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Depressions are common features in raster digital elevation models (DEMs) and they are usually filled for
the automatic extraction of drainage networks. Among existing algorithms for filling depressions, the
Priority-Flood algorithm substantially outperforms other algorithms in terms of both time complexity
and memory requirement. The Priority-Flood algorithm uses a priority queue to process cells. This study
proposes an efficient variant of the Priority-Flood algorithm, which considerably reduces the number of
cells processed by the priority queue by using region-growing procedures to process the majority of cells
not within depressions or flat regions. We present three implementations of the proposed variant: two-
pass implementation, one-pass implementation and direct implementation. Experiments are conducted
on thirty DEMs with a resolution of 3m. All three implementations run faster than existing variants of the
algorithm for all tested DEMs. The one-pass implementation runs the fastest and the average speed-up
over the fastest existing variant is 44.6%.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The automatic extraction of drainage networks from raster di-
gital elevation models (DEMs) is required in many scenarios such
as soil erosion modeling, hydrological process simulations and
geomorphological analyses (Bai et al., 2015; Beskow et al., 2009;
Nobre et al., 2011). A raster DEM is a two-dimensional array of
elevation values at regularly spaced positions on the ground. A
preprocessing step of DEMs that is commonly required for ex-
tracting drainage networks is the filling of depressions so that any
cell in a DEM has a non-ascending path toward the border of a
DEM (Barnes et al., 2014a; Jenson and Domingue, 1988). A de-
pression in a DEM is composed of cells that do not have a non-
ascending path toward the border of the DEM. Depressions may
result from natural terrains and they may also be the products of
processing algorithms used to generate the DEM. In addition to the
filling of depressions, depressions may also be resolved by a car-
ving procedure (Martz and Garbrecht, 1999; Soille, 2004).

Three representative algorithms are available for the filling of
depressions. The first representative algorithm is proposed by
Jenson and Domingue (1988) and extended in many studies (Arge
et al., 2003; Martz and Garbrecht, 1999). The second re-
presentative algorithm for the filling of depressions is proposed by
u).
Planchon and Darboux (2002) and further studied by many re-
searchers (Qin and Zhan, 2012; Rueda et al., 2013). The third re-
presentative algorithm is referred to as the Priority-Flood algo-
rithm by Barnes et al. (2014a). The algorithm outperforms the
methods of Jenson–Domingue and Planchon–Darboux in terms of
both time complexity and memory requirement.

In this paper, we propose an efficient variant of the Priority-
Flood algorithm over existing variants, which considerably reduces
the running time of the algorithm. The remainder of the paper is
organized as follows. Section 2 reviews the various variants of the
Priority-Flood algorithm for floating-point DEMs. In Section 3, we
propose our variant of the algorithm and present three im-
plementations of the proposed variant. The experimental results of
our algorithm are presented in Section 4. We conclude the paper
in Section 5.
2. Review of the Priority-Flood algorithm

Barnes et al. (2014a) give a detailed history of the Priority-Flood
algorithm and summarize important variants of the algorithm.
According to Barnes et al. (2014a), the Priority-Flood algorithm can
be traced back to Ehlschlaeger (1989). For an integer DEM, the
algorithm has a time complexity of O(N) (Beucher and Beucher,
2011; Gomes et al., 2012; Magalhães et al., 2012; Soille and Gratin,
1994). For DEMs with a floating-point data type, the generic form
of the algorithm has a time complexity of O(Nlog N). This study
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Fig. 1. One dimensional view of the depression-filling process using the Priority-Flood algorithm in Wang and Liu (2006). Processed cells are shown in orange. (a) Original
DEM; (b) border cells A and H are pushed into a priority queue PQ; (c) cells E, F and G are processed by PQ; (d) cell D is raised to have the same elevation as E; (e) cell C is
raised to have the same elevation as the raised cell D; (f) cell B is processed by PQ. (1.5-column fitting image). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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focuses on floating-point DEMs.
A key concept used in the Priority-Flood algorithm is the spill

elevation of a cell, which is the minimum elevation the cell needs
to be raised to for it to have a non-ascending path toward the
border of the DEM (Wang and Liu, 2006). The key data structure
used by the Priority-Flood algorithm for floating-point DEMs is the
priority queue PQ, which is used to find the cell with the lowest
spill elevation. The priority queue can be implemented in many
ways (Bai et al., 2015; Barnes et al., 2014a), which may affect the
time complexity of the algorithm.

Wang and Liu (2006) propose the first variant of the Priority-
Flood algorithm for floating-point DEMs. Their variant starts from
the border cells and processes other cells that are neighbors of
processed cells one by one in the ascending order of their spill
elevations. Fig. 1 shows the depression-filling scheme of their
variant. Barnes et al. (2014a) propose an improved variant of the
Priority-Flood algorithm and use a plain queue to process cells in
depressions. For the cross section of the DEM surface in Fig. 1a,
cells C and D are located within a depression and they can be
processed using a plain queue. The variant of Barnes et al. finds all
cells in a depression once the spill outlet of the depression is
found. This is a typical region-growing process (Region growing,
2015). A region-growing process requires a set of seed cells. The
region is grown from the seed cells to adjacent cells depending on
a region membership criterion. Cells in the region is marked using
a mask matrix of Boolean values. The pseudocode of a generic
region-growing procedure is shown in Algorithm 1. In Algorithm
1, the argument Flag is the mask matrix and it is both input and
output arguments. The input argument Q is a collection of seed
cells. The input argument regionMembership represents the region
membership criterion function that takes currently processed cell
c and its neighbor n as its input arguments and returns a Boolean
value (Line 8). If regionMembership returns true, cell n is within the
region. Otherwise, cell n is not within the region based on its re-
lationship with c. The argument regionCellOps represents a func-
tion that takes n and c as its arguments and it represents a col-
lection of operations on newly added region cells. regionCellOps
can be NULL if no operations are applied on newly added cells. The
input argument nonRegionCellOps represents a function that takes
n and c as its arguments (Line 15) and it represents a collection of
operations on n and c when n is determined to be not within the
region based on its relationship with c (Line 8). If the non-
RegionCellOps collection is applied to c, it is usually applied once
within the for loop (Line 6). If it is applied to n, it is usually applied
to each neighbor of c. The variable isProcessed (Line 5 and 13–14)
controls whether nonRegionCellOps is applied once or multiple
times. If it is applied to each neighbor, nonRegionCellOps should
change the value of isProcessed to false or the variable isProcessed
should not be used at all in the algorithm. nonRegionCellOps can
also be NULL.

Algorithm 2 presents a modified version of the improved
Priority-Flood algorithm by Barnes et al. (2014a) using an explicit
region-growing procedure to process cells in depressions and flat
regions. Note that in Algorithm 2, the first two operations in
nonRegionCellOps are applied to all neighboring cells of c that are
outside the region based on their relationship with c. Algorithm 2
highlights the separation of the processing of cells in depressions
and flat regions from the processing of other cells.

Algorithm 1. A generic region-growing procedure. Flag is the
mask matrix of the region. Q is the collection containing all seed
cells. regionMembership is the region membership criterion. re-
gionCellOps is a collection of operations on newly added region
cells. nonRegionCellOps is a collection of operations on non-region
cells at current stage.
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Fig. 2. A schematic diagram for the distribution of slopes and depressions within a
DEM. (1-column fitting image).
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:
 void RegionGrowing(Flag,Q, regionMembership, re-
gionCellOps, nonRegionCellOps) {
:
 Let isProcessed be a Boolean variable;

:
 while (Q is not empty) {

:
 Pop cell c from Q;

:
 isProcessed¼false;

:
 for each neighbor n of c {

:
 if (Flag(n)) continue;

:
 if (regionMembership (n,c) is satisfied) {

:
 Push n into Q;

0:
 Flag(n)¼true;

1:
 if (regionCellOps !¼NULL) regionCellOps

(n,c);

2:
 }

3:
 else if (!isProcessed) {

4:
 isProcessed¼true;

5:
 if (nonRegionCellOps !¼NULL) non-

RegionCellOps (n,c);

6:
 }

7:
 }

8:
 }

9:
 }
1

Algorithm 2. The modified version of the variant of the Priority-
Flood algorithm by Barnes et al. (2014a). RegionGrowing is the
function in Algorithm 1.
:
 Let DEM be the input DEM;

:
 Let Flag be a matrix of Boolean values of the size of DEM;

:
 Let PQ be an empty priority queue;

:
 Let Q be an empty plain queue;

:
 Initialize Flag as false;

:
 Push all edge cells in DEM into PQ;

:
 Mark all edge cells in Flag as true;

:
 while (PQ is not empty) {

:
 Pop cell c off PQ;

0:
 for each neighboring cell n of c {

1:
 if (Flag(n)) continue;

2:
 if (DEM(n)o¼DEM(c)) {

3:
 Flag(n)¼true;

4:
 DEM(n)¼DEM(c);

5:
 Push n into Q;

6:
 RegionGrowing(Flag, Q, ‘DEM

(n)o¼DEM(c)’, ‘DEM(n)¼DEM(c);’,

7:
 ‘Push n into PQ;
Flag(n)¼true; isProcessed¼ false;’);

8:
 }

9:
 else {

0:
 Push n into PQ;

1:
 Flag(n)¼true;

2:
 }

3:
 }

4:
 }
2
3. Proposed variant of the Priority-Flood algorithm

In this section, we propose our variant of the Priority-Flood
algorithm. For a DEM, our variant can use plain queues to process
the majority of cells not within depressions or flat regions with a
time complexity of O(N). This is an important improvement be-
cause it considerably reduces the number of cells that need to be
processed by the priority queue and reduces the running time of
the algorithm.

Our variant of the Priority-Flood algorithm classifies cells in a
DEM into two categories: depression cells and slope cells. For a
depression cell, its spill elevation is equal to or less than the spill
elevation of any of its neighbors. A depression cell can be located
in a depression or in a flat region. In Fig. 1a, cells C and D are
depression cells. For a slope cell, its spill elevation is greater than
the spill elevation of at least one of its neighbors. The region
formed by connected slope cells is called a slope in this study. In
Fig. 1a, cells A, B, E, F, G and H are slope cells. As shown in Fig. 2,
the spatial relationship among depressions and slopes can be very
complex.

Slope cells can be classified into two types: interior slope cells
and boundary slope cells. An interior slope cell of a slope does not
border any other slopes or other depressions. A boundary slope
cell c of a slope has at least one neighboring cell n that is not
within the slope. Only boundary slope cells can be the spill outlets
of depressions. In the Priority-Flood algorithm, cells are processed
in the ascending order of their spill elevations. When a boundary
slope cell c is processed before its neighbor n in a neighboring
region, cell c is called a potential spill cell because it may be the
spill outlet of an unprocessed depression. All cells on the border of
a DEM are potential spill cells because the outside region of a DEM
is treated as a very low depression in the Priority-Flood algorithm.
In Fig. 1a, cells F and G are interior slope cells. Cells A, E and H are
potential spill cells. Cell B is not a potential spill cell as it is pro-
cessed after the depression where cell C and D are located is filled.

Fig. 3 shows the distribution of different types of cells in a
sample DEM. It can be seen that it is very common for a slope to be
adjacent to another slope or depression in a DEM. In the sample
DEM, potential spill cells only account for a small portion of the
total number of cells.

In the Priority-Flood algorithm, the potential spill cells need to
be processed by PQ to find the cell with the lowest spill elevation.
All other slope cells do not need to be processed by PQ. Based on
this finding, we propose a new variant of the Priority-Flood algo-
rithm. The flowchart of our variant of the Priority-Flood algorithm
is shown in Fig. 4. Our proposed variant has the basic structure of
the Priority-Flood algorithm. In our variant, two different region-
growing procedures are applied to depression cells and slope cells
respectively. Once a depression is filled, those unprocessed slope
cells that border the depression are used as seed cells to trace
more slope cells. Potential spill cells of the slopes are identified
and pushed into PQ for processing. Apparently, the critical part of
our variant of the Priority-Flood algorithm is to identify the po-
tential spill cells in a slope. In this section, we provide three
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implementations of our variant to identify the potential spill cells
with different time complexity and implementation complexity.

3.1. Two-pass implementation

This implementation pushes only potential spill cells into PQ so
as to minimize the number of cells processed by PQ. To find the
potential spill cells of a slope, we need to find all the boundary
cells of the slope that have neighbors in other unprocessed re-
gions. Because a slope is found by tracing cells from a list of seed
slope cells, the potential spill cells can be found by applying a
second region-growing process from the same seed cells. The
pseudocode of the two-pass implementation is shown in Algo-
rithm 3. Given an initial list of seed slope cells, the first region-
growing process uses a plain queue to trace all other unprocessed
slope cells and the main Boolean matrix is used as the mask matrix
(Line 25). The second region-growing process uses another plain
queue to identify the potential spill cells in the traced slope and
the second Boolean matrix is used as the mask matrix (Line 26).
The potential spill cells are pushed into PQ for further processing.
Note that in the second region-growing procedure, the currently
processed boundary slope cell c is pushed only once into PQ by not
changing the value of the variable isProcessed to be false (Line 25).

A worked example of the two-pass implementation of our
proposed variant is given in Fig. 5. In the example, we use the
same sample dataset as in Wang and Liu (2006) to better illustrate
the differences between the two variants of the Priority-Flood
algorithm. First, all border cells are pushed into PQ and marked as
processed. The lowest cell in PQ, D7, is popped off (Fig. 5c). We
process all unprocessed neighbors of a center cell in a clockwise
order and start from the neighbor to the right of the center cell. D6
is first processed during the iteration of the neighboring cells of
D7. Since D6 is higher than D7, it is a seed slope cell and the slope
contains D6 is traced using a region-growing procedure (Fig. 5e).
Another region-growing procedure is applied to find the potential
spill cells of the traced slope using the same seed cell D6. The three
cells, B4, C4 and D4, are the potential spill cells and pushed into PQ
(Fig. 5f). A6 and C4 are popped off PQ in turn as they are the two
lowest cells (Fig. 5g). All the neighbors of A6 have been processed.
For C4, its neighbor D3 is first processed. Since D3 is lower than C4,
a depression is encountered and C4 is the spill outlet of the de-
pression. The depression is processed using a region-growing
procedure and all cells in the depression are marked as processed
(Fig. 5h). We also find the unprocessed slope cells bordering the
depression during the region-growing procedure. These slope cells
include B2, C2 and D2 and they are used as seed cells to trace other
slope cells. Since all cells in the DEM have been processed, the
process does not trace any new slope cells. All remaining cells in
PQ are popped off in turn and no new region-growing process is
started.

Algorithm 3. The two-pass implementation of the proposed
variant.
:
 Let DEM be the input DEM;

:
 Let Flag and Flag 2 be two matrices of Boolean value of the

size of DEM;

:
 Let PQ be an empty priority queue;

:
 Let SQ and Q be two empty plain queues;

:
 Initialize Flag and Flag 2 as false;

:
 Push all edge cells in DEM into PQ;

:
 Mark all edge cells in Flag and Flag2 as true;

:
 while (PQ is not empty) {

:
 Pop cell c off PQ;

0:
 for each neighboring cell n of c {

1:
 if (Flag(c)) continue;

2:
 if (DEM(n)o¼DEM(c)) {

3:
 Flag(n)¼Flag2(n)¼true;

4:
 DEM(n)¼DEM(c);

5:
 Push n into Q;

6:
 RegionGrowing(Flag, Q, ‘DEM

(n)o¼DEM(c)’, ‘DEM(n)¼DEM(c);

7:
 Flag2(n) ¼true’,

‘Push n into SQ; Flag(n)¼Flag2(n)¼true;

8:
 isProcessed¼false;’);

9:
 }

0:
 else {

1:
 Push n into SQ;

2:
 Flag(n)¼Flag2(n)¼true;

3:
 }

4:
 Copy all cells from SQ to Q;

5:
 RegionGrowing(Flag, SQ, ‘DEM(n)4DEM(c)’,

NULL, NULL );

6:
 RegionGrowing(Flag2, Q, ‘Flag(n)¼¼true’,

NULL, ‘Push c into PQ;’);

7:
 }

8:
 }
2

3.2. One-pass implementation

The two-pass implementation of our proposed variant reduces
the number of cells pushed into PQ to the minimum. However, it
requires two region-growing procedures to process slope cells. The
one-pass implementation aims to balance the time complexity for
processing PQ and slope cells using only one region-growing
process. A boundary slope cell c is a potential spill cell if it has one
unprocessed neighbor in another region, which is lower than or
equal to c. If an unprocessed neighbor n of a cell c has a processed
lower neighbor j, n can be traced as a slope cell from j. In this case,
n should not be counted as an unprocessed neighbor of c. If none
of the neighbors of n are processed or lower than n, c may be a
potential spill cell and is pushed into PQ in the one-pass im-
plementation of our proposed variant. Note that c may not be a
true potential spill cell because n may still have a lower neighbor
that can be processed later on in the same round of region-
growing process. In this implementation, only one region-growing
process is required. The price paid is that some cells that are not
potential spill cells are pushed into PQ. The pseudocode of the
one-pass implementation is shown in Algorithm 4.
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A worked example of the one-pass implementation is shown in
Fig. 6. The sample DEM used in Fig. 6 is used again. A plain queue
SQ is used to process slope cells. When the seed slope cell D6 is
found, its three unprocessed neighbors, D5, C5 and C6, are traced
(Fig. 6c) and pushed into SQ. D5 is popped of SQ. The first neighbor
of D5 is D4, which is higher than D5 and pushed into SQ (Fig. 6d).
The second neighbor of D5 is C4 and is lower than D5. Although C4
is unprocessed and lower than D5, C4 has a neighbor C5, which is
lower than C4 and processed. Therefore, C4 is a slope cell and D5 is
not pushed into PQ. The next cell popped off SQ is C5 and all its
unprocessed neighbors are higher than C5 and pushed into SQ.
When D4 is popped off SQ, because its two unprocessed neighbors
are both lower than D4 and do not have processed lower neigh-
bors, D4 is a potential spill cell and pushed into PQ (Fig. 6f). In a
similar way, B4 and C4 are pushed into PQ. The region-growing
process continues until SQ is empty. In this example, all potential
spill cells of the slope are identified within one round of region-
growing process and the cells pushed into PQ are true potential
spill cells. In other cases, some cells that are not potential spill cells
may be pushed into PQ. For example, if the elevations of C5 and C6
are exchanged and the elevation of B5 is changed to 10, the po-
tential spill cells do not change but D5 will be pushed into PQ
although it is not a potential spill cell.

Algorithm 4. The one-pass implementation of our proposed
variant.
:
 Let DEM be the input DEM;

:
 Let Flag be a matrix of Boolean value of the size of DEM;

:
 Let PQ be a empty priority queue;

:
 Let Q and SQ be two empty plain queues;

:
 Push all edge cells in DEM into PQ;

:
 Mark all edge cells in Flag as true;

:
 Initialize Flag as false;

:
 while (PQ is not empty) {

:
 Pop cell c off PQ;

0:
 for each neighboring cell n of c {

1:
 if (Flag(c)) continue;

2:
 if (DEM(n)o¼DEM(c)) {



1
1
1
1

1

1
1
2
2
2
2

2
2
2
2
2

2

Fig. 5. A worked example of the two-pass implementation of the proposed variant. The sample dataset in Wang and Liu (2006) is used in the example. PQ is the priority
queue used in the algorithm. (a) A sample DEM with labeled cells; (b) DEM with elevation values; (c) border cells are pushed into PQ and the lowest cell is popped off; (d) a
seed slope cell is identified; (e) all unprocessed slope cells are traced in the first region-growing process; (f) potential spill cells are identified in the second region-growing
process and pushed into PQ; (g) two lowest cells are popped from PQ; (h) depression cells are processed; a new list of seed slope cells are identified; (i) flow direction matrix
of the DEM derived using the method in Wang and Liu (2006). (2-column fitting image).
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3:
 Flag(n)¼true;

3
4:
 DEM(n)¼DEM(c);

3
5:
 Push n into Q;

3
6:

3

RegionGrowing(Flag, Q, ‘DEM
(n)o¼DEM(c)’, ‘DEM(n)¼DEM(c)’,
3
7:

3

‘Push n into SQ;
Flag(n)¼true; isProcessed¼false;’);
3
8:
 }

3
9:
 else {
0:
 Push n into SQ

1:
 Flag(n)¼true;

2:
 }

3:
 RegionGrowing(Flag, SQ, ‘DEM(n)4DEM(c)’,

NULL, nonRegionCell);

4:
 }

5:
 }

6:

7:
 Operations in nonRegionCell

8:
 isBoundary¼true;
9:
 for each neighboring cell j of n {

0:
 if (Flag(j) && DEM(j)oDEM(n)) {

1:
 isBoundary¼false;

2:
 break;

3:
 }

4:
 }

5:
 if (isBoundary)

6:
 Push c into PQ;

7:
 else

8:
 isProcessed ¼false;
3

3.3. Direct implementation

The direct implementation is a simplified implementation of
our proposed variant. We present this implementation for com-
parison purposes. The pseudocode of the direct implementation is
shown in Algorithm 5. In this implementation, when an



2
2
2

2

Fig. 6. A worked example of the one-pass implementation. (a) A sample DEM with labeled cells; (b) a seed slope cell is identified; (c) neighboring slope cells are traced from
D6; (d) D4 is traced from D5. C4 is not a slope cell when it is compared with D5 because C4 is higher than the processed cell C5. D5 is not pushed into PQ; (e) C4, B4, B5 and
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unprocessed neighboring cell n of cell c is lower than c in the re-
gion-growing procedure, c is immediately pushed into PQ. Com-
pared to the one-pass implementation, it increases the number of
cells pushed into PQ. In the example in Fig. 6, D5 will immediately
be pushed into PQ because its neighbor C4 is unprocessed and
lower than D5.

Algorithm 5. The direct implementation of our proposed variant.

1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1

1

1
1
2

:
 Let DEM be the input DEM

:
 Let Flag be a matrix of Boolean value of the size of DEM

:
 Let PQ be a empty priority queue

:
 Let Q and SQ be two empty plain queues

:
 Push all edge cells in DEM into PQ

:
 Mark all edge cells in Flag as true

:
 Initialize Flag as false

:
 while (PQ is not empty) {

:
 Pop cell c off PQ;

0:
 for each neighboring cell n of c {

1:
 if (Flag(c)) continue;

2:
 if (n is lower than or equals c) {

3:
 Flag(n)¼true;

4:
 DEM(n)¼DEM(c);

5:
 Push n into Q

6:
 RegionGrowing(Flag, Q, ‘DEM

(n)o¼DEM(c)’, ‘DEM(n)¼DEM(c)’,

7:
 ‘Push n into SQ;

Flag(n)¼true; isProcessed¼false;’);

8:
 }

9:
 else {

0:
 push n into SQ
1:
 Flag(n)¼true;

2:
 }

3:
 RegionGrowing(Flag, SQ, ‘DEM

(n)4DEM(c)’, NULL, ‘Push c into PQ;’);

4:
 }

5:
 }
2

3.4. Time complexity and memory requirement

Our variant improves the existing variants of the Priority-Flood
algorithm by processing slope cells using a plain queue instead of a
priority queue. The time complexity of our method is O(Nlog N),
where N is the number of cells pushed into PQ. In our variant, N is
much smaller than the number of slope cells.

The two-pass implementation of our variant pushes only po-
tential spill cells into PQ. It requires one additional region-growing
procedure to find all potential spill cells. In terms of the memory
requirement, it requires one additional Boolean array to hold the
processed flag in the second region-growing process to trace the
potential spill cells in a slope area. The Boolean array can be effi-
ciently implemented using a bit array, which requires (Nþ7)/8
bytes. The one-pass implementation of our variant pushes not only
potential spill cells but also some interior slope cells into PQ. It
requires only one region-growing procedure. The direct im-
plementation of our variant pushes more interior slope cells into
PQ than the one-pass implementation. All implementations of our
variant use plain queues to trace slope cells and depression cells.
The maximum number of cells in these queues generally is much
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smaller than the total number of cells in a DEM and the queues are
emptied many times during the region-growing processes.

3.5. Flow direction computation

Wang and Liu (2006) present a method to derive the flow di-
rection matrix during the processing of the cells in the Priority-
Flood algorithm. The flow direction of a depression cell is assigned
by reversing the search direction. For slope cells, their flow di-
rections are determined by identifying the steepest descent di-
rection using the D8 method (Jenson and Domingue, 1988). The
flow direction matrix can be derived in the same way when our
variant is used to fill depressions. Fig. 5i shows the flow direction
matrix derived for the sample dataset using the above method.
There exist many other ways to derive flow direction matrices
(Barnes et al., 2014b; Garbrecht and Martz, 1997; Metz et al., 2011;
Nardi et al., 2008).
4. Experimental results

Five depression-filling algorithms, including the variant of
Wang and Liu (2006), the variant of Barnes et al. (2014a) and the
three implementations of our proposed variant, are implemented
in Cþþ . The priority queue used in the algorithms is provided by
the Cþþ standard template library. The source codes are available
at GitHub (https://github.com/zhouguiyun-uestc/FillDEM). The
LiDAR-based DEMs of thirty counties in the state of Minnesota,
USA, are downloaded from the FTP site operated by the Minnesota
Geospatial Information Office (http://www.mngeo.state.mn.us/).
The first 30 counties in Minnesota in alphabetic order are chosen
for the experiments to avoid selection bias. On average, each
county contains approximately 3.96�108 cells. All tests are run on
a 64-bit Windows 7 operating system with an Intel Xeon E5-2620
Table 1
List of running times (seconds) of five depression-filling algorithms for 3-m LiDAR DEM d
cells of each DEM are also listed. The abbreviation of ‘IMPL.’ stands for ‘implementation

County Width Height NODATA percentage Variant in Wang and Liu

Aitkin 20,133 33,681 13.23 421
Anoka 13,938 15,116 21.39 95
Becker 27,160 18,307 7.64 298
Beltrami 30,382 43,654 29.38 538
Benton 16,252 11,823 19.69 77
Big Stone 19,409 17,116 43.90 101
Blue Earth 16,897 16,427 11.62 147
Brown 21,037 15,412 31.17 115
Carlton 20,845 14,007 2.80 155
Carver 14,147 14,035 28.18 84
Cass 27,393 46,261 39.62 502
Chippewa 22,228 15,658 40.88 121
Chisago 13,022 16,204 38.32 71
Clay 17,555 20,476 8.13 153
Cleanwater 11,003 33,934 9.29 182
Cook 39,834 30,262 55.19 297
Cottonwood 17,048 14,409 13.66 113
Crow Wing 16,138 24,217 14.88 231
Dakota 16,561 17,394 30.89 127
Dodge 10,886 13,903 5.61 78
Douglas 17,476 14,495 5.48 149
Faribault 17,029 15,330 6.21 133
Fillmore 20,301 14,103 2.17 211
Freeborn 16,857 15,110 9.32 154
Goodhue 22,425 19,720 38.44 198
Grant 14,307 14,458 7.03 96
Hennepin 16,492 17,438 27.17 123
Houston 15,368 14,108 13.63 146
Hubbard 14,068 24,673 5.48 203
Isanti 13,893 12,810 13.27 92
2.0GHz processor and 56GB RAM.
The five algorithms produce the same depression-filled DEMs

for each tested DEM. The running times of the five algorithms for
all test DEMs are listed in Table 1. Table 1 also lists the width,
height and the percentage of NODATA cells of each DEM. Fig. 7
plots the running times of the five algorithms. The average run-
ning time is 180 s for the variant of Wang and Liu (2006), 166 s for
the variant of Barnes et al. (2014a), 103 s for the two-pass im-
plementation, 92 s for the one-pass implementation and 111 s for
the direct implementation. Suppose that the speed-up of algo-
rithm A over B is defined as the difference of running times of the
two algorithms divided by the running time of B. The average
speed-up of the variant of Barnes et al. over the variant of Wang
and Liu is 7.8%. This value is lower than the average speed-up value
of 16.8% reported in Barnes et al. (2014a). Considering that more
DEMs are tested in Barnes et al. (2014a) and that details of the
implementations may differ slightly, the difference between the
two speed-up values is acceptable. All three implementations of
our proposed variant run substantially faster than the variant of
Barnes et al. for all tested DEMs. The average speed-up over the
variant of Barnes et al. is 38.0% for the two-pass implementation,
44.6% for the one-pass implementation and 33.1% for the direct
implementation. For all tested DEMs, the one-pass implementa-
tion runs the fastest than all other four algorithms. While the two-
pass implementation runs faster than the direct implementation
on average, the direct implementation takes less time for some
DEMs. Apparently, the actual running time of the one-pass and
direct implementations of our proposed variant depends not only
on the percentage of slope cells but also on their spatial dis-
tribution. The way in which the priority queue is implemented
affects the time complexity of all variants of the Priority-Flood
algorithm and our variants should outperform existing variants as
long as the priority queue is implemented in the same way.
ata of 30 counties in Minnesota, USA. The width, height and percentage of NODATA
’.

Variant in Barnes et al. Two-pass IMPL. One-pass IMPL. Direct IMPL.

374 295 257 282
83 52 46 54

285 136 126 160
468 424 361 383
71 51 45 54
91 59 52 63

136 77 71 86
103 64 55 68
143 121 108 121
77 37 35 45

480 302 259 294
110 66 60 72
64 44 39 46
131 107 91 103
167 118 105 123
281 163 148 191
103 61 56 75
197 142 126 140
119 59 54 75
76 44 39 54

136 63 57 72
123 70 62 76
202 78 77 125
133 71 64 82
196 75 69 106
86 56 50 59

120 62 57 71
144 51 50 86
185 109 100 120
81 47 43 50

http://https://github.com/zhouguiyun-uestc/FillDEM
http://www.mngeo.state.mn.us/


Fig. 7. Running time (seconds) of five depression-filling algorithms for 3-m LiDAR-based DEM data of 30 counties in Minnesota, USA. (2-column fitting image).
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5. Conclusion

Among existing algorithms for filling depressions, the Priority-
Flood algorithm substantially outperforms other algorithms in
terms of both time complexity and memory requirement. In this
study, we propose an efficient variant of the Priority-Flood algo-
rithm, which uses region-growing procedures to process the ma-
jority of slope cells with a time complexity of O(N). The proposed
variant aims to minimize the number of cells processed by the
priority queue, which has a time complexity of O(Nlog N). We
present three implementations of the proposed variant: two-pass
implementation, one-pass implementation and direct im-
plementation. Five depression-filling algorithms, including the
variant of Wang and Liu (2006), the variant of Barnes et al. (2014a)
and the three implementations of our proposed variant, are im-
plemented in Cþþ . Experiments are conducted on 3-m LiDAR-
based DEMs of thirty counties in Minnesota, USA. All three im-
plementations run faster than existing variants of the algorithm
for all tested DEMs. The one-pass implementation runs the fastest
and the average speed-up over existing variants is 44.6%.

All existing variants of the Priority-Flood algorithm do not have
parallel implementations. In future work, we will develop a par-
allel computation scheme for the proposed variant.
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