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Magmatic activity is of great significance to mineralization not only for heat and fluid it provides, but also for
parts of material source it brings. Due to the cover of soil and vegetation and its spatial nonuniformity detected
signals from the ground's surface may be weak and of spatial variability, and this brings serious challenges to
mineral exploration in these areas. Two models based on spatially weighted technology, i.e., local singularity
analysis (LSA) and spatially weighted logistic regression (SWLR) are applied in this study to deal with this chal-
lenge. Coverage cannot block themigration of geochemical elements, it is possible that the geochemical features
of soil above concealed rocks can be different from surrounding environment, although this kind of differences
areweak; coveragemay alsoweaken the surface expression of geophysical fields. LSA is sensitive toweak chang-
es in density or energy, whichmakes it effective to map the distribution of concealed igneous rock based on geo-
chemical and geophysical properties. Data integration can produce better classification results than any single
data analysis, but spatial variability of spatial variables caused by non-stationary coverage can greatly affect
the results since sometimes it is hard to establish a global model. In this paper, SWLR is used to integrate all spa-
tial layers extracted from both geochemical and geophysical data, and the iron polymetallic metallogenic belt in
south-west of Fujian Province is used as s study case. It is found that LSA technique effectively extracts different
sources of geologic anomalies; and the spatial distribution of intermediate and felsic igneous rocks delineated by
SWLR shows higher accuracy compared with the result obtained via global logistic regression model.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Different geological environments, temperatures, pressures, and
magma cycles create different mechanisms of mineral formation and
migration, and these in turn, can cause geochemical and geophysical
differences between intrusive rocks and their surroundings. This
makes it possible to distinguish different intrusions from their sur-
roundings. However, due to the effects of soil and vegetation cover, geo-
chemical signatures and geophysical features obtained at the surface
of the Earth may be weak. Hence, it is difficult to extract this weak in-
formation effectively by using classical data processing methods
based on frequency statistics. Cheng and his team have developed a
new spatial statistical method based on fractal/multifractal theory,
called local singularity analysis (LSA) (Cheng, 1997, 2001, 2004,
2006a, 2006b, 2006c), which can supplement classic geological
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statistical techniques. LSA is essentially a spatial neighborhood-window
statistical method that considers the original value of each spatial loca-
tion aswell as the trends in variation of these values within a local win-
dow. This method can detect slight changes in spatial locations and
quantify them for the purpose of extracting local singularity informa-
tion, while avoiding interference from the surface media, to reveal
deep geological features of the underground environment. For this rea-
son, LSA has been used tomap concealed rocks based on both geochem-
ical data (Cheng, 2012; Zhao et al., 2012) and geophysical data (Wanget
al., 2012).

Geochemical data and geophysical data were obtained to represent
the chemical properties and the physical characteristics of rocks, respec-
tively. These two different types of datawere combinedwith one anoth-
er using data integrationmethods, which can improve the accuracy and
efficiency of intrusive rockmapping. Many different models for data in-
tegration have been applied in mineral prospectivity mapping, includ-
ing logistic regression (Tukey, 1972; Agterberg, 1974, 1988; Chung
and Agterberg, 1980; Wrigley and Dunn, 1986), weights-of-evidence
(Bonham-Carter et al., 1988, 1989; Agterberg, 1989; Agterberg et al.,
1990), fuzzy logic (An et al., 1991; Bonham-Carter, 1994) and neural
networks (Singer and Kouda, 1996, 1997; Oh and Lee, 2010). Although
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these methods have been integrated into GIS software and can be used
to deal with spatial data, the locations and neighborhoods of spatial
objects are always ignored and the relationship between location at-
tribute and other attributes are completely separated, thus there is
no essential difference between these methods and classical statis-
tics. In fact, the intensity and structure of correlations between the
target variable and independent variables may be changed from
place to place due to spatial heterogeneity and non-stationary. The
development of geographically weighted regression (GWR) changes
this condition (Brunsdon et al., 1996; Fotheringham et al., 1996,
1997, 2002). GWR is a spatially varying-coefficient model, in which
regression model is performed within a local window at each loca-
tion, and inverse distance weighted (IDW) model is applied to
achieve weigh reduction from current location to the edges of local
window. The grids near to the current location are given greater
weight while those far from the current location given less weight or
even 0. There are some applications of GWR in mineral prospectivity
mapping, e.g., Zhao et al. (2013, 2014) used GWR to analyze the quan-
titative relationship and its changes between the iron resources and
the ore-controlling factors in the east TianshanMountain, and provided
an improved prediction map for iron deposits. But yet there are few re-
ports about geographically weighted logistic regressionmethod inmin-
eral exploration, while the latter is more suitable sincemineralization is
a binary event. The first author developed a spatially weighted logistic
regression (SWLR) model for mineral prospectivity mapping (Zhang,
2015), and in this study, thismodelwas used for intermediate and felsic
igneous rocks mapping. Local singularity analysis (LSA) technique was
used to process geochemical and geophysical data in order to obtain in-
dividual factor maps for intermediate and felsic rocks, and then based
on a map of known Mesozoic intermediate and felsic rocks, general lo-
gistic regression and SWLRwere applied respectively to integrate these
individualmaps for delineating target areas that could indicate the loca-
tion of concealed intermediate and felsic igneous rocks. Our study is an
initial attempt of using spatially weighted local model to deal with geo-
logical exploration mapping problem, and hoping that it can provide a
new idea for similar research in this field.
Fig. 1. The location of the study area, where J&K Granite represents the intermedia
2. Methods

2.1. Local singularity analysis (LSA)

Fractal/multifractal models are representative tools of nonlinear sci-
ence that have been used for extraction of metallogenic information
ever since nonlinear science techniques were developed. Fractal theory
was initially used to characterize self-similar properties of geometric
objects at different scales when the parts amplified were like the
whole to some degree (Mandelbrot, 1975; Cheng et al., 1994; Cheng,
2016). Later, fractal/multifractal modeling was used to describe natural
events with singularities, such as earthquakes, clouds, mountain tor-
rents, hurricanes, landslides and wildfires, when there was a fractal/
multifractal (or power-law) relationship between the frequency and
size of the objects under study (Schertzer and Lovejoy, 1987; Bak et
al., 1992; Malamud et al., 1996; Turcotte, 1997; Veneziano, 2002;
Malamud et al., 2004; Sornette, 2004). Additionally, Cheng (1994)
brought spatial information to bear on the power-law relationship and
developed the concentration-area (C-A) model, which was considered
as the first attempt to use fractal method to separate geochemical
anomalies from background (Li et al., 2003). Later, Cheng (1997, 1999,
2005) proposed local singularity analysis (LSA) technology which can
be seen as an application of the C-A model within a local window for
local anomaly information extraction.

The most important choice that needs to be made during LSA, is the
selection of an appropriate window size for the calculation of the local
singularity index. The optimum window size is usually defined experi-
mentally. If thewindow size is too small, LSA captures detailed informa-
tionmay include random noise, whereas a window size that is too large
results in relatively smooth maps with less resolution. The singularity
index is obtained by the following power-law model (Cheng, 1997):

ρ εð Þ ¼ cεα−2 ð1Þ

where c is a constant, ε represents window size, ρ represents average
local density within a local window of size ε, and α is the singularity
te and felsic igneous rocks formed in Jurassic and Cretaceous of Mesozoic era.



Fig. 2. The sketch of Makeng stratabound skarn type iron ore genesis model (Zhao et al., 1983).
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index that can be estimated by least squares as the slope of a straight
linefitted to the relationship between log ρ and log ε. The local singular-
ity index α has the following properties: (1) when α is close to 2, the el-
ement concentration is relatively constant regardless of the window
size; (2) when α b 2, concentrations increase with the narrowing of
window size, which indicates that the environment was enriched
Fig. 3. Distribution of Jurassic-Cretaceous intermedi
during the process of mineralization; and (3) when α N 2, concentra-
tions decrease with the narrowing of window size, which indicates de-
pletion. Magmatic activity can also be viewed as a non-linear process.
Therefore, as a product of magmatic activity, the spatial distribution of
intermediate and felsic igneous rocks can also be considered as a singu-
larity. It is clear that the sliding window is used in LSA, and sliding
ate and felsic igneous rocks, and iron deposits.
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window can be seen as a special case of spatial weighting, i.e. samples
within the sliding window are weighted as 1 and others are weighted
as 0. Therefore, LSA is also a spatially weighted model.

2.2. Spatially weighted logistic regression (SWLR)

Linear regression is commonly used for exploring the relationship
between a response variable and one or more explanatory variables.
In some research fields, such as in mineral prediction, the response var-
iable is binary or dichotomous, linear regressionwill not be applicable in
this case, then logistic regression model can show its advantage.

2.2.1. General logistic regression (GLR)
Suppose that X1 ,X2 ,… ,Xp is a sample of p explanatory variables

x1 ,x2 ,… ,xp, and Y is a binary variable that can only assume the values
of 1 and 0, then the following function can be used to estimate the prob-
ability that Y takes the value of 1:

P Y ¼ 1jX1;X2;…;Xp
� � ¼ π Xð Þ ¼ eβ0þβ1x1þ…þβpxp

1þ eβ0þβ1x1þ…þβpxp
ð2Þ
Fig. 4. Data processing flow and
and the probability that Y takes the value of 0 can be expressed as:

P Y ¼ 0jX1;X2;…;Xp
� � ¼ 1−π Xð Þ ¼ 1

1þ eβ0þβ1x1þ…þβpxp
ð3Þ

where π is the estimation of Y, β0 is intercept, and β1,β2 ,… ,βp are re-
gression coefficients. A Logit transformation about P(Y=1|X1,X2,… ,Xp)
can be performed based on Eqs. (2) and (3), then a linear function is ob-
tained:

g Xð Þ ¼ Logitπ Xð Þ ¼ ln
π Xð Þ

1−π Xð Þ ¼ β0 þ β1x1 þ…þ βpxp ð4Þ

If there are n samples, we can obtain n linear equations with p + 1
unknowns based on Eq. (4). Further suppose that the observed values
for Y are y1 ,y2 ,… ,yn, and these observations are independent of each
other, likelihood function can be established:

L βð Þ ¼ ∏
n

i¼1
π xið Þyi 1−π xið Þð Þ1−yi ð5Þ

whereπðxiÞ ¼ eβ0þβ1xi1þ…þβpxip

1þeβ0þβ1xi1þ…þβpxip
. The best estimation can be obtained if and
the structure for case study.



Fig. 5. Independent-variable formapping intermediate and felsic igneous rocks, i.e., (a) PC-1
for local singularity index maps of selected petrogenetic elements which included Al2O3,
K2O, NaO and SiO2, (b) PC-1 for local singularity index maps of selected incompatible
trace elements which included Be, La, Nb, Th, U, Y and Zr, (c) PC-1 for local singularity
index maps of selected other trace elements which included As, B, Cr, Mo, Ni, Pb and Sb.
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only if Eq. (5) takes the maximum. Then the problem is converted to
solve β0 ,β1 ,…βp. Eq. (5) can be further transformed into a log-likeli-
hood function:

lnL βð Þ ¼ ∑
n

i¼1
yiπ xið Þ þ 1−yið Þ 1−π xið Þð Þð Þ ð6Þ

Its solution can be obtained by taking the first partial derivative of βi

(i = 0 to p), then Eq. (7) is obtained in the form of matrix operations.

XT Y−πð Þ ¼ 0 ð7Þ

Newton-iterative method can be used to solve the nonlinear equa-
tions:

β t þ 1ð Þ ¼ β tð Þ þ H−1U ð8Þ

where U=XT(Y−π(t)), t represents the number of iterations,
H=XTV(t)X, and V(t) ,X ,Y ,π(t) and β(t) are obtained as following:

VðtÞ ¼
π1ðtÞð1−π1ðtÞÞ

π2ðtÞð1−π2ðtÞÞ
⋱

πnðtÞð1−πnðtÞÞ

0
BB@

1
CCA ,

X ¼
x10 x11 … x1p
x20 x21 … x2p
⋮ ⋮ ⋱ ⋮

xn0 xn1 … xnp

0
BB@

1
CCA,Y ¼

y1
y2
⋮
yn

0
BB@

1
CCA, πðtÞ ¼

π1ðtÞ
π2ðtÞ
⋮

πnðtÞ

0
BB@

1
CCA,

and βðtÞ ¼
β1ðtÞ
β2ðtÞ

⋮
βnðtÞ

0
BB@

1
CCA.

The readers can seeHosmer et al. (2013) formore information about
the derivation from Eqs. (2) to (8).

2.2.2. Spatially weighted logistic regression
Using π to represent the probability that y takes the value of 1, and

g(x) = ln(π(x)/(1 − π(x))) is the Logit form of π(x), then spatially
weighted logistic regression can be expressed as:

gi x;uð Þ ¼ logit πi x;uð Þð Þ ¼ β0i x;uð Þ þ β1i x;uð Þx1i þ β2i x;uð Þx2i þ⋯
þ βpi x;uð Þxpi ð9Þ

where β0i(u),β1i(u),⋯, βpi(u)mean that these parameters are obtaied at
the location of u. The predicted probability for current location can be
obtained in condition that the values of all independent variables at cur-
rent location are known and all parameters are also calculated based on
the sampleswithin current localwindow. The parameters are estimated
according to Eq. (10).

β̂ uð Þtþ1 ¼ β̂ uð Þt þ XTW uð ÞV tð ÞX
� �−1

XTW uð Þ Y−π tð Þð Þ ð10Þ

where t represents the number of iterations; X is amatrix constituted by
all independent variable values, and all elements in the first column are
1; W(u) is a diagonal matrix, and the diagonal elements are geographi-
cal weights which can be calculated according to distance while other
elements are all 0; V(t) is also a diagonal matrix, and the diagonal ele-
ment can be expressed as πi(t)(1−πi(t)); Y is a column vector
representing the values dependent variable takes.

Besides geographic factor, the degree in studying can also affect the
representative of the sample, e.g., differences in exploration level. In ad-
dition, we should also consider the sample size, especially when raster
data is used. In order to avoid complex computation, Agterberg (1992)
developed weighted logistic regression, in which all grids with the
same values are merged into one class, and “unique condition” is used
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to discribe the grids which have the same values in each layer (or vari-
able). Unique condition area instead of grid is used to represent a sam-
ple, which greatly decreases the size of the matrix in estimating
maximum likelihood parameters.

Suppose that there are n grids in current local window, Si is the i-th
grid, Wi(g) is the geographical weight of Si, and Wi(d) represents indi-
vidual difference weight (sometimes there exits quality or research de-
gree differences among samples, andWi(d) takes the value of 1 if there
is no this kind of differences), where i takes the value from 1 to n. Fur-
ther suppose that there are N unique conditions after overlaying all
Fig. 6. The loadings on the first component obtained using Principle Component Analysis (PCA).
elements respectively.
layers, and Cj means the j-th unique condition unit, where N ≦ n, then
we can obtain the final weight for each unique condition unit at current
local window.

W j tð Þ ¼ ∑
n

i¼1
Wi gð Þ �Wi dð Þ � df i½ � ð11Þ

where
df i ¼ 1; if Si∈C j
df i ¼ 0; if Si∉C j

�
, j takes the value from 1to N;Wj(t) represents

the total weights (combining both Wi(g) and Wi(d)) for each unique
condition unit.
From (a) to (c) are for petrogenetic elements, incompatible trace elements, and other trace
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The equations from Eq. (9) to (11) are modified from the first
author's doctoral thesis (Zhang, 2015) published in Chinese.

3. Study area and data

TheMakeng iron polymetallicmetallogenic belt lies in the southwest
region of the Fujian Province, China (Fig. 1). Almost 98% of known iron
deposits in Fujian are found in this region. In recent years,with increases
in exploration and technological progress, a number of iron deposits
have been discovered in this belt including the Makeng, Yangshan,
Pantian, Luoyang, Zhongjia, and Panluo iron deposits. The belt is charac-
terized by outcrops of Paleozoic strata and Mesozoic intermediate and
felsic igneous rocks, which provides a favorable metallogenic environ-
ment for the formation of Fe, Cu, and Zn polymetallic deposits. Accord-
ing to the Fujian Institute of Geological Survey (2010), there is a great
potential for undiscovered Makeng-type iron polymetallic deposits in
this area. Although there are differences of opinions on the nature of
the mineralization process and the genetic types of the deposits (Han
and Ge, 1983a; Zhao et al., 1983; Jiang, 2007; Chen, 2010; Lin, 2011), it
is widely accepted that this district experienced intense tectonic and
magmatic activities that favored mineral enrichment. Some isotopic
dating research supports the view that hydrothermal superimposition
enriched mineralization in the Mesozoic strata (Han and Ge, 1983b;
Mao et al., 2006; Wang et al., 2010; Lin, 2011). Fig. 2 depicts the
metallogenic model given by Zhao et al. (1983), which shows that
Makeng-type iron polymetallic deposits have a close relationship with
skarnization. In this model, (1) the intrusion of Mesozoic intermediate
and felsic magma provided sufficient heat for ore-forming fluids com-
posed in part of iron; (2) the NNE/NW-treading faults provided a pas-
sageway, and (3) the presence of Carboniferous-Permian carbonate
strata provided an excellent storage environment. Recent studies show
that iron mineralization in this region often occurred in the contact
zones between intrusions and late Paleozoic formations (Zuo et al.,
2012; Zuo, 2016). As is shown in Fig. 3, most of the known deposits
are situated around outcrops of intermediate and felsic igneous rocks.
Hence, it is important to map the distribution of intermediate and felsic
igneous rocks for predictions of Makeng-type iron mineralization (bol-
sters can also be found in Zuo et al., 2015; Zhang et al., 2015a, 2015b;
Xiong and Zuo, 2016; Zhang et al., 2016). A portion of these rocks
have been mapped in former geological surveys (see Fig. 3 for distribu-
tion of known intermediate and felsic igneous rocks). Fig. 3 illustrates
the close relationship between the deposits and the intrusion of Meso-
zoic intermediate and felsic magma, but some intrusions were not
mapped because they were concealed by soil and vegetation cover.
Fig. 7. Student's t values calculated for the spatial correlation between the known intermediate
Therefore, it is of great interest to find these concealed intermediate
and felsic intrusions.

The datasets used in this study consisted of a geological map
(1:250,000), stream sediment data (1:200,000), andmagnetic and grav-
ity data (1:200,000). Geochemical data (1:200,000) originated from
China's National Geochemical Mapping Project and it was comprised
of 39 major, minor, trace, and sub-trace elements. Following strategies
are used for geochemical sampling: (i) high density sampling of
1 km2, out of which four samples were composited into one sample
representing 4 km2, and (ii) low density sampling of one sample per
20–50 km2 from areas of extremely difficult assess. Concentrations of
Bi, Cd, Co, Cu, La, Mo, Nb, Pb, Th, U, and W elements were determined
using inductively coupled plasma-mass spectrometry (ICP-MS).
Concentrations of Al, Cr, Fe, K, P, Si, Ti, Y, and Zr were determined
using X-ray fluorescence (XRF) spectrometry. Concentrations of Ba,
Be, Ca, Li, Mg, Mn, Na, Ni, Sr, V, and Zn were determined using induc-
tively coupled plasma-atomic emission spectrometry (ICP-AES).
Concentrations of Ag, B, and Sn were determined using emission
spectrometry (ES). Concentrations of As and Sb were determined
using hydride generation-atomic fluorescence spectrometry (HG-
AFS). Concentrations of Au, Hg, and F were determined through graph-
ite furnace-atomic absorption spectrometry (GF-AAS), cold vapor-
atomic fluorescence spectrometry (CV-AFS), and ion selective electrode
(ISE) techniques, respectively (Xie et al., 1997, 2008). Geophysical
datasets including ground-based Bouguer gravity data and airborne
total magnetic intensity data with a 2-km spatial resolution were pro-
duced by the China Geological Survey (CGS). Mesozoic intermediate
and felsic igneous layer was extracted from the geological map, which
was also obtained fromCGS (Zuo et al., 2015). All these datawere trans-
formed into grid data using ArcGIS 10.2 with the projection of the
world's 50th zone (North), Universal Transverse Mercator coordinate
system, the Datum of the World Geodetic System-1984 (WGS84), and
a cell size of 2 km × 2 km.

4. Data processing and results

The data processing flow for this research is provided in Fig. 4, and
more detailed explanation can be found in subsequent sections.

4.1. Variable selection and evidential layer preparation

General practice in rock mapping is to use only the rock-forming el-
ements, while ignoring some of the trace elements and radioactive ele-
ments. However, some research on typical metallogenetic granitic
and felsic igneous rock layer and the five independent layers at different threshold levers.
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bodies in the Fujian Province shows that the intermediate and felsic ig-
neous rocks have certain geochemical features derived fromprimary el-
ements, trace elements, and rare earth elements (Zhao, 2007; Qiu et al.,
2012). We used data on 18 different elements and minerals (Al2O3, As,
Table 1
Grid counts for each unique condition after overlaying all the independent-variable layers
and the target variable layer. PE, ICTE, OTE and J&K Granite in the table headers are the ab-
breviations for petrogenetic element group which included Al2O3, K2O, NaO and SiO2, in-
compatible trace element group which included Be, La, Nb, Th, U, Y and Zr, other trace
element groupwhich included As, B, Cr, Mo, Ni, Pb and Sb, and the intermediate and felsic
igneous rocks formed in Jurassic and Cretaceous of Mesozoic era respectively.

PE ICTE OTE Aeromagnetic Gravity J&K granite Grid numbers

1 1 1 1 1 1 1042
1 1 1 1 1 0 529
1 1 1 1 0 1 211
1 1 1 1 0 0 123
1 1 1 0 1 1 553
1 1 1 0 1 0 311
1 1 1 0 0 1 73
1 1 1 0 0 0 96
1 1 0 1 1 1 552
1 1 0 1 1 0 506
1 1 0 1 0 1 187
1 1 0 1 0 0 225
1 1 0 0 1 1 247
1 1 0 0 1 0 295
1 1 0 0 0 1 29
1 1 0 0 0 0 151
1 0 1 1 1 1 313
1 0 1 1 1 0 306
1 0 1 1 0 1 148
1 0 1 1 0 0 136
1 0 1 0 1 1 187
1 0 1 0 1 0 203
1 0 1 0 0 1 59
1 0 1 0 0 0 92
1 0 0 1 1 1 217
1 0 0 1 1 0 588
1 0 0 1 0 1 173
1 0 0 1 0 0 497
1 0 0 0 1 1 109
1 0 0 0 1 0 418
1 0 0 0 0 1 67
1 0 0 0 0 0 315
0 1 1 1 1 1 204
0 1 1 1 1 0 238
0 1 1 1 0 1 42
0 1 1 1 0 0 83
0 1 1 0 1 1 94
0 1 1 0 1 0 196
0 1 1 0 0 1 10
0 1 1 0 0 0 69
0 1 0 1 1 1 218
0 1 0 1 1 0 444
0 1 0 1 0 1 64
0 1 0 1 0 0 217
0 1 0 0 1 1 116
0 1 0 0 1 0 266
0 1 0 0 0 1 23
0 1 0 0 0 0 155
0 0 1 1 1 1 364
0 0 1 1 1 0 1001
0 0 1 1 0 1 159
0 0 1 1 0 0 655
0 0 1 0 1 1 216
0 0 1 0 1 0 852
0 0 1 0 0 1 59
0 0 1 0 0 0 520
0 0 0 1 1 1 576
0 0 0 1 1 0 3803
0 0 0 1 0 1 335
0 0 0 1 0 0 3729
0 0 0 0 1 1 335
0 0 0 0 1 0 2958
0 0 0 0 0 1 141
0 0 0 0 0 0 3005
B, Be, Cr, K2O, La, Mo, NaO, Nb, Ni, Pb, Sb, SiO2, Th, U, Y, and Zr), which
have been shown to have close spatial relationships with Mesozoic in-
termediate and felsic igneous rocks, along with magnetic and gravity
data in our analyses. Next, following these steps to complete the data
preparation.

(1) In order to initiallyweak the effect of spatial trend caused byfield
surface condition, LSA modeling was carried out with the local
window size of 22 km to the 20 grid layers mentioned above
with GeoDAS (GeoData Analysis System for Mineral Exploration
and Environmental Assessment) software (Cheng, 2006b,
2012). One can also use a batch processing software module
which is developed by the first author to improve efficiency
and prediction accuracy (Zhang et al., 2016).

(2) Eighteen geochemical layers were further divided into 3 groups
according to their chemical properties, i.e., petrogenetic element
group (PE group) which included Al2O3, K2O, NaO and SiO2, in-
compatible trace elements (ICTE group) which included Be, La,
Nb, Th, U, Y and Zr, and other trace elements (OTE group)
which included As, B, Cr, Mo, Ni, Pb and Sb.

(3) Principal component analysis (PCA) was performed to reduce
variate quantity, and the first principal components (PC-1s) for
PE group, ICTE group and OTE group were obtained respectively,
it is clear in Fig. 5 that all of the three layers are strongly highly
relevant to the known Mesozoic intermediate and felsic igneous
rocks. The plots of factor loadings for all of the three PC-1s are
given in Fig. 6(a), (b) and (c) respectively, and it can be seen
that almost all elements have high factor loading in thefirst prin-
cipal component. That means the PC-1s can well represent the
contribution of original elements. Besides, PC-1s occupied
61.5%, 54.3% and 37.3% of the total variance contributions for PE
group, ICTE group and OTE group respectively.

(4) Three PC-1 layers (Fig. 5(a) to (c)) together with magnetic and
gravity data layers were divided into 20-class layers using the
quantile grouping method, and this is because discretization can
improve the stability of sampled-data. These 5 independent vari-
able layers would be used for data integration in following steps.

4.2. Data integration

Based on the 5 independent-variable layers obtained above, GLR and
SWLR modeling were performed respectively.

4.2.1. General logistic regression modeling
In traditional way, all independent variable layers are binary so that

“1” means favorable and “0” means adverse for the target events. There
are many methods which can be used for binaryzation, and spatial t-
value is preferred in weights-of-evidence method (Agterberg, 1989;
Table 2
Estimates of regression coefficients.a

Variables Beta S.E. Wald Significance Exponent
(beta)

Petrogenetic element group 1.065 0.034 1004.401 0.000b 2.900
Incompatible trace element
group

0.879 0.035 642.775 0.000b 2.408

Other trace element 0.814 0.031 671.473 0.000b 2.256
Aeromagnetic 0.397 0.032 156.764 0.000b 1.487
Gravity 0.491 0.033 216.374 0.000b 1.635
Constant −2.735 0.038 5203.326 0.000b 0.065

a Analysis results extracted from IBM SPSS 20.0 software (with a slight change): there
are five independent variables together with the constant in the first column; the second
column represents regression coefficientwhile the third column represents their standard
errors.

b In the sixth columnmeanswe can reject theH0 that the regression coefficient is equal
to 0 when significance level is below 0.01, i.e., it is 99% sure that these regression coeffi-
cients are significantly different from 0.



Fig. 8. Estimated probability map for intermediate and felsic igneous rocks obtained by general logistic regression.
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Bonham-Carter et al., 1989). Here we also used spatial t-value to obtain a
threshold for each independent variable layer. A bigger spatial t-value
means a stronger spatial correlation between the independent variable
layer and the target layer. Asmentioned above, each independent variable
layer has 20 status values with 19 binaryzation scenarios. According to
spatial t statistics model, the best binaryzation scenario should have the
highest spatial t-value. Based on this criterion, the threshold values
were determined for the five independent-variable layers respectively
(Fig. 7), and then theywere transformed into binary grid layers. In ArcGIS
Fig. 9. Estimated probability map for intermediate and felsic igne
10.2, spatial overlay analysiswas performed for the 5 layers togetherwith
the target layer which had already been transformed into a binary layer,
and a new shapefile with a feather type of point is obtained. From the
property sheet of the new established shapefile we can obtained 26 =
64 unique condition records ideally according the values of the 6 original
binary layers, and each of these records has aweightwhich is determined
by the sample size of each unique condition (Table 1). Then GLR with
weighting data is performed in SPSS 20.0, and the coefficient parameters
were given in Table 2. It can be concluded from Table 2 that all
ous rocks obtained by spatially weighted logistic regression.
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independent variables are correlated significantlywith the target variable
when significance level is 0.01 (Hosmer et al., 2013), and that means we
have strong evidence that the coefficient parameters are not equal to 0.
The probability map for Mesozoic intermediate and felsic igneous rocks
was obtained in Fig. 8 using GLR model. As can been seen from Fig. 8, it
is obvious that the probabilitymap can fit the outcroppedMesozoic inter-
mediate and felsic igneous rocks more or less except in some locations.
For instance, it is most likely that there exists over-prediction in Region
1, while less-prediction may exist in Region 2. In order to deal with this
problem, SWLR model will be applied in next section.
4.2.2. Spatially weighted logistic regression modeling
GLRbelongs to globalmodels, i.e., all grids in the study area are treat-

ed as the same importance, and the prediction in each location applies
the same parameters obtained on the basis of the global model. Differ-
ences do exist among spatial samples according Tobler's First Law of Ge-
ography (Tobler, 1970), i.e., closer objects have stronger correlation
than others, thus it is not suitable to treat all samples equally; in other
words, a unified model cannot well deal with the variability of spatial
variables since the predicted results may be biased. The process for
SWLR is as follows.

(1) Determining the local window parameters
SWLR is a spatially varying-coefficient model, in which regression

model is established within a local window to perform prediction
with local optimal parameters at each location. Local window parame-
ters for SWLR can be determined based on geological statistics theory
(Zhang, 2015). This ideal is also adopted in this research. Here elliptic
local window was used to describe spatial anisotropy changes with
the application of ArcGIS Geostatistical Analyst provided in ArcGIS
10.2. According to the variogram function model, the length of semi-
major axis was 94 km, the length ratio of major and minor axis was
0.3, and the orientation of the ellipse's major axis was 30° which was
concordant with that of regional tectonics. In addition, Wald test is ap-
plied here to verify the significance of the logistic regression equation;
if the null hypothesis could not be excluded on a 5% significance level,
the length of semi-major axiswould be increased iteratively. The largest
semi-major axiswas set as 188 km,whichwas sufficient to ensure there
were enough known samples within the current local window.
Fig. 10. Student's t values calculated for the spatial correlation between layers of the targeting
and (b) spatially weighted logistic regression respectively.
Exponential decay was applied to each grid according to its distance
from the current location within the local window.

(2) Mapping with SWLR modeling
SWLR software tool developed by Zhang (2015) was used in this re-

search. Because there are no quality or research degree differences in
the study area, only spatial weights determined in last step are used in
Eq. (11) in this research. The predicted probabilitymap for intermediate
and felsic igneous rocks is given in Fig. 9. It can be seen from Fig. 9 that
the high value grids can not only fit the outcropped Mesozoic interme-
diate and felsic igneous rocks well as a whole, the locations which are
not well predicted in Fig. 8, e.g. Regions 1 and 2, are also well predicted
here. Some quantitative comparison methods will be applied in follow-
ing section to evaluate the predict results obtained by both logistical re-
gression and SWLR.

5. Model comparison and discussion

In this section, spatial t-value model is applied respectively to com-
pare GLR and SWLR based on their abilities in predicting intermediate
and felsic igneous rocks.

A threshold point is needed to delineate a target area, and there are
many differentmethods that can be used for deriving this such as the C-
A model, the standard deviation method (e.g., locations with values N3
times the standard deviation are delineated as the target area), and
student's t-value, which is an important parameter that can measure
the significance of spatial correlations between evidential layers and
the target layer in WofE. The estimated probability maps obtained by
GLR and SWLR were divided into 20 classes by the quantile method,
and then, the t-values were calculated using WofE modeling (Fig. 10).
It is obvious that SWLR lead to a better performance since greater t-
values were obtained in SWLR. Using the maximum value among the
t-values as break points, distributionmaps of intermediate and felsic ig-
neous rocks could be obtained by GLR and SWLR respectively (Fig. 11).
In Fig. 11 (a), 26.64% of the total study area was divided as intermediate
and felsic igneous rocks, and 73.01% of the target area were correctly
mapped by SWLR; with respect to GLR. 53.50% of the target area were
correctly predicted when 23.17% of the study area was divided as inter-
mediate and felsic igneous rocks. The overall accuracy for SWLR andGLR
were 84.31% and 78.49% respectively. It is obvious that SWLRprovided a
layer and the predicting probability maps obtained by using (a) general logistic regression



Fig. 11. Target delineation for theMesozoic intermediate and felsic igneous rocks by using
(a) general logistic regression and (b) spatially weighted logistic regression based on the
maximum spatial t values in Fig. (9).
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much better predicting result. The majority of the intermediate and
felsic igneous rock outcrops were in the target areas obtained by
SWLR and buried intermediate and felsic igneous rocks may exist in
covered regions of the target area. It should be noted that onlyMesozoic
intermediate and felsic igneous rockswere used as training samples, but
intermediate and felsic igneous rocks formed in other geologic ages
were also well delineated in Fig. 11. What should be pointed out is
that we used the variable layers obtained through LSA instead of initial
layers for both SWLR and GLRmodeling, thus it is fair to compare them
in this study and the conclusion should be reliable.
6. Conclusions

In this study, spatially weighted technique was used for intermedi-
ate and felsic igneous rocks mapping. The LSA technique was used to
process geochemical and geophysical data in order to obtain an individ-
ual factormap of intermediate and felsic rocks, and then based on amap
of known Mesozoic intermediate and felsic rocks, GLR and SWLR was
applied to integrate these individual maps for delineating target areas
that could indicate the location of concealedmineral resources. The con-
clusions drawn from this study were as follows:

(1) Although rock-forming elements are more often used in rock
type mapping, several trace elements, especially strong incom-
patible trace elements, were found to be useful for indicating
the presence of intermediate and felsic igneous rocks in addition
to the rock-forming elements.

(2) Due to the restrictions of uneven surface distribution and other
environmental differences, spatial non-stationary does exist
among spatial variables, and therefore it is necessary to adopt
spatially weighted technique in spatial prediction. LSA and
SWLR were applied in this research for information extraction
and data integration respectively to overcome the adverse im-
pact caused by spatial non-stationary, and they were proved to
be effective in intermediate and felsic igneous rocks mapping.

(3) Knownmineral depositsweremostly scattered along the bound-
ary of intermediate and felsic igneous rocks, which confirms that
these deposits belong to the contact-metasomatic type. Conse-
quently, the buffer area for the boundary of intermediate and
felsic igneous rocks will be one of the most important evidential
layers for use in ore prospecting for this type of resource in the
future. Although the direct purpose of this study was not ore
prospecting, we found thatmagmatic activities had an important
influence on mineralization. Since magmatic hydrothermal de-
posits are the main type of deposit on Earth, the results from
this study will not only benefit further prospecting for Makeng-
type iron in this region, but they may also provide a reference
for searches for similar deposits around the world.

At last, due to the restrictions of uneven surface distribution and
other environmental differences, spatial non-stationary does exist
among spatial variables, and therefore it is necessary to adopt spatially
weighted technique in spatial prediction. LSA and SWLR were applied
in this research for information extraction and data integration respec-
tively to overcome the adverse impact caused by spatial non-stationary,
and they proved to be effective in intermediate and felsic igneous rocks.
We compared SWLR to GLR inmapping intermediate and felsic igneous
rocks. Nevertheless, neither of them could distinguish igneous rocks
formed in different geological ages, which need the help of dating-tech-
nique to provide additional data.
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