another. A closer usage can be found
is geophysics, where the term “leveling” relates to a step of the process-
ing of airborne magnetic data, which aims at removing measurement
errors due to the effects of temporal variations in the earth's magnetic
field (Luyendyk, 1997). In geochemical mapping, “leveling” is used
when two geochemical datasets Z1 and Z2 are not equivalent, and the
values of one dataset must be adjusted to the values of the other one
(Grunsky, 2010). Leveling a dataset first requires selecting a dataset
(called the “reference dataset” in this paper) against which the other
dataset will be leveled. Choosing this dataset is ultimately a matter of
judgment although several reasoning examples for this choice are pre-
sented in Grunsky (2010) and in Pereira et al. (2015). Choosing a
dataset as the reference dataset, e.g. Z1, is tantamount to deciding that
for this Z1 dataset, at any ui location, the bias Δ1(ui) is null and the ex-
pected value μ1(ui) is the true value τ(ui). In the theoretical situation
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where Z1 and Z2 have records located at the same ui locations, the
true value τ(ui) may be decomposed into the expected value of Z2 and
a bias:

μ1 uið Þ ¼ τ uið Þ ¼ μ2 uið Þ þ Δ2 uið Þ ð4Þ

Secondly, leveling a dataset involves choosing an appropriate level-
ing computationmethod. The leveling computationmethod considered
here is a linear transformation as it is the computation method most
widely used in the literature. As leveling through linear transformation
is considered here, μ1(ui) and μ2(ui) are assumed to be linked by a linear
regression model:

μ2 uið Þ ¼ α þ βμ1 uið Þ ð5Þ

where α the intercept and β the slope can be estimated respectively by
α and β through an adapted regression method, such as Ordinary Least
Square regression (OLS). The estimated parametersα andβ provide the
information to assess the equivalence. In case of equivalence, a straight
line is expected with a slope equal to 1 and an intercept equal to 0. This
means that the bias Δ2(ui) is assumed to be composed of α, which is
a constant value corresponding to a systematic bias, and β which is
a value multiplying the expected value of Z1, corresponding to a
Fig. 1. Bias between datasets and leveling based on the quantile regression line. Upper row: den
biased datasets (Z2 to Z7). Thefictive reference dataset Z1 was produced by randomgeneration o
and biased datasets. Each of the nine points represents a pair of deciles (the first to the ninth de
Biased datasets Z2 and Z3 show a shift for a constant value which can be leveled by a linear e
multiplier, with a leveling equation of the type “y=βx”; Column C: Biased datasets Z6, Z7 an
type “y=α+βx”.
proportional bias:

Δ2 uið Þ ¼ μ1 uið Þ−μ2 uið Þ ¼ μ1 uið Þ−α−βμ1 uið Þ ð6Þ

Z1 and Z2 distributions and corresponding quantiles should be iden-
tical in case of dataset equivalence. A levelingmethodwidely used is the
computation of a leveling equation by fitting a regression line on paired
quantiles from dataset distributions (e.g. in Daneshfar and Cameron,
1998; Appleton et al., 2008; Grunsky, 2010; Pereira et al., 2015).
When a systematic bias of a constant value is observed between two
datasets, the biased dataset can be leveled by a linear equation with a
slope of 1 and an intercept of the value of the systematic bias (Case A,
Fig. 1). When a proportional bias between two datasets is observed,
the distribution of values of the biased dataset shows a different spread
around the mean value than the spread produced by the reference
dataset. In this case, the biased dataset can be leveled by a linear
equation with a slope different from 1 (Cases B and C, Fig. 1).

In this paper, we have decided to confine the discussion to the
dataset comparison without choosing a reference dataset containing
the values considered as “true”. The term “biased”will be used to desig-
nate a dataset that cannot be considered as equivalent to another
dataset. The term “negatively biased” will refer to the dataset where
the measured concentrations tend to be lower than the concentrations
of the dataset to which it is compared (such as the datasets drawn in
blue in Fig. 1), and the opposite is true for the term “positively biased”.
sity function of themeasurements originating from a reference dataset (Z1) and variously
f values drawn from a normal distribution. Lower row: quantile-quantile plot for reference
cile) of themeasurement in the reference (X-axis) and biased (Y-axis) datasets. ColumnA:
quation of the type “y=α+x”. Column B: Biased datasets Z4 and Z5 can be leveled by a
d Z8 involve both a shift and a multiplier and can be leveled by a linear equation of the
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3. Methods for assessing the equivalence and leveling

Let A and B be two geochemical datasets (as defined in Section 2.1)
which contain records that are located within a perimeter for which a
geochemical map is needed. Assume that the relevance of A and B for
geochemical mapping has been confirmed either by using information
about the quality control related to these datasets or by quality checks
such as described in Pereira et al. (2015). Herewe propose twomethods
for assessing the equivalence of A and B through a statistical test where
the null hypothesis corresponds to conditions in which A and B should
be considered as equivalent. If datasets are biased (rejection of the
null hypothesis), each method contains a procedure to level the data
using linear transformation.

3.1. The method based on an area wherein datasets are similarly spatially
distributed (SSD method)

3.1.1. Outline
This method applies to any situation where two geochemical

datasets, A and B, contain records similarly spatially distributed within
the same geographical area. In practice, the method consists of three
steps:

Step 1 consists in delineating a Geographical Area (abbreviated as GA
hereafter) where datasets A and B both have records similarly
spatially distributed and then in extracting the records from A
and B that are located within the GA. The subsets from A and B
that are located within the GA will from now on be referred to
as subset A and subset B. Datasets A and B are similarly spatially
distributed when they exhibit either a similar sampling density
(e.g. 1 record/100 km2) or a similar relative sampling density
(e.g. both dataset sampling schemes are based on a grid but
one dataset contains twice as many records per km2 as the
second dataset). A similar sampling density can also correspond
to a similar variable sampling density (e.g. both datasets have
1 record/100 km2 except in the northern part of GA where
both have 1 record/50 km2).

Step 2 consists in assessing the equivalence of subsets A and B using the
two-sample Kolmogorov-Smirnov test (KS test). Let a1 , . . . ,aj
and b1 , . . . ,bk be the records fromAand B that are locatedwithin
theGA. For every real number t, Fm(t) andGn(t) are the empirical
distribution functions for the subsets A and B:

Fm tð Þ ¼ number of sample a0s≤t
m

Gn tð Þ ¼ number of sample b0s≤t
n

ð7Þ

The KS test (Hollander et al., 2014) assesses whether there are
any differences whatsoever between Fm(t) and Gn(t):

H0 : Fm tð Þ ¼ Gn tð Þ; for every t
H1 : Fm tð Þ≠Gn tð Þ; for at least one t

ð8Þ

If the null hypothesis H0 must be rejected, subsets A and B can-
not be considered as equivalent and step 3 should be applied
for the leveling of the datasets.

Step 3 consists in leveling datasets using a leveling equation obtained
by fitting a line on quantiles pairs from subsets A and B by or-
thogonal regression. Orthogonal regression on quantile pairs
can be used to obtain a regression line equation which can
then be applied to correct the records of the biased dataset
(see Section 2.2). Orthogonal regression (also known as total
least squares regression, see Francq and Govaerts, 2014b)
computes a regression line so that the sum of the square of
orthogonal distances (i.e. both the X-axis and Y-axis distances
are taken into account) between each point (quantile pair) and
the leveling line is minimized. This method is appropriate here
as there are errors in quantile estimations for both subsets.

3.1.2. Comments and practical recommendations
The method can only be applied to compare geochemical datasets

with similar sampling strategy. For example, the SSD method cannot
be applied if subsets A and B are based on a similar sampling strategy
inside a GA except for its northern part, wherein subset A has twice as
many records as subset B. In this example, a bias could be observed be-
tween subsets A and B if the northern part of the GA shows a different
concentration distribution than the southern part of the GA. Further-
more, the SSD method can only be applied to compare datasets with
similar spatial data coverage. If subset A covers a geographical area
GA1, and subset B covers both GA1 and another geographical area GA2,
a bias between subsets A and B may be observed due to the difference
between the GA1 and GA2 concentration distributions. This is an impor-
tant remark: in Chapter 8 of the European atlas of the GEMAS (Reimann
et al., 2014), a method close to the SSD method was used to compare
geochemical concentrations of datasets corresponding to agricultural
soils (Ap) and grazing land soils (Gr). Differences between Gr and Ap
were assessed using a Wilcoxon rank sum test (also called the Mann
andWhitney test) in order to discuss the land use effect on geochemical
concentrations. However, although Gr and Ap datasets have the same
spatial sampling density (1 site/2500 km2), they do not have the exact
same spatial coverage. For example, Finland is covered by Gr but only
partially covered by Ap. Applying our method, i.e. delineation of a GA
(step 1), and comparing Gr and Ap subsets (step 2) provided different
results for several elements and this remained true even after applying
theWilcoxon rank sum test (instead of the KS test used in our method).
This suggests that several highlighted statistical differences between
agricultural soil and grazing land soil can be explained by the difference
in the spatial coverage of the Gr and Ap datasets. In other words, taking
into account the Gr records located on areas not covered by Ap (and
inversely) impacts the result of the Wilcoxon test and therefore
subsequent conclusions.

In our method, the use of the KS test instead of the Wilcoxon rank
sum test is justified as follows. The Wilcoxon rank sum test is a non-
parametric test which is based on the “location shift model” and is gen-
erally used for assessingwhether populationA is the sameaspopulation
B except that it is shifted by a constant value (i.e. for assessing differ-
ences in the population medians/means, see Hollander et al., 2014).
The test is based on the calculation of a statistic, usually called U,
which depends on the rank of each observation (Mann and Whitney,
1947). The use of the Wilcoxon rank sum test with the location shift
model assumes that A and B are identically distributed (identical shapes
for the data distributions). However, this assumption cannot bemade in
all real-life case studies. In cases where datasets are not identically
distributed, it is possible for two datasets to have different rank sums
(U statistic) and yet have equal medians. Moreover, two datasets with
different spreads and equal shapes (and means) can have equal rank
sums (e.g. A~N(mean=20, sd=4) and B~N(mean=20, sd=2);
Fig. 2). Contrary to the Wilcoxon test, the KS test assesses whether
there are any differences between the distributions of subsets A and B
such as differences in shape (skewness, kurtosis, etc.) or in location
(median, quartiles, etc.). The KS test is based on the calculation of a
statistic, usually called J, which is the maximum distance between the
Empirical Cumulative Distribution Functions (ECDF) of subsets A and
B (Hollander et al., 2014; Fig. 3). Since it is based on a non-parametric
procedure, the KS test is relatively insensitive to outliers (unusually
high or low concentrations).

Datasets which contain a significant proportion of data not charac-
terized by a true measured value (due to factors such as detection
limits; data called “censored data” hereafter) must be processed with
particular care. Each censored data has to be taken into account before
implementing the KS test. This is usually simply done by replacing all
censored data in both datasets by the same value (a value below the



Fig. 2. Comparison of two fictitious geochemical subsets A~N(mean=20,sd=4) and B~N(mean=20,sd=2). Subsets A and B would have been considered as equivalent if assessed by a
Wilcoxon rank sum test.
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censoring limit, e.g. 50% of the limit value). However, if subsets A and B
have different censoring limits, for instance “b2” and “b4” respectively,
a preprocessing of the data from the subset with the lower censoring
limit must be performed. This preprocessing consists first in replacing
all data values that are below the higher censoring limit by a censored
data (“b4” for instance) corresponding to the higher censoring limit.
Then the replacement of all censored data in both datasets by the
same value (as explained before) has to be done. This operation should
always be carried out because even a small difference between the
censoring limits of subsets A and B can lead to a large difference
between the ECDF of subsets A and B, and thereby in the computation
of the J statistic for the KS test. Finally, it should be noted that substantial
differences between the censoring limits of datasets A and B can some-
times be considered (by expert judgment that does not require any
particular data processing) as sufficient proof to decide that datasets A
and B are not equivalent.

In step 3, applying leveling only makes sense when there is a good
linear relationship between pairs of quantiles and if the regression line
significantly differs from the Y = X line. To the authors' knowledge, no
established statistical test exists for regression on quantile pairs to
assess if the regression line significantly differs from the Y = X line.
Fig. 3. Illustration of the Kolmogorov-Smirnov statistic J for two fictitious geochemical
subsets (A and B). Black line is the ECDF of subset A (F(t)), blue line is the ECDF of
subset B (G(t)), and the red arrow is the maximum distance between (F(t)) and (G(t)),
i.e. the J statistic. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
That iswhywe suggest to rule by expert judgment following the custom
of previous authors who resorted to regression on quantile pairs for
leveling (see e.g. Appleton et al., 2008; Grunsky, 2010).

The quantiles to beused for the computation of the leveling equation
is also a matter of judgment, although we propose here some indicative
guidelines. If a preprocessing of the subsets had to be carried out to
account for the presence of censored data, the quantile pairs corre-
sponding to values below the highest censoring limit should not be
used for the computation of the regression line. This is because the
values resulting from the preprocessing should not influence the level-
ing parameters obtained by the regression. The best number of quantile
pairs to be used for the computation of the leveling equation is difficult
to determine. Obviously, there should be a sufficient number of points
(quantile pairs) to perform the regression. However, if we attempt to
compute toomany quantile pairs, the estimation error for each quantile
will be excessive because therewill not be a sufficient amount of data on
which to rely. Quantile estimation error depends on several other
factors such as the shape of the histograms, which may vary from one
dataset to another. As a rough guide, we recommend to use a number
of quantile pairs that is a function of nss, which is the total number of re-
cords of the smaller subset (or smallest in cases of multiple datasets).
While the chosen number of quantile (nq) should not exceed one quar-
ter of the number of records of the smaller subset (or nq ≤ nss/4), the
ideal number of quantile should be equal to one thirtieth of the number
of records comprised in the smaller subset (or nq = nss/30). If occur-
rence of outliers is suspected, using quantiles below the 10th percentile
or above the 90th percentile should be avoided. This is because outliers
have a strong impact on the extreme quantiles and thus can adversely
affect the parameters of the leveling line resulting from the regression
analysis. Also, the precision of quantiles estimation can be taken into
consideration in the regression. Central quantiles (quantiles located
around the median of the subset) are indeed estimated with more
precision than the outer quantiles. This can be achieved by the use of
weighted linear regression models that favor quantile pairs near the
median (see e.g. Daneshfar and Cameron, 1998; Grunsky, 2010).
However according to our experience (as well as that described in
Appleton et al., 2008), more sophisticated models do not significantly
alter the parameters α and β obtained by the linear regression.

Concerning the regression technique, orthogonal regressionmaynot
be suited to situations where the quantile estimation errors for subsets
A and B cannot be considered as equivalent. For example, if A comprises
ten times more records than B, one could choose to ignore the error in
the quantile estimation of A by using Ordinary Least Squares regression.
Amust then be located on the X-axis, since this procedure does not take
into account the errors in the variable located on this axis.
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3.2. The method based on Spatial Comparison Units (SCU method)

3.2.1. Outline
This method applies to any situation where (1) two geochemical

datasets, A and B, contain records within the same GA and (2) spatial
information about factors governing the geochemical concentrations is
available. In practice, the method consists of three steps:

Step 1 consists in partitioning the GA into SCUs (illustrated schemati-
cally in Fig. 4) and extracting the subsets of records. As with
the SSD method, this step first requires delineating the GA for
which both geochemical datasets contain records. However, as
opposed to the SSDmethod, there is no requirement concerning
the spatial distribution of the records located within the GA. The
SCU delineation therefore consists in partitioning the GA into
spatial entities that are deemed to behomogeneouswith respect
to factors known to govern the geochemical concentrations. In
each single SCU, all samples should be explained by the same
factors and therefore belong to the same population (same
central value and dispersion). For example, if the nature of the
underlying geological material is the main factor known to
explain the geochemical concentrations, geological maps cover-
ing the study area offer the best support for creating the SCUs
(for further information on SCU delineation, see Pereira et al.,
2015). Only SCUs that contain at least 10 records from each of
the datasets will be used in further steps. In what follows, the
records from datasets A and B located in these SCUs will be
referred as the subset A and the subset B respectively.
Fig. 4. Schematic representation of step 2 of the SCUmethod for a hypothetical study area (light
both geochemical datasets contain records (dark grey) is partitioned into 13 Spatial Compariso
Step 2 consists in checking the correlation between A and B concen-
tration values based on the graphical inspection of the
scatterplot of the SCU mean concentrations. This scatterplot
is a 2-axis graph where each axis corresponds to a dataset
and each point represents one SCU. The points coordinates
are the mean values of the concentration observed for A and
B in this SCU. If this check results in the conclusion that the
scatterplot exhibits strong positive linear correlation be-
tween the two datasets SCUmean concentrations, BLS regres-
sion (step 3) can be applied. A weak correlation between
datasets indicates that the two datasets do not have similar
spatial patterns or “spatial data structures” (see Reimann,
2005). In other words, this means that areas with high or
low concentration values are not the same in both datasets.
In this case, step 3 (assessing the dataset equivalence and
leveling data) should not be applied because (i) the non-
equivalence of the datasets is obvious and the use of a statis-
tical procedure for assessing equivalence is not needed and
(ii) the leveling of datasets through linear transformation
only makes sense when a good linear relationship exists
between datasets.

Step 3 consists in assessing datasets equivalence and calculating the
leveling equation by BLS regression (Francq and Govaerts,
2014a). This approach is based on a regression analysis (a
linear relationship) of the scatterplot of the SCU mean
concentrations. Let us suppose that a number of s SCU have
been delineated in step 1. Let aij and bik be the values mea-
sured in SCUi (i=1,2, ...s) that belong to subsets A and B
grey) surveyed by two fictitious geochemical datasets (A and B). A geographical areawhere
n Units (outlined spatial polygons).
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respectively. The measurements can be modeled as:

aij ¼ ζ i þ τij j ¼ 1;2; ::;nai

� �
bik ¼ ηi þ νik k ¼ 1;2; ::;nbi

� � ð9Þ

where nai and nbi are the number of data located in SCUi that belong to
subset A and B respectively. The measurement errors, τij and vik are
supposed to be normally distributed. The true but unobservable mean
concentration of the dataset A and B on the SCUi, ζi and ηi are assumed
to be related by a linear equation:

ηi ¼ α þ βζ i

Therefore, in case of equivalent datasets, the α and β parameters of
the BLS regression line should be close to 0 and 1 respectively. The
equations used in the BLS regression model as well as a comparison
with other regression models are described in Francq and Govaerts
(2014a). Parameters α (intercept) and β (slope) estimated by the BLS
regression line are denoted asα andβ respectively. The joint-Confidence
Interval (hereafter referred to as joint-CI) for α and β takes the form of a
confidence ellipse centered on (α;β). The joint-CI can be calculated to
test the null hypothesis H0: α = 0 and β = 1 to check jointly whether
there is constant and/or proportional bias between the two subsets.
This hypothesis is rejected if the point (α = 0, β = 1) lies outside the
joint-CI. Rejection of the null hypothesis indicates that the datasets
cannot be considered as equivalent and should be leveled. The BLS
regression line equation can be used for this purpose.

3.2.2. Comments and practical recommendations
BLS regression takes into account the heteroscedastic errors on both

axes for every point (i.e. SCU mean concentration). Practically,
this means that for a given dataset, the distribution of data inside two
different SCUs can show unequal variances. BLS regression is especially
useful for real-life case studies because SCUs can comprise more or less
heterogeneous types of sampled materials leading to a more or less
wide concentration variability. Moreover, inside a particular SCU, A
and B distribution of data could show different variances. This situation
can occur for example when the instruments used for the geochemical
measurements of the two datasets are different.

The BLS regression assumes that inside each particular SCU, the data
fromdataset A aswell as fromdataset B are normally distributed. It is an
important limitationwhich requires special carewhenundertaking step
3. The normality of the dataset's distributions in each SCU can be visual-
ly inspected (e.g. with a Quantile-Quantile plot) or statistically tested
(e.g. with a Shapiro-Wilk test). In general, geochemical datasets are
not normally distributed because distributions are usually right-skewed
and contain outliers. Applying a logarithmic transformation is often
sufficient to approach a normal distribution by reducing the extreme
values and spreading out the low values (Reimann et al., 2008).
Moreover, geochemical distributions corresponding to trace element
analyses are often plagued by detection limits problems. However,
one can decide to use the SCU method only to compare datasets for
SCUs where both datasets contain a very small proportion of censored
data (e.g. cases where, for both datasets, censored data represent less
Table 1
Summary statistics of the subsets (all values in mg/kg excepting the two first rows).

Iron Van

Ap Gr BSS Ap

n 518 514 520 518
Censored data 0 0 0 1
Minimum 1609 1469 1818 b5
Q25 10,701 10,631 9704 29
Median 19,129 16,960 17,310 50
Q75 31,387 28,990 30,004 80
Maximum 120,932 79,871 85,677 253
than 10% of the data in the SCU). Practically, this can be done by replac-
ing the censored data by the value of (or half of) the censoring limit,
provided the censoring limit value is the same in both datasets in
order to avoid artificially introducing a bias between the two datasets.
Note that this practice could lead to a poor estimation of the variance
for SCUs that contain censored data and can thus slightly affect the
result of the test.

Theway in which the GA is partitioned into SCUs will determine the
number of SCUs and the number of records available for each SCU. Note
that the statistical power of the BLS regression is lowwhen based on an
insufficient number of points. Ideally, the size of each SCUmust be small
enough to capture the spatial patterns of geochemical concentrations
but large enough to include a sufficient number of records. Ensuring
that there are sufficient records from each dataset in each SCU is re-
quired to properly represent the SCU data population for the computa-
tion of the mean and the variance in the BLS regression. This is why we
propose in step 1 to consider only SCUs that contain at least 10 records.
However, choosing the minimum number of records per SCU will
require expert judgment which depends on each particular case study,
the type of sampled material and the level of uncertainty that the user
of the method considers acceptable.

Finally, for step 2, note that there is a particular situationwhichdem-
onstrates that the use of the BLS regression can be legitimate evenwhen
there is only a weak correlation between datasets. This situation occurs
when the geochemical concentrations observed within the GAs do not
exhibit any clear spatial patterns. This may be due to the fact that
variations among the SCU mean values happen to be smaller than
the variations among data values observed within the SCUs. In this
circumstance, it is still relevant to resort to BLS regression to assess
equivalence. However, in case of rejection of the null hypothesis (the
datasets cannot be considered as equivalent), the BLS regression line
equation should not be used to level the datasets. As a matter of fact,
leveling of datasets through linear transformation only makes sense
when a good linear relationship exists between datasets.

4. Case study

In order to provide an example of how the SSDmethod and the SCU
method outlined above can be applied to real-life situations, we will
now consider three geochemical datasets existing for agricultural top-
soil in Europe. The datasets come from two low density geochemical
mapping project results: the GEMAS project and the BSS project.

4.1. Datasets

The GEMAS (Geochemical mapping of agricultural and grazing land
soils) project focused on agricultural soils from 33 European countries
from an area covering approximately 5,600,000 km2. Two agricultural
soil types were surveyed separately: arable soil and grazing land soil.
The sample depth is 0–20 cm for arable soil and 0–10 cm for grazing
land soil. The sample density is one site per 2500 km2 (50 × 50 km
grid). More than 60 elements were analyzed by up to 4 different
methods including X-ray fluorescence (XRF). Details on sample
adium Yttrium

Gr BSS Ap Gr BSS

514 520 518 514 520
0 13 0 0 19
7 b5 6 4 b3

.2 27 21 16 14 8
43 37 23 20 15

.7 73 70.2 29 26 21
601 258 78 110 47



Table 2
Results of the pairwise comparison of the Gr, Ap and BSS datasets performed by the SSD method and the SCU method. P-values less than the significance level of 5% are in bold text.

SSD method SCU method

Gr vs Ap Gr vs BSS Ap vs BSS Gr vs Ap Gr vs BSS Ap vs BSS

Fe 0.058 0.816 0.077 0.06 0.384 0.954
V 0.076 0.006 b0.001 0.145 b0.001 b0.001
Y b0.001 b0.001 b0.001 b0.001 b0.001 b0.001
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preparation, analytical and quality control procedures of the GEMAS
project can be found in Reimann et al. (2014).

The BSS (Baltic Soil Survey) project focused on agricultural soils from
northwestern Russia and Belarus and 8 European countries in an area of
about 1,800,000 km2. The sample density is one site per 2500 km2

(50 × 50 km grid). Topsoil and subsoil layers were sampled at about
750 sampling sites in agricultural soils (indistinctly arable and grazing
land). Topsoil was collected at a depth of 0–25 cm and subsoil was col-
lected at an approximate depth of 50–75 cm. More than 60 elements
were analyzed by up to 4 different methods including XRF. Details on
sample preparation, analytical and quality control procedures of the
BSS project can be found in Reimann et al. (2003).

Iron (Fe), vanadium (V) and yttrium (Y) topsoil XRF analyses from
the GEMAS project and from the BSS project were selected as datasets
to be compared. Equivalence between datasets was assessed and
when a bias was detected between two datasets, a leveling equation
was computed.
4.2. Application of the SSD method

4.2.1. Step 1: delineation of the GA and extraction of subsets
The GA is delineated so that it corresponds to the geographical area

located at a maximum distance of 35.35 km from the dataset sampling
points. Supposing that the points are located exactly in the center of
the 50 × 50 km cell from the sampling grid, 35.35 km is the distance

from the center of a cell to a corner (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð252 þ 252Þ

q
). The dataset records

located inside the GA were extracted in order to create the representa-
tive subsets of records. Hereafter, the subset corresponding to the arable
soil of the GEMAS will be called Ap, the subset corresponding to the
grazing land soil of the GEMAS will be called Gr and the BSS dataset
will be called BSS. Table 1 summarizes the statistics for the 9 datasets.
Fig. 5. Leveling line for removing the bias between datasets for vanadium obtained by orthogon
of 5).
4.2.2. Step 2: assessing the equivalence
There are censored records in the Ap and BSS datasets (reported as

“detection limit” in the corresponding originating atlases). Both
datasets have the same censoring limit values (5 mg/kg for vanadium
and 3 mg/kg for yttrium). We thus replaced the censored records by
50% of the limit value. We then applied the KS test to compare the
three datasets pairwise. P-values of the tests are shown in the three
first columns of Table 2. For iron, the three datasets cannot be consid-
ered to be significantly different for the chosen significance level of
5%. For vanadium, the two datasets from the GEMAS project were not
significantly different, while these two datasets were significantly
different from the BSS dataset. Finally, the three yttrium datasets were
significantly different from one another.

4.2.3. Step 3: computing the leveling equations
We computed a leveling equation by using orthogonal regression to

fit a line on quantile pairs from datasets that cannot be considered as
equivalent in the previous step. The leveling lines for the vanadium
and yttrium datasets are illustrated in Figs. 5 and 6 respectively. In
these figures, the legends mention the parameters of the leveling line
equations. For vanadium, these parameters are quite similar in both
compared datasets: α and β are close to about −8 and 1 respectively.
BSS is negatively biased compared to both GEMAS datasets since we
found that BSS exhibits a systematic bias of about−8 mg/kg. For yttri-
um, theAp comparisonwithGr exhibits a slight proportional (β=0.94)
and systematic (α=1.4 mg/kg) bias. The BSS - Ap and BSS - Gr regres-
sion line parameters are quite similar: the slopes reflect a slight propor-
tional bias (1.04 for Gr and 0.97 for Ap) and the intercept reflects a
proportional bias (5.2 mg/kg for Gr and 6.6 mg/kg for Ap) between
the datasets. Note that the difference between the intercept of the two
leveling lines is close to 1.4mg/kg, which corresponds to the systematic
bias found between Gr and Ap.
al regression on pairs of quantiles (crosses: from 10th to 90th percentile with increments



Fig. 7.Mapof the SCUs (based on information fromBGR, 2005). Each color corresponds to a particular SCU. The circular shapes of the SCU delineation are due to the 35.35 km search radius
applied around the sampling points in the delineation of the GA. Only SCUs that contain more than 10 records from each of the three compared datasets are represented on the map.

Fig. 6. Leveling line for yttrium (legend as in Fig. 5 above).
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Table 3
Summary statistics about the compared subset of records (all values in mg/kg excepting the two first rows).

Iron Vanadium Yttrium

Ap Gr BSS Ap Gr BSS Ap Gr BSS

n 393 396 411 393 396 411 393 396 411
Censored data 0 0 0 0 0 8 0 0 15
Minimum 1609 1469 1818 5 8 b5 6 4 b3
Q25 10,911 10,701 10,036 30 28 21 16 14 9
Median 18,885 16,960 17,625 49 43 37 22 19 16
Q75 31,125 29,392 31,193 79 73 71 28 26 21
Maximum 120,932 79,871 85,677 253 601 218 78 110 47

45B. Pereira et al. / Journal of Geochemical Exploration 168 (2016) 36–48
4.3. SCU method application

4.3.1. Step 1: delineation of the SCUs and extraction of subsets
Here we assume that the distributions of Fe, V and Y in soil at the

continental scale are mostly explained by the nature of the soil parent
material, while anthropic or other influences are of local concern. This
assumption is consistent with the information found in several Europe-
an atlases (e.g. Reimann et al., 2003, 2014; Salminen et al., 2005). SCU
delineation according to the types of soil parent material is therefore
most appropriate for this case study. Themap “Soil Regions of the Euro-
pean Union and Adjacent Countries” (BGR, 2005) containing valuable
information about soil parent material helped us to delineate the GA
intoSCUs (Fig. 7).

We only take into consideration SCUs that contain at least 10 records
from each of the compared datasets in order properly represent the SCU
data population for the computation of themean and the variance in the
BLS regression. Table 3 summarizes the descriptive statistics concerning
the 9 compared subsets of records located within the SCUs taken into
consideration.
Fig. 8. Comparisons of the datasets by the SCUmethod (upper row) for Fe and corresponding jo
This case study involves 21 SCUs. The number of records per SCU
ranges from 10 to 31 with a mean of 19 for the Ap and Gr datasets
and ranges from 10 to 39 with a mean of 20 for the BSS datasets.

4.3.2. Step 2: spatial correlation check between datasets
The upper rows of Figs. 8, 9 and 10 illustrate the correlation between

themean concentrations of the SCUs: all Pearson correlation coefficients
are strongly positive and range from 0.89 to 0.97. This confirms that the
Ap, Gr and BSS datasets feature the same spatial patterns and therefore
the BLS regression (step 3) can be applied.

4.3.3. Step 3: assessing the equivalence and calculating the leveling
equation line

As there are very few censored data, and only in the BSS datasets
(Table 3), we have thus assumed that it could not greatly affect the
BLS regression results. For the computation, we replaced the censored
records by 50% of the limit value. The normality of the dataset distribu-
tions has been assessed. The records were first transformed by stan-
dardization (i.e. by subtracting the mean and dividing by the standard
int confidence intervals for theα and β parameters for the BLS regression line (lower row).



46 B. Pereira et al. / Journal of Geochemical Exploration 168 (2016) 36–48
deviation of the corresponding SCU), then plotted in aQ-Q plot. For each
dataset, logarithmic transformationwas sufficient to reach normality, as
required when applying the BLS regression method. The BLS regression
lines are illustrated in the graphs located in the upper rows of Figs. 8, 9
and 10, and the parameters of the lines are mentioned in the legends of
the graphs. The results of the equivalence assessment are illustrated in
the lower rows of Figs. 8, 9 and 10. In each graph, the black cross repre-
sents the equivalence line: if it falls inside the confidence ellipse, which
is the 95% joint-CI, the datasets can be considered as equivalent. The re-
sults are identical to what was obtained with the SSD method for the
same significance level (5%; see Table 2). The parameters of the BLS
leveling lines (corresponding to the red points in Figs. 8, 9 and 10) can-
not be interpreted in terms of systematic or proportional biases due to
the logarithmic transformation of the data.

5. Discussion

The two proposed methods are based on the comparison of subsets
that contain a fraction of the total number of records of the correspond-
ing datasets. Equivalence assessment results and leveling equations
provided by the proposed methods are therefore primarily relevant to
these subsets. However, if the subsets sufficiently represent the factors
that are supposed to be influencing the bias, like the type of samplema-
terial or the range of geochemical concentrations, it can be decided that
the results produced by thesemethods also apply to the datasets in their
entirety.

Both methods require that the compared datasets contain records
located within the same geographical area. In the SSD method, geo-
chemical datasets must have records that are evenly spatially distribut-
ed throughout the GA, as opposed to the SCU method which does not
impose this requirement. In many real-life case studies, this limitation
Fig. 9. Same legend as Fig.
can make it difficult to apply the SSD method and the SCU method
may thus provide a more suitable solution.

Both methods assess the equivalence based on a statistical proce-
dure. In the SSD method, the statistical procedure is a two-sample Kol-
mogorov-Smirnov test, which is a non-parametric procedure robust to
outliers and which requires very few assumptions regarding the under-
lying populations of datasets A and B. In the SCU-method, the statistical
procedure is the BLS regression, which assumes a normality of A and B
data distribution for each SCU. This normality assumption will require
special care, as discussed in Section 3.2.2, and could limit the practical
applicability of the SCU method.

In the SSD method, the expected benefit of the leveling through a
linear transformation must be assessed by expert judgment. This is be-
cause two datasets can be deemed not equivalent according to the KS
test and yet the quantile regression line may be close or equal to y =
x. Conversely, with the SCU method, no expert judgment is needed be-
cause the diagnosis of the dataset equivalence is directly related to the
distance of the BLS regression line to the y = x line.

The comparison of the results provided by the two proposed
methods in this case study suggests that both methods provide broadly
consistent results despite the differences in the compared subsets (see
Tables 1 and 3) and in the statistical procedures used. In this case
study, the results of the equivalence assessment are identical for both
methods although the p-values might sometimes be quite different
(e.g. Ap-BSS comparison for Fe datasets). The parameters of the leveling
equations obtained by both methods are not directly comparable be-
cause we applied a logarithmic transformation in the SCU method.
However, the type of bias detectedwas identical regardless of themeth-
od. Both methods concluded that, for yttrium and vanadium, Ap and Gr
are positively biased relative to BSS,while for yttrium, Apwas positively
biased relative to Gr.
8, but for Vanadium.



Fig. 10. Same legend as Fig. 8, but for Yttrium.
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6. Conclusions

This paper establishes a methodological framework and provides
practical recommendations for dealingwith biases between geochemical
datasets by equivalence assessment and data leveling. To our knowledge,
this is the first study to properly formalize a protocol for assessing the
equivalence between geochemical datasets. Our case study involving
major and trace element geochemical datasets coming from two
European low density geochemical mapping projects illustrates how to
practically implement both proposedmethods. The twomethods yielded
similar results thereby suggesting that they are both reliable and
effective enough to take advantage of the steadily increasing number of
geochemical datasets available for mapping a region.

Each of the twoproposedmethod presents its ownparticular benefits
and limitations and several specific questionsmaywarrant further inves-
tigations. For example, assessing the equivalence between more than
two geochemical datasets will stress the need to address the multiple
testing correction problem encountered in the statistical procedures.
The SCU method appears to be more suitable than the SSD method for
most real-life case studies because (i) there is no condition requiring
that both datasets contain records that are evenly spatially distributed
and (ii) the method provides a quantitative procedure to evaluate the
benefit of applying a linear transformation for leveling the datasets.
However, in the SSD method, the equivalence assessment may prove
more appropriate for some geochemical datasets as it requires fewer
assumptions about the underlying populations.
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