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A B S T R A C T

An evolutionary computation algorithm known as genetic programming (GP) has been explored as an
alternative tool for improving the ensemble forecast of 24-h accumulated precipitation. Three GP versions
and six ensembles’ languages were applied to several real-world datasets over southern, southeastern and
central Brazil during the rainy period from October to February of 2008–2013. According to the results, the GP
algorithms performed better than two traditional statistical techniques, with errors 27–57% lower than simple
ensemble mean and the MASTER super model ensemble system. In addition, the results revealed that GP
algorithms outperformed the best individual forecasts, reaching an improvement of 34–42%. On the other
hand, the GP algorithms had a similar performance with respect to each other and to the Bayesian model
averaging, but the former are far more versatile techniques. Although the results for the six ensembles’
languages are almost indistinguishable, our most complex linear language turned out to be the best overall
proposal. Moreover, some meteorological attributes, including the weather patterns over Brazil, seem to play an
important role in the prediction of daily rainfall amount.

1. Introduction

The main goal of this paper is to propose a new approach based on
genetic programming algorithms to create more accurate deterministic
ensemble forecasts (DEF) of 24-h accumulated precipitation. This goal
is motivated by the importance of an accurate and reliable quantitative
precipitation forecast (QPF) for the strategic planning of several socio-
economic sectors (such as agricultural production, hydropower gen-
eration, water availability for public consumption, and flood and
landslide control), as well as by the difficulty in forecasting quantitative
precipitation and by the limitations of the current methods for
postprocessing ensembles. The traditional statistical techniques (such
as model output statistics (MOS; Glahn and Lowry, 1972), MASTER
super model ensemble system (MSMES; Silva Dias et al., 2006), and
Bayesian model averaging (BMA; Raftery et al., 2005)) have worked
well for variables such as temperature and geopotential height.
However, these approaches lead to unsatisfactory results for QPF,
perhaps because the distribution of precipitation is far from normal
(usually gamma distribution), or due to the complexity of the processes
involved, or because of its high spatial, temporal and frequency
variability.

Genetic programming (GP) is an evolutionary algorithm, which is
inspired by genetics and Darwinian evolution. GP was introduced by
Koza (1992) in the early 1990s, due to its ability to learn implicit
relationships in observed data and to express them automatically in a
symbolic mathematical manner. Furthermore, GP is a supervised
machine learning technique that has been able to solve complex
optimization problems which cannot feasibly be solved directly or
rigorously in real-world applications. Gene-expression programming
(GEP) (Ferreira, 2001), grammar-based GP (GGP) (Whigham, 1995)
and grammatical evolution (GE) (Ryan et al., 1998) are specializations
of the canonical GP, with the last two having the advantage of evolving
syntactically correct solutions in an arbitrary language described by a
grammar.

In contrast to traditional statistical approaches, evolutionary algo-
rithms do not require prior knowledge about the statistical distribution
of the data, nor do they need to explicitly assume a model form.
Moreover, evolutionary algorithms usually test many solutions instead
of continually trying to improve a single one, and can also automati-
cally capture complex interactions among input and output variables in
a system. Additionally, the ability of traditional statistical techniques to
deal with non-linear problems is limited, whereas for the evolutionary

http://dx.doi.org/10.1016/j.cageo.2017.06.011
Received 19 July 2016; Received in revised form 31 January 2017; Accepted 7 June 2017

⁎ Corresponding author.
E-mail address: amandasd@lncc.br (A.S. Dufek).

Computers & Geosciences 106 (2017) 139–149

Available online 10 June 2017
0098-3004/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.06.011
http://dx.doi.org/10.1016/j.cageo.2017.06.011
http://dx.doi.org/10.1016/j.cageo.2017.06.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.06.011&domain=pdf


algorithms it is very satisfactory.
Until recently, only a few papers focused on applying GP algorithms

in Hydrology, Meteorology and Water Resources (Omolbani et al.,
2010). For the ensemble forecast problem, Bakhshaii and Stull (2009)
proposed the use of GEP to form linear or non-linear combinations of
numerical weather predictions (NWP). The authors applied GEP to
produce short-range DEFs of 24-h accumulated precipitation at 24
stations in mountainous southwestern Canada during the two fall–
spring rainy seasons of October 2003–March 2005, using an eleven-
member multimodel multigrid-size ensemble. The GEP DEFs obtained
superior performance relative to simple ensemble means for about half
of the mountain weather stations tested. Roebber (2010) focused on
the production of consensus 24-h forecasts for minimum temperature
at a site in Ohio derived from evolutionary programming (EP). The
resulting deterministic forecasts’ improvement relative to MOS was
nearly 27%. Roebber (2015a) (2015b) extended this work to investigate
probabilistic as well as deterministic forecasts of minimum tempera-
ture, which were superior to those obtained from operational ensem-
bles and MOS.

Roebber's papers are concerned with generating ensemble of EP
solutions, whereas here we are interested in optimizing a combination
of NWP ensemble members as in Bakhshaii and Stull (2009). Two
important differences between the purpose of this paper and that of
Bakhshaii and Stull (2009) are: (i) the use of grammar-based GP
instead of GEP, a non-grammatical approach, and (ii) the inclusion of
other potential predictors, such as the major weather patterns over
Brazil, in addition to NWP models. Although in Roebber, (2010, 2015a,
2015b) the author introduces specialist's domain knowledge into the
programs’ language, this is not achieved through a formal grammar as
in our work. Furthermore, QPF for regions of Brazil is considered a
harder problem than minimum temperature forecasting, as addressed
by Roebber, (2010, 2015a, 2015b), due to the more complex processes
associated with tropical and subtropical convection.

The current paper is an extension to the previous work (Dufek et al.,
2013) in which the feasibility of the GE algorithm to deal with the
problem of ensemble forecast of rainfall amount was evaluated on three
artificial datasets comprising known relationships between three
hypothetical meteorological models and two weather patterns. Now,
three GP versions are applied to postprocessing short-range ensemble
forecast of daily rainfall amount for several real-world datasets.
Furthermore, other meteorological information are incorporated into
the grammars in addition to weather patterns.

The main contributions of this paper consist of (i) creating
deterministic ensemble 24- and 72-h forecasts of 24-h accumulated
precipitation based on GGP and GE algorithms for 317 locations in
southern, southeastern and central Brazil during the rainy period from
October to February of 2008–2013; (ii) comparing in terms of accuracy
the DEFs of quantitative precipitation via GP algorithms with those
obtained from three traditional statistical techniques: simple ensemble
mean, MSMES, and BMA, and also with the best forecast in the
ensemble; (iii) the development and study of six different ensemble
forecast grammars to represent the possible solutions to the ensemble
forecast problem; (iv) an investigation into the non-linearity of the
phenomenon; (v) providing some meteorological information as input
attributes in order to enrich the GP forecasting model; (vi) an
investigation into the influence of the four major weather patterns in
Brazil on the precipitation skill of NWP models; (vii) extracting
knowledge from the resulting best solutions, such as the relationships
between the input attributes and the occurrence of rainfall, and the
classification of the meteorological attributes in order of importance in
the ensemble postprocessing.

The frequently used abbreviations are listed in Table 1 in order to
facilitate the reading of the paper.

2. Genetic programming

GP is one of the main areas of evolutionary computation, first
devised by Cramer (1985) and greatly developed by Koza (1992). GP is
a stochastic optimization technique based on Darwin's theory of
evolution by natural selection that evolves a population of computer
programs, usually expressed as syntax trees. Whigham (1995) intro-
duced the grammar-based GP (GGP) in order to evolve syntactically
correct computer programs in an arbitrary language described by a
grammar. Grammatical evolution (GE) (Ryan et al., 1998) is a variation
of GGP in which the computer programs are encoded in linear
structures instead of tree-based data structures typical of GP and GGP.

Next, we give a brief overview of the concept of GP (Eiben and
Smith, 2003), whose algorithm is outlined in Algorithm 1.

GP algorithm is population based, i.e. it processes a whole collec-
tion of candidate solutions simultaneously. Each candidate solution—
also called individual or computer program—is evaluated according to
some fitness function which assigns a quality measure to the indivi-
duals. Based on this fitness, some of the candidates are stochastically
selected from the current population to seed the next generation by
applying genetic operators to them. The selection operator ensures a
bias towards fitter individuals. Nevertheless, it also allows for the
occasional selection of less-fit individuals, since otherwise the whole
search could become too “greedy” and get stuck in a local optimum.
Two of the most important genetic operators are crossover and
mutation. Similarly to selection operators, crossover and mutation
are stochastic operators. Crossover merges information from two or
more selected candidates—the so-called parents—to generate one or
more new candidates—the offspring. Mutation causes a small undir-

Table 1
List of frequently used abbreviations in this paper.

Abbreviation Description

BESTFCST best ensemble member
BMA Bayesian model averaging—a performance-based weighted

ensemble mean (see Section 3.2.1)
BMA-P pattern-based BMA (see Section 3.2.1)
DEF deterministic ensemble forecast
GE grammatical evolution
GE1 grammatical evolution with simultaneous approach (see Section

3.2.2 for more details)
GE2 grammatical evolution with decoupled approach (see Section

3.2.2)
GGP grammar-based genetic programming
GGP2 grammar-based genetic programming with decoupled approach

(see Section 3.2.2)
GP genetic programming
MAE mean absolute error
MSMES MASTER super model ensemble system—a performance-based

weighted ensemble mean (see Section 3.2.1)
MSMES-P pattern-based MSMES (see Section 3.2.1)
NWP numerical weather predictions
QPF quantitative precipitation forecast
SM simple mean—an equally-weighted ensemble mean (see Section

3.2.1)
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ected change in one candidate, resulting in a new one. Crossover
essentially exploits inherent possibilities in the population, while
mutation creates random diversity in the population by exploiting
newly created genetic material. The evolutionary process follows with
the replacement strategy, in which the old and new individuals
compete for a place in the next generation. The evolutionary process
of evaluation, selection, genetic operators, and replacement is iterated
until a stopping criterion is satisfied, pressing forward the improve-
ment of the population's fitness at each iteration.

Population-based model and stochastic operators are the two main
characteristics of GP that make it a very robust technique. In addition,
it is a relatively straightforward algorithm in terms of concept and
implementation, and also exhibits inherent parallelism. Another ad-
vantage of GP is the minimal requirement of domain knowledge,
besides operating well on discontinuous search spaces. One of its major
advantages over other techniques is its capacity of evolving human-
interpretable solutions of potentially unbounded complexity. An addi-
tional advantage of grammar-based GP is the possibility of introducing
specialist knowledge into the grammar in the hope of finding a better-
quality, syntactically correct solution in a shorter period of time.

2.1. Input attributes

Next, we describe several input attributes used by the grammars as
operands of the language. Below is the (i) to (xv) list of input attributes.
Table 2 provides a short description of them for a quick consultation.
Input attributes are highlighted in bold throughout the text.

(i) O(1day): Rainfall amount observed on the day before the
forecast date.

(ii) O(2day): Rainfall amount observed on the day preceding the
day before the forecast date.

(iii) O(mean): Mean of the observed daily rainfall amount calcu-
lated from an 11-day window centered on each calendar day in
the base period 1998–2013. An 11-day window is chosen to yield
a total sample size of 16 years × 11 days = 176 days for each
calendar day.

(iv) O(lag1+), O(lag1-), O(lag2+), O(lag2-), O(lag3+) and
O(lag3-): Let an observational gridded dataset be given by the
following four daily mean variables: temperature, zonal and
meridional wind speed at 850hPa, and specific humidity at
750hPa drawn from the NCEP/CFSR dataset (Saha et al.,

2010), in the domain between 50°S–10°N and 82–34.5°W,
during the period from October to February of 2008–2013. For
each location, its one-point correlation map with lag-L,
L = 1, 2, 3, was constructed at 2.5° spatial resolution.
Displayed on the one-point correlation map with lag-L are the
contours of Pearson correlations between the data at 25 latitude
× 20 longitude = 500 grid points shifted by L days and time-
unlagged data at the location of interest (Wilks, 2006, chap. 3).
There are as many maps as locations. For each one-point
correlation map, the observed 24-h accumulated precipitation
from the points with the largest negative and positive correla-
tions were extracted and called, respectively, O(lag1+) and
O(lag1-) for L = 1. Since we are interested in teleconnection
patterns between the target location and remote regions, the
correlation values from a 5 × 5 square grid centered at the target
location were excluded from the analysis.

(v) Mi: QPF provided by the member i.
(vi) M(mean): Average of QPF ensemble members, no bias correc-

tion.
(vii) M(min): Minimum value among the ensemble member fore-

casts.
(viii) M(max): Maximum value among the ensemble member fore-

casts.
(ix) M(std): Standard deviation of ensemble member forecasts.
(x) rain: A binary attribute defined based on the following criterion:

M(mean) above 1 mm assumes 1; otherwise 0.
(xi) BMA: BMA DEF of 24-h accumulated precipitation. BMA (in

bold typeface) is used to indicate the attribute, while BMA (in
regular typeface) refers to the technique.

(xii) P: The traditional k-means clustering algorithm was applied to
identify the four major weather patterns over Brazil. The input
data to the k-means algorithm are seven daily fields of the NCEP/
CFSR dataset. For a domain between 40°S–0° and 67–19.5°W,
the fields include zonal and meridional gradients of specific
humidity at 750hPa and temperature at 850hPa, and vorticity at
850, 500 and 200hPa during the period from October to
February of 1979–2013. The k-means algorithm clusters the
dataset, with 5 193 registers available, into four groups based
upon the N-dimensional Euclidean distance, with N = 7
fields × 17 latitude × 20 longitude = 2 380. A typical weather
pattern of Brazil was defined as composites of atmospheric fields
belonging to a given group. At the end, each register is classified
under one of four predefined weather patterns. Three of the four
patterns are associated with the propagation of frontal systems
from southwest to northeast, two of which indicate the config-
uration of a typical South Atlantic Continental Convergence Zone
episode (Carvalho et al., 2004). In the last pattern, the presence
of a Mesoscale Convective System over Rio Grande do Sul,
Uruguay and parts of Argentina is highlighted (Velasco and
Fritsch, 1987).

(xiii) O(P): Rainfall from the composites of the observed rainfall
amount fields belonging to each group, i.e. rainfall from cluster
centroids.

(xiv) pattern_change: A binary attribute based on the following
criterion: if the day before the forecast date and the target
prediction day share the same weather pattern, then assumes 0;
otherwise 1.

(xv) K, TT and SWEAT: Atmospheric instability indices calculated
from the NCEP/CFSR dataset. The indices consist of empirical
measures derived from several kinematic and thermodynamic
considerations and are used as indicators of summer-time
convective rainfall. It is worth mentioning that we are not
forecasting severe storm events, and the indices are used only
to capture some characteristic of the atmosphere, such as the
existence of a cold, dry air layer at medium-levels overlying or
not a layer of warm and moist air at low-levels. Other indices,

Table 2
Short description of input attributes.

Abbreviation Description

O(1day) rainfall amount observed on the day before the forecast
date

O(2day) rainfall amount observed on the day preceding the day
before the forecast date

O(mean) mean of the observed daily rainfall amount
O(lagL ± ) observed daily rainfall amount from the points with the

largest negative and positive correlations with lag-L,
L = 1, 2, 3

Mi daily rainfall amount provided by the member i
M(mean) mean of ensemble member forecasts
M(min) minimum value among the ensemble member forecasts
M(max) maximum value among the ensemble member forecasts
M(std) standard deviation of ensemble member forecasts
rain if M(mean)> 1 mm, then assumes 1; otherwise 0
BMA Bayesian model averaging deterministic ensemble

forecast of daily rainfall amount
P four major weather patterns over Brazil
O(P) rainfall from the composites of the observed rainfall

amount fields belonging to each weather pattern
pattern_change if the weather pattern changes, then assumes 1; otherwise

0
K, TT and SWEAT atmospheric instability indices
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such as convective available potential energy, convective inhibi-
tion, and vertical wind shear, should be tested in the future.

2.2. Ensembles’ languages

A grammar defines—depending on the desired level of complexity—
what does and what does not characterize an ensemble. In other words,
it basically specifies how the NWP models are combined (linearly or
non-linearly), and which input attributes are allowed.

Six grammars were here designed to tackle the problem of DEF of
24-h accumulated precipitation via GP algorithms, they are: L, LP, LA,
NL, NLP and NLA, where the first three grammars refer to linear
grammars, and the last three refer to non-linear grammars. The linear
grammars only allow linear combinations of the NWP models, while
the non-linear grammars allow linear and non-linear combinations of
the NWP models. The term “A” indicates that all the input attributes
described in the previous section were incorporated into the grammar
by adding new rules that specify the possible semantic relations among
the new attributes, and the other components of the language; the term
“P” indicates that only the effects introduced by the weather patterns P
can be taken into account by the language; and the absence of both
terms “A” and “P” indicates that the input attributes are only the
ensemble members’ QPFs.

Since Greybush et al. (2008) and Espinosa (2011) have emphasized
the importance of including weather pattern information in the
ensemble postprocessing, the P attribute received special attention
through the grammars LP and NLP. The NLA grammar is our most
powerful—and complex—grammar, since it is an extension to the NLP
grammar that includes new input attributes. The four grammars: L,
LP, NL and NLP are the same as employed in Dufek et al. (2013),
except for some mathematical, logical and relational operators; a
detailed description of them can be found therein.

Table 3 provides a short description of the six ensemble forecast
grammars for a quick consultation. Grammars are highlighted in bold
throughout the text.

3. Experiments

3.1. Data

Daily rainfall amount predicted by several NWP models for 317
locations in the domain between 32.8°S–14.8°S and 57.8°W–39.8°W,
during the period from October to February of 2008–2013, came from
the Center for Weather Forecast and Climate Studies (CPTEC) of the
Brazilian National Institute for Space Research (INPE). The corre-
sponding observed values of daily rainfall amount were derived from a
higher quality gridded dataset at a spatial resolution of 0.25° (Rozante
et al., 2010). The location of the 317 locations is shown in Fig. 1.

The selection of a subset of available NWP models was based on the
lowest mean absolute error of the MSMES DEF achieved among all1 the
possible subsets with at least four members. This choice of minimum
number of members was made somewhat arbitrarily. Although the
maximum number of members had not been established in advance, it
did not exceed eight members. The choice of MSMES is justified by its
low computational cost and its wide use at meteorological centers of
Brazil. The subset varied according to the location and the forecast range.
The fourteen NWP models selected as ensemble members are listed in
Table 4, which also includes their spatial resolution and relative
frequency of selection as ensemble members for the 24- and 72-h
forecasts in the 317 locations. CPTEC/INPE is responsible for running
all the NWP models and making their results available, except the
RAMSC model which is the responsibility of MASTER/USP.

3.2. Parameters and methodology

3.2.1. Traditional statistical techniques
Three traditional statistical techniques: simple ensemble mean,

MSMES (Silva Dias et al., 2006) and BMA (Raftery et al., 2005;
Sloughter et al., 2007) were used in order to postprocess short-range
ensemble QPFs for the 317 locations. The simple ensemble mean is the
simplest and most widely used technique for postprocessing ensemble
forecasts. An improvement over the equally-weighted mean is the
performance-based weighted mean, which takes into account the
relative performance of ensemble members. The MSMES and BMA
are examples of such a scheme. The three statistical techniques were
used for comparison with the GP approaches.

The dependent variable is the observed 24-h accumulated precipi-
tation at any one location. The predictors are the ensemble members’
QPFs, referred to as Mi, i m= 1,…, , where m is the number of
ensemble members (Section 2.1). The mean absolute error (MAE)
was used as an accuracy measure for DEF of 24-h accumulated
precipitation via the three statistical techniques. The DEFs were
computed for each forecast range at each location.

For MSMES and BMA, the two different ways to define the training
period are the same as applied in Dufek et al. (2013), and a description
of them is derived from there as follows. The first one refers to the
usual definition, whose training period consists of the immediately
preceding t days. The second one is the pattern-based definition—
hereafter referred to as MSMES-P and BMA-P—whose preceding
training period is based on the similarity of weather patterns, and is
consequently temporally noncontiguous: if P is the pattern of the target
prediction day, then the training days will be the t previous ones that
share the same P. From the viewpoint of practical applications, and

Table 3
Short description of the six ensemble forecast grammars.

Abbreviation Description

L linear grammar
LP linear grammar that includes the weather patterns
LA linear grammar that includes all the input attributes described in

Section 2.1
NL non-linear grammar
NLP non-linear grammar that includes the weather patterns
NLA non-linear grammar that includes all the input attributes

described in Section 2.1

Fig. 1. Location of the 317 locations over southern, southeastern and central Brazil,
along with parts of Uruguay, Argentina, Paraguay and Bolivia. The Brazilian states
include: Mato Grosso do Sul (MS), Goiás (GO), Minas Gerais (MG), Espírito Santo (ES),
São Paulo (SP), Rio de Janeiro (RJ), Paraná (PR), Santa Catarina (SC) and Rio Grande do
Sul (RS).

1 To give an idea, there are roughly 2M| | subsets to be evaluated, where M| | is the
number of available NWP models.
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guided by previous works (Raftery et al., 2005; Eckel and Mass, 2005;
Greybush et al., 2008), we have used a training period of t = 15 days for
all the statistical techniques.

3.2.2. Genetic programming technique
Two GP approaches to address the problem of DEF of 24-h

accumulated precipitation were proposed. The first approach—called
a decoupled approach—decouples the DEF problem into smaller
problems based on two main steps. In the first step, the GP algorithm
is used for postprocessing each ensemble member separately. The next
step consists of combining the resulting GP-corrected ensemble
members into a more accurate single forecast via the GP algorithm in
order to minimize the differences between ensemble forecast and
observation. In the second approach—called a simultaneous ap-
proach—the GP algorithm combines the ensemble member forecasts
while simultaneously correcting each of them.

A simple and straightforward version of the GE algorithm was
implemented in the C programming language. It uses a standard binary
code representation, one-point crossover and bit-flipping mutation
operators, and adopts the policy of eliminating invalid non-decoding
individuals from the evolutionary process. The generational replace-
ment scheme with elitism and the tournament selection strategy were
applied in the evolutionary search. In addition to GE, the GGP was
implemented using the EpochX framework2 (Otero et al., 2012). The
implementation uses the standard subtree operators of mutation and
crossover, ramped half-and-half tree initialization, generational repla-
cement scheme with elitism, and tournament selection strategy.

The parameters were assigned empirically and remained constant
throughout the experiments. GE and GGP were carried out with the
following parameters: population of 2 000 programs, crossover rate of
90%, elitism of 1 program, and tournament size of 3 programs. The
stopping criterion is given by a maximum number of generations set to
1 000 for the GE and GGP at the decoupled approach. For the
simultaneous strategy, the maximum number of generations was set
to 1 000+1 000 m× , where m is the number of ensemble members, such
that the computational effort is the same as that required for the
decoupled strategy. The GE parameters were: per-bit mutation rate of
0.25%, genome size of 2 000 bits, gene size of 8 bits, ephemeral
constants (Augusto et al., 2011) in the interval [−16,+16] (for L, LP,
NL and NLP grammars) and [0,300] (for LA and NLA grammars),
and numeric precision of 16 bits. Finally, the GGP parameters were:

mutation rate of 10%, maximum initial tree depth of 8 nodes,
maximum tree depth of 14 nodes, and numerical constants generated
by the digit concatenation approach (O'Neill et al., 2003) in the interval
[0,9.999].

Ten independent runs of each version (GE and GGP with simulta-
neous and decoupled approaches) and grammar (L, LP, LA, NL, NLP
and NLA) of the evolutionary algorithm were performed for each
forecast range (24- and 72-h) at each location (317 in total), yielding
different solutions at each run. Independent runs means a different
seed of the pseudo-random number generator, and random data
distribution for the training and test sets for each one. The training
set was composed by 90% of the instances (about 450 instances) while
the test set consisted of the remaining 10% of the instances (about 50
instances). The fitness function was defined as the MAE in a given
training set. The sample median from ten MAEs relative to training and
test sets was calculated. Due to the high computational cost required by
the GGP written in Java language, only the following experiments were
performed: ensemble 72-h QPFs given by the GGP with decoupled
approach for the L, LP, NL and NLP grammars.

The dependent variable is the daily rainfall amount observed at any
one location. The predictors are all or some of the input attributes
described in Section 2.1, depending on the grammar. It is worth noting
that the LA and NLA grammars are only used by the GE with
simultaneous approach.

3.3. Results

3.3.1. General analysis
Fig. 2 shows the box plots of the MAE of the deterministic ensemble

24-h QPF achieved through GE with simultaneous approach (GE1) for
the six grammars (L, LP, LA, NL, NLP and NLA) and GE with
decoupled approach (GE2) for the four grammars (L, LP, NL and
NLP), along with the traditional statistical techniques: simple mean
(SM), MSMES, MSMES-P, BMA and BMA-P, in both the (a) test and
(b) training sets for the 317 locations. The BESTFCST box is the MAE
of the best ensemble member. Fig. 3 is similar to Fig. 2 for the 72-h
forecast, and includes GGP's decoupled approach (GGP2) for the four
grammars (L, LP, NL and NLP).

Figs. 2a and 3a reveal the superiority of three GP versions (GE1,
GE2 and GGP2) over the statistical techniques: simple mean, MSMES
and MSMES-P, since the GP boxes do not overlap the last three ones,
with medians roughly 27–57% lower than simple mean (6.84 mm (24-
h); 7.14 mm (72-h)), MSMES (6.65 mm (24-h); 6.96 mm (72-h)) and
MSMES-P (6.63 mm (24-h); 6.92 mm (72-h)). On the other hand, GE1,
GE2 and GGP2 are equivalent to each other and to BMA and BMA-P.

Typically the forecast errors get worse as the forecast range
increases. Indeed, the medians for the 72-h forecast were 2–5% higher
than those for the 24-h forecast (see Figs. 2a and 3a).

Although the BESTFCST, GE and GGP boxes partially overlap, the
BESTFCST median (6.17 mm (24-h); 6.44 mm (72-h)) falls above the
upper quartile of GEs and GGPs, whose medians fall below the lower
quartile of BESTFCST. From the statistical viewpoint, the DEF of 24-h
accumulated precipitation via evolutionary algorithms are slightly
better than the best individual forecast of the ensemble, reaching an
improvement of 34–42%. Such a statement can also be applied to BMA
and BMA-P, but nothing can be stated about the other statistical
techniques. Even though the ensemble postprocessing via simple mean,
MSMES and MSMES-P have not performed better than BESTFCST,
there is an advantage to using them since in practice one does not know
which is the best ensemble member.

By following the same reasoning, the six grammars (L, LP, LA,NL,
NLP and NLA) show a great similarity among themselves, with
equivalent interquartile ranges, means, medians and whisker lengths,
suggesting that (i) the phenomenon is not significantly non-linear, (ii)
the influence of weather patterns over dynamical NWP models is
negligible and/or (iii) none of the meteorological attributes play an

Table 4
The fourteen NWP models selected as ensemble members: ID, spatial resolution (km)
and relative frequency (%) of selection as ensemble members for the 24- and 72-h
forecasts in the 317 locations.

ID Spatial Resolution Relative Frequency (%)

(km) 24-h 72-h

GP213 50 68.1 36.9
CPTEC 100 19.9 19.9
SFENM 100 69.1 60.9
SFAVN 100 24.9 18.3
ACOPL 200 67.8 62.5
T299x 44 28.7 14.2
RPSAS 40 19.9 19.9
ETA20 20 19.9 19.9
ETAcr 40 33.1 37.9
ETAm1 40 20.2 29.7
ETAm2 40 22.7 23.7
ETAm3 40 13.2 22.1
ETAm4 40 19.2 22.4
RAMSC 25 7.6 69.7

Source: http://intercomparacaodemodelos.cptec.inpe.br/phps.

2 http://www.epochx.org/
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important role in bringing major improvements to ensemble postpro-
cessing. The first hypothesis is supported by the fact that the NL and
NLP medians were 2–15% higher than those of the L and LP
grammars in the test set (see Figs. 2a and 3a). The second hypothesis
assumes that the four predefined weather patterns represent the clearly
distinguishable major weather patterns of Brazil.

For a context-free grammar (Chomsky, 1956), a generally accepted
measure of grammatical complexity is based on the number of
operators,3 operands4 and production rules in the grammar. For any
given grammar, its complexity increases as operators, operands and
production rules are added. Consequently, the search space size and
the difficulty of the problem also increase. Thus, we can conclude that
the L grammar is less complex than both LP and NL grammars, which
are less complex than the NLP grammar, which in turn is less complex
than the NLA grammar. It still remains that LA is more complex than
the L and LP grammars, and less complex than the NLA grammar.
However, the same computational effort was employed for all the
grammars. Thus, an alternative hypothesis attributes the equivalence
between the grammars to the underestimation of the computational
effort required for an adequate exploitation of their respective search
spaces.

According to Figs. 2b and 3b, the boxes of the non-linear grammars
(NL andNLP) shifted toward lower values of the MAE when compared
to linear grammars (L and LP), with medians 6–18% lower than those
of the linear grammars. Additionally, the NL and NLP medians in the

training set are reduced 10–34% relative to the medians in the test set,
in contrast to just 1–2% for the L and LP grammars. The NLA
medians in the training set are reduced 15–18% relative to the medians
in the test set, and 7–10% for the LA grammar. Based on these results,
another alternative hypothesis in order to explain the equivalence
between linear and non-linear grammars is that the complexity of the
NL, NLP, NLA and LA grammars may have led to overfitting. Note
that regardless of whether or not overfitting has occurred, it does not
compromise our interpretation of Figs. 2a and 3a once the test MAEs
are satisfactory. Furthermore, some steps can be taken in order to
reduce overfitting and further improve the performance, such as: (i)
increasing dataset size, (ii) minimizing noise in the dataset, (iii) and
adjusting the GP parameters. It is worth remembering that the
selection strategy of the ensemble members was based on the
MSMES algorithm. Hence, MSMES and, indirectly, the other linear
methods, such as simple mean, MSMES-P, BMA, BMA-P and linear
grammar-based evolutionary algorithms, have a clear advantage over
non-linear grammar-based evolutionary algorithms.

Although the results for the six grammars are almost indistinguish-
able, the LA grammar-based GE1 box had a median 3–13% lower than
the other GE and GGP boxes for the 24-h QPF, and 4–20% for the 72-h
forecast. Notice that the GELA1 and GENLA1 medians are nearly equal
for the 24-h forecast, therefore the last one was not taken into account
for calculating the above range of percentage improvement. With
respect to BMA and BMA-P, the GELA1 median showed an improve-
ment of 3% and 7% for the 24- and 72-h forecasts, respectively. For the
72-h forecast, the GELA1 median is significantly different from BMA
and BMA-P medians at the 5% level, since their notches do not overlap
(Chambers et al., 1983): the upper notch of GELA1 (4.54 mm) falls
below the lower notches of BMA (4.72 mm) and BMA-P (4.69 mm).

Fig. 2. Box plots of MAE (mm) of the ensemble 24-h QPF achieved through GE1 for the
six grammars (L, LP, LA, NL, NLP and NLA) and GE2 for the four grammars (L, LP,
NL and NLP), along with the statistical techniques: simple mean (SM), MSMES,
MSMES-P, BMA and BMA-P, in the (a) test and (b) training sets for the 317 locations.
The BESTFCST box is the MAE of the best ensemble member. Open circles inside the box
represent the sample mean. Median values are displayed at the top of the graph.

Fig. 3. Box plots of MAE (mm) of the ensemble 72-h QPF achieved through GE1 for the
six grammars (L, LP, LA, NL,NLP and NLA), GE2 and GGP2 for the four grammars (L,
LP, NL and NLP), along with the statistical techniques: simple mean (SM), MSMES,
MSMES-P, BMA and BMA-P, in the (a) test and (b) training sets for the 317 locations.
The BESTFCST box is the MAE of the best ensemble member. Open circles inside the box
represent the sample mean. Median values are displayed at the top of the graph.

3 Examples of operators include mathematical, logical, relational and conditional
operators as well as iterative loops.

4 Examples of operands may be input attributes, numerical constants and functions
with no arguments, such as the function rand(), which returns random numbers.
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In addition to the analysis for the entire spatial domain, the
continental region was divided into sixteen homogeneous rainfall
sub-regions by applying K-means unsupervised clustering method
(MacQueen, 1967) to time series of daily quintiles from October to
February on 91 × 91 = 8281 grid points. The daily quintiles of rainfall

amount were calculated from a 3-day window centered on each
calendar day in the base period 1998–2013. The measure of similarity
was based on Pearson correlation coefficient. Each of the 317 locations
was assigned to one of the sixteen sub-regions according to its
geographical position. Box plots were constructed separately for each

Fig. 4. Geographic distribution maps of the MAE (mm) value for each of the 317 locations for the ensemble 72-h QPF obtained from GE1 for the six grammars (L, LP, LA, NL, NLP
and NLA), GE2 and GGP2 for the four grammars (L, LP, NL and NLP), along with simple mean (SM), MSMES, MSMES-P, BMA, BMA-P and BESTFCST, in the test set.
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sub-region of the domain, including only the MAEs relative to the
locations belonging to the sub-region in question. From that, it was
observed that in general the behavior of the sixteen homogeneous
rainfall sub-regions is similar to that obtained for the entire spatial
domain (not shown).

3.3.2. Spatial analysis
Fig. 4 shows the geographic distribution maps of the MAE value for

each of the 317 locations for the ensemble 72-h QPF obtained from
GE1 for the six grammars (L, LP, LA, NL, NLP and NLA), GE2 and
GGP2 for the four grammars (L, LP, NL and NLP), and also simple
mean (SM), MSMES, MSMES-P, BMA, BMA-P and BESTFCST, for the
test set. There are strong agreements among all maps: the largest MAE
values are concentrated over parts of São Paulo (SP), southern Rio de
Janeiro (RJ) and Minas Gerais (MG), and Goiás (GO) states, while the
lowest ones are over Rio Grande do Sul (RS), central and southern São
Paulo (SP), and central and northern Minas Gerais (MG) states,
including Espírito Santo (ES) and northern Rio de Janeiro (RJ) states.
The location of the Brazilian states is shown in Fig. 1.

Calculating the difference between the MAE of the ensemble 24-

and 72-h QPF obtained from GELA1 and BMA in the test set (not
shown), we found that roughly 65% of the differences are negative, i.e.
GELA1 had the MAE lower than BMA's. The difference between the
MAE of the ensemble 24- and 72-h QPF obtained from GELA1 and
GENLA1 in the test set shows that roughly 60% of the differences are
negative, i.e. GELA1 forecasts were more accurate than GENLA1 ones
(not shown).

Based on these results, one can conclude that the best technique
and/or grammar varies according to the location and the forecast
range. Therefore, the techniques are not mutually exclusive, but
complementary, since no technique outperformed the others in all
locations under all circumstances.

3.3.3. Symbolic solution
As mentioned before, one of the major advantages of the GP

algorithms is their capacity of evolving human-interpretable solutions,
thus allowing the direct extraction of knowledge from them. In this
section, we present the summary outputs of a sensitivity analysis in a
table form, as well as a brief analysis of a selected symbolic solution.

A sensitivity analysis allows one to assess the impact that changes in

Fig. 4. (continued)
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input attributes will have on the daily rainfall amount predicted by GP
models. The sensitivity analysis was performed as follows. Let the
attributes related to daily rainfall amount be approximated by a gamma
distribution with shape and scale parameters equal to, respectively, 0.5
and 5, and the three atmospheric instability indices (K, TT and
SWEAT) uniformly distributed over the interval [0,30], [0,60] and
[0,600], respectively, which is the range of values typically observed.
100 randomly sampled input scenarios—i.e. all input variables are
simultaneously sampled—were generated for each of the ten solutions
at each location (317 in total). For each scenario, one attribute at a time
is randomly changed, and the absolute difference between the results
generated by the GP model before and after the change was recorded.
This procedure is repeated 30 times for each of the 35 attributes (21
meteorological variables and 14 NWP models), except for the discrete-
valued attributes pattern_change, rain and P, where all possible
input values were assessed. The sensitivity analysis were carried out for
each one of the two grammars (LA and NLA) for each forecast range
(24- and 72-h).

Table 5 shows the normalized sensitivity median and the relative
frequency of the 35 attributes considering the 317 locations × 10 runs
= 3 170 possible solutions given by GELA1 and GENLA1 to the ensemble
24- and 72-h forecast problem. The relative frequency of a certain
attribute was defined based on the following criterion: if the mean from
a sample of 100 medians, which in turn were calculated from a sample
of 30 absolute differences, is non-zero, then the solution statistically
includes in its structure the attribute in question, otherwise it does not

include it.5 Following the same criterion, only the means with non-zero
values were taken into account for calculating the normalized sensi-
tivity median of an attribute. In parentheses is the rank of the values of
the respective column in descending order. In Table 5, the input
attributes are sorted according to the consensus ranking achieved with
the Borda count method (Borda, 1784) applied separately to each
grammar (LA and NLA), with four different rankings for each one.

According to Table 5, roughly 85% of the programs evolved by the
GELA1 algorithm included in their structures the BMA attribute, as
expected since it is a good linear combination of models. However, the
inclusion of the BMA in the linear grammar (LA) might have impaired
the exploration of the search space once it provides a very good
approximation (local optimum) which leads to strong suboptimal
attraction basins. Similar results were obtained for the two GENLA1

experiments.
Using the Borda count method, a consensus ranking of the 35

attributes is obtained by aggregating information from the eight
different rankings provided by Table 5. In the final overall ranking,
BMA is ranked first; rain is ranked second; pattern_change is
ranked third, followed by P and M(min). Therefore, these attributes
seem to play an important role in the prediction of daily rainfall
amount, being present in over 20% of the final solutions. Although the

Table 5
Normalized sensitivity median (%) and the relative frequency (%) of 35 attributes in the 3 170 possible solutions given by GELA1 and GENLA1 to the ensemble 24- and 72-h forecast
problem. In parentheses is the rank of the values of the respective column in descending order. The attributes are sorted according to the consensus ranking achieved with the Borda
count method applied separately to each grammar (LA and NLA).

GELA1 GENLA1

Attribute Normalized Median (%) Relative Frequency (%) Attribute Normalized Median (%) Relative Frequency (%)

24-h 72-h 24-h 72-h 24-h 72-h 24-h 72-h

BMA 18.27(1) 15.78(1) 86.47(1) 86.72(1) BMA 14.07(1) 11.67(1) 84.64(1) 84.48(1)
rain 9.85(2) 10.30(2) 21.58(5) 21.80(5) rain 5.33(2) 7.02(2) 29.31(4) 34.07(4)
pattern_change 5.63(4) 6.42(3) 22.18(4) 23.19(4) pattern_change 4.14(5) 4.56(4) 40.03(3) 39.91(3)
P 4.60(7) 4.82(7) 28.49(2) 30.06(2) P 3.07(10) 3.44(7) 42.02(2) 41.48(2)
M(min) 3.36(8) 3.86(8) 25.71(3) 27.19(3) M(min) 3.43(6) 4.23(5) 21.48(5) 19.81(8)
SWEAT 5.60(5) 5.59(5) 16.62(6) 20.25(6) SWEAT 3.09(9) 3.83(6) 21.29(6) 23.44(5)
TT 6.02(3) 6.33(4) 8.77(15) 7.57(17) TT 4.79(3) 4.99(3) 10.22(21) 10.03(22)
O(lag3-) 2.30(11) 2.18(15) 11.01(10) 9.59(14) SFENM 2.61(14) 2.47(13) 15.39(12) 13.72(15)
O(lag1-) 1.98(14) 2.35(12) 7.60(18) 7.85(15) ACOPL 2.35(19) 2.24(19) 19.31(7) 16.59(10)
M(mean) 2.38(10) 2.20(14) 6.62(22) 5.30(24) O(lag1+) 1.99(23) 2.08(25) 19.12(8) 21.99(6)
SFENM 2.27(13) 1.54(20) 7.38(19) 7.38(19) ETAcr 2.79(11) 2.65(9) 9.27(24) 9.59(23)
K 5.13(6) 5.00(6) 2.62(31) 2.81(30) RAMSC 3.34(7) 2.25(17) 1.58(35) 17.07(9)
ACOPL 1.25(27) 1.06(27) 13.28(9) 11.77(11) M(mean) 2.23(22) 2.31(15) 12.40(18) 12.87(17)
O(lag3+) 1.24(28) 1.40(23) 10.28(12) 10.76(12) GP213 2.44(16) 2.03(27) 16.75(10) 9.37(25)
O(lag1+) 0.91(32) 0.92(29) 14.76(8) 16.09(8) ETAm4 3.09(8) 2.47(14) 5.96(29) 6.40(29)
RAMSC 2.41(9) 1.33(24) 1.14(35) 11.86(10) M(std) 1.83(26) 2.23(20) 14.51(15) 12.56(19)
ETAm1 1.54(22) 2.50(11) 3.97(27) 7.07(20) K 4.52(4) 2.93(8) 2.56(34) 3.38(35)
M(std) 1.63(20) 1.98(16) 6.53(23) 6.56(21) O(1day) 1.59(31) 1.60(34) 19.09(9) 20.16(7)
O(lag2-) 1.07(30) 1.66(18) 8.74(16) 7.38(18) T299x 2.79(12) 2.62(10) 8.99(25) 3.75(34)
O(1day) 0.62(34) 0.55(35) 15.14(7) 18.58(7) ETAm2 2.38(18) 2.62(11) 6.72(26) 7.95(27)
ETAcr 1.34(23) 0.87(30) 7.85(17) 7.60(16) O(lag3-) 1.72(28) 1.83(28) 13.75(16) 15.55(11)
O(lag2+) 0.62(35) 0.83(32) 10.32(11) 12.05(9) O(lag3+) 1.93(24) 1.75(31) 14.83(14) 13.44(16)
ETAm2 1.31(25) 1.81(17) 4.67(24) 5.39(23) O(2days) 1.30(34) 1.76(29) 15.08(13) 14.73(13)
GP213 1.86(16) 0.74(33) 8.99(14) 4.64(27) O(mean) 1.59(30) 2.29(16) 9.94(22) 10.22(21)
O(P) 1.98(15) 2.28(13) 2.24(33) 2.78(31) O(lag2+) 1.38(33) 1.71(33) 15.93(11) 15.17(12)
O(2days) 0.72(33) 0.69(34) 9.15(13) 10.13(13) O(lag1-) 1.78(27) 1.75(30) 12.21(19) 13.82(14)
SFAVN 2.28(12) 1.58(19) 3.97(28) 2.02(34) SFAVN 2.38(17) 2.55(12) 5.99(28) 4.07(33)
CPTEC 1.84(17) 3.62(9) 2.18(34) 1.51(35) M(max) 1.50(32) 2.24(18) 11.55(20) 11.10(20)
M(max) 1.60(21) 0.86(31) 6.66(21) 5.43(22) O(P) 2.26(21) 2.10(24) 9.40(23) 9.40(24)
ETA20 1.84(18) 1.11(26) 4.23(26) 3.75(28) ETA20 2.77(13) 2.08(26) 6.40(27) 6.44(28)
ETAm4 1.33(24) 1.22(25) 4.38(25) 5.02(25) ETAm1 2.29(20) 2.20(21) 5.24(31) 9.27(26)
T299x 1.67(19) 0.97(28) 7.10(20) 2.11(33) ETAm3 2.53(15) 2.11(23) 3.53(33) 5.77(30)
O(mean) 1.29(26) 1.46(21) 3.50(29) 3.53(29) O(lag2-) 1.22(35) 1.44(35) 13.28(17) 12.59(18)
RPSAS 1.07(31) 2.75(10) 2.62(32) 2.62(32) CPTEC 1.64(29) 2.18(22) 5.33(30) 5.17(31)
ETAm3 1.20(29) 1.46(22) 2.93(30) 4.67(26) RPSAS 1.85(25) 1.75(32) 5.24(32) 4.89(32)

5 This criterion ensures that possibly retained introns—parts of the solution that are
noneffective, i.e. do not affect program behavior—are identified and then ignored in order
to prevent skewing the analysis.
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two atmospheric instability index SWEAT and TT have been little
utilized by the programs with a frequency of usage less than 20%, their
normalized sensitivity medians were regularly among the five highest
values.

The size of the programs evolved by the GELA1 and GENLA1

algorithms for the short-range ensemble QPF problem varied from 4
to 141 primitives,6 being 37 primitives the mean size. As an illustra-
tion, a program corresponding to ensemble 24-h QPF for Franca-SP
from the GENLA1—called 1—is shown in Fig. 5. The program 1 is an
example of those whose size is closest to the most common size, with 28
primitives and MAE of 6.98 mm and 5.73 mm in the training and test
sets, respectively, and includes in its structure three of the five most
important attributes. 1 uncovered a relationship between 7 of 21
meteorological attributes available; they are: rain, BMA, M(max),
O(P), O(lag2+), O(lag1-) and P1, besides the QPF provided by three
(M1, M2 and M3) of the four ensemble members (M = ACOPL1 ,
M = ETAm42 , M = GP2133 and M = SFENM4 ), totaling 10 input attri-
butes. The 1 program (MAE = 5.73 mm) gives more accurate QPFs for
Franca-SP than do the simple mean (MAE = 9.68 mm), MSMES (MAE
= 9.41 mm), MSMES-P (MAE = 9.23 mm), BMA (MAE = 7.25 mm)
and BMA-P (MAE = 7.24 mm). According to the 1 program, the rain
attribute divides the days into two classes:M(mean) below or equal to
1 mm, and above 1 mm. For the first class, the 24-h accumulated
precipitation was estimated by the BMA. The second one has a more
complex structure, including eight numerical input attributes, which
describes three different paths to be traced, i.e. three different algebraic
expressions to predict daily rainfall amount.

4. Conclusions and future work

GP algorithms were explored in order to provide a more accurate
and reliable deterministic ensemble forecasts of 24-h accumulated
precipitation. Three GP versions and six ensemble forecast grammars
were applied to 24- and 72-h forecasts at 317 locations in southern,
southeastern and central Brazil during the rainy period from October to
February of 2008–2013.

The GP deterministic ensemble forecasts provide substantial im-
provements in accuracy of rainfall amount forecasting relative to two
traditional statistical techniques, with errors 27–57% lower than
simple ensemble mean, MSMES and MSMES-P, and are also superior
to the best individual forecasts in 34–42%. On the other hand, the
three GP versions are equivalent to each other and to BMA and BMA-P.
However, even though no formal statistical test has been performed,
BMA had mean absolute errors higher than that of GELA1 in 65% of the
317 locations. Furthermore, the grammar-based approaches have some
valuable advantages over BMA. One of the benefits of grammar-based
GP is its ability to evolve expressions of arbitrary complexity, as
opposed to the bounded complexity assumed by BMA. Another
potential benefit is the possibility of incorporating domain knowledge
into the grammar by biasing the final programs’ form and/or pre-
dictors. Unlike BMA, the method is not restricted solely to NWP
models as inputs. In addition, GP offers human-interpretable solutions,
i.e. it reveals the internal structures of all the created models. The
white-box characteristic of GP gives an insight into the relationship
between input and output data, which is a significant advantage of GP
over BMA. In contrast to BMA, GP does not require prior knowledge
about the statistical distribution of the data, nor does have short-
comings when handling non-linear problems. Moreover, it is worth
mentioning that GE and GGP are conceptually simple techniques,
robust, potentially non-linear and easily parallelizable.

The six grammars have shown a great similarity among them
performance-wise, suggesting that (i) the phenomenon is not signifi-

cantly non-linear, (ii) the influence of weather patterns over numerical
weather prediction models is negligible, (iii) none of the meteorological
attributes play an important role in bringing major improvements to
ensemble postprocessing, (iv) the computational effort required for an
adequate exploration of their search spaces was underestimated, and/
or (v) the complexity of the non-linear grammars (NL and NLP) may
have led to overfitting. The first three hypotheses contradict the
intuitive expectations of meteorologists, and thus an investigation into
the last two hypotheses as well as about other ways to extract the major
weather patterns over Brazil would be interesting as a follow-up work.

Although the results for the six grammars are almost indistinguish-
able, our most complex linear grammar (LA) turned out to be the best
overall proposal. For the GELA1 experiments, the two input attributes
most often utilized by the programs are: BMA deterministic ensemble
forecast of 24-h accumulated precipitation, present in over 85% of
them, and weather patterns over Brazil, with about 30% of relative
frequency.

In general, the experiments showed the potential of the GP approach
and suggest that further research on the improvement of the technique is
a promising line of research. This technique is applicable to a wide
variety of forecast problems and is extensible to probabilistic forecasting,
which in some situations can provide greater utility than deterministic
forecasting. Another useful direction would be to add other information
as input attributes that could improve GP performance.
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