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A B S T R A C T

Flowrate allocation in production wells is a complicated task, especially for multiphase flow combined with
several reservoir zones and/or branches. The result depends heavily on the available production data, and the
accuracy of these. In the application we show here, downhole pressure and temperature data are available, in
addition to the total flowrates at the wellhead. The developed methodology inverts these observations to the
fluid flowrates (oil, water and gas) that enters two production branches in a real full-scale producer. A major
challenge is accurate estimation of flowrates during rapid variations in the well, e.g. due to choke adjustments.
The Auxiliary Sequential Importance Resampling (ASIR) filter was developed to handle such challenges, by
introducing an auxiliary step, where the particle weights are recomputed (second weighting step) based on how
well the particles reproduce the observations. However, the ASIR filter suffers from large computational time
when the number of unknown parameters increase. The Gaussian Mixture (GM) filter combines a linear update,
with the particle filters ability to capture non-Gaussian behavior. This makes it possible to achieve good
performance with fewer model evaluations. In this work we present a new filter which combines the ASIR filter
and the Gaussian Mixture filter (denoted ASGM), and demonstrate improved estimation (compared to ASIR and
GM filters) in cases with rapid parameter variations, while maintaining reasonable computational cost.

1. Introduction

Knowledge about downhole production flowrates is important for
making optimal decisions when operating production and injection
wells in a petroleum reservoir. The information can be used for
adjusting wellhead chokes, gas lift rates, downhole inflow control
valves (ICVs), etc. Flowrate allocation becomes especially important
if the wells are connected to multiple reservoir zones, or if they have
multiple branches, or both. Also estimation of wellhead flowrates are
important if the well is not equipped with flowmeters, or if the accuracy
of the flowmeters is diminished. A theoretical foundation for rate
allocation based on a transient well flow model and the auxiliary
sequential importance resampling (ASIR, (M Pitt and Shephard,
1999)) filter, is found in Lorentzen et al. (2014).

The rate allocation methodology is tested on two real full-scale wells
in Lorentzen et al. (2016). For the first well, two flowrates are
estimated for a one-phase gas producer. The well is equipped with
two traditional pressure/temperature gauges, and 100 particles are
used for the ASIR filter. The second well is a water injector, equipped
with a distributed temperature sensor. Here nine flowrates are

estimated, and 500 particles are used for the ASIR filter. Satisfactory
results were obtained for these wells, but there is room for improve-
ment when it comes to computational time, especially when the
number of unknown parameters increases.

For online estimation of hidden Markov models there exist a vast
literature on sequential Monte Carlo methods (see e.g. Doucet et al.
(2001)). Although asymptotic optimality is well established (see e.g.
Künsch (2005); Doucet et al. (2006); Moral and Jacod (2004)) the
analysis is usually carried out using the Markov transition of the system
as the proposal density. In practice, however, significant improvement
with a finite sample size can be achieved using an optimal proposal
(Doucet et al., 2000). Unfortunately, the optimal proposal (minimizing
weight variance) is in general difficult to obtain with the exception of a
system described by a linear measurement operator and Gaussian
model and observation noise (see e.g. Ristic et al. (2004)). Although
several improvements exist in some scenarios (see e.g. Carpenter et al.
(1999); Doucet et al. (2000); Gustafsson et al. (2002)) we focus on the
ASIR (M. Pitt and Shephard, 1999), and introduce a general trans-
formed version with focus on a Gaussian mixture approximation under
the assumption of Gaussian measurement noise, although the latter is
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not necessary. The algorithm we propose combines the two stage
analysis scheme of the ASIR filter with a transformation of the particles
base on a Gaussian mixture, although in theory the transformation can
be more general. If a transformation can transport the particles into
regions of higher posterior likelihood the new method will improve the
diversity of the resampled particles. To our knowledge the proposed
methodology is the first to combine Gaussian mixture approximations
and a two-stage auxiliary filter.

The ASIR filter was introduced to improve the diversity of the
particles (unique particles instead of multiple copies) without regular-
ization (Musso et al., 2001), making it more robust when the
measurements change rapidly. Although the ASIR filter may not
improve the results when the model error is large, it usually outper-
forms the standard sequential importance resampling (SIR) filter when
the model is quite accurate (Arulampalam et al., 2002). The ASIR filter
is a two stage particle filter where the particles are resampled at time k
using measurements at time k + 1 before they are propagated forward
in time and new weights are computed. The idea is that by looking one
step ahead in time, one can avoid situations where a few particles are
copied many times due to e.g. rapid changes in the model or outliers in
the measurements. Another advantage when the model is complex
and/or the dimension is large, is that the first step of the ASIR can be
viewed as improving the proposal density.

In recent years many applications and theoretical studies of
Gaussian Mixture filters have occurred (see e.g. Frei and Künsch
(2013); Chen and Liu (2000); Stordal et al. (2011); Bengtsson et al.
(2003); Kotecha and Djurić (2003); Crisan and Li (2015)). Although
the Gaussian mixture filter can be viewed as a regularization of the SIR
filter when the measurement noise is Gaussian (Stordal et al., 2011), it
has the advantage of a Kalman type update step and has been
successfully implemented on large scale models where particle filters
collapse due to the curse of dimensionality (Bengtsson et al., 2008). For
some recent applications see e.g. Liu et al. (2016); Hoteit et al. (2008);
Stordal (2011), and for an extension to iterative versions for bias
reduction see (Stordal and Lorentzen, 2011). A recent publication
(Stordal et al., ) propose a stable particle filter in high dimension (d) at
a computational cost of O Nd( )2 which is simply too time consuming for
many high dimensional or complex models. The auxiliary filter
proposed here has a computational cost of O N(2 ). Other related work
is the probability hypothesis density filter (Vo and Ma, 2006) and the
extension to linear Markov jump models (Pasha et al., 2009).

In Papadakis et al. (2010) and Mandel et al. (2009) the ensemble
Kalman filter (EnKF, Evensen (2007)) is used directly as a proposal
density. However the EnKF will only be efficient if the posterior is close
to a Gaussian. The Gaussian mixture filter could also be used directly as
a proposal density, but that would requireO N( )2 operations, although it
may be reduced to O N(2 ) operations in some cases, see Elgammal et al.
(2003).

In the next section we give a description of the transformed particle
filter including the ASIR filter. Then we give a brief overview of the
Gaussian mixture filter, before introducing the auxiliary sequential
Gaussian mixture (ASGM) filter. This is followed by two synthetic
examples: a one dimensional state space model, the three dimensional
Lorenz63 model (Lorenz, 1963), and a transient well flow model. The
last example is a full-scale application where data from a multiphase
producer is used. This well has two branches with ICVs, and we
estimate oil, water and gas flowrates entering each branch from the
reservoir. Finally, we present the conclusions from the work.

2. Method and theory

2.1. Auxiliary transform particle filter

We consider a state space model  X Y k( , ) ∈ × , = 0, 1, …k k
n nx y ,

where the Markov model X( )k is defined by

X X η k= ( ) + , > 0,k k k−1 (1)

where η ∼ (0, )k k , and represents a multivariate Gaussian
distribution with given mean and covariance matrix. In addition, we
assume that the initial distribution for X0 is known. The measurement
process Yk is defined by

Y X k= ( ) + ϵ , > 0,k k k (2)

where ϵ ∼ (0, )k k . We assume that the transition kernels κ x dx( , ′)k

induced by Eq. (1), admits a density with respect to the Lebesgue
measure on nx. That is κ x dx κ x x dx( , ′) = ( , ′) ′k k , where κ x x( , ′)k repre-
sents a transition from x to x′. Further, we assume that the likelihood
function g y x( | )k k induced by Eq. (2) is known. For fixed x, g x(·| ) is a
density on ny. The posterior density πk is then well defined and a
recursive version of it is given by

∫π x p x y Cg y x κ x x π x dx( ) = ( | ) = ( | ) ( , ) ( ) ,k k k k k k k k k k k k
def

0: −1 −1 −1 −1 (3)

where C is the normalizing constant. Although both and might
depend on k, we omit the time index for notational convenience. Since
(3) is not available analytically, an alternative is to approximate it using
a set of weighted particles

∑π x w δ x( ) = ( ),k k
i

N

k
i

X k
=1

k
i

(4)

where δ is the Dirac delta function and w∑ = 1i
N

k
i

=1 . If some of the
weights in (4) become very large, it is natural to include a resampling
step where particles are sampled with probability equal to the weight.
Although this is an efficient way of removing poor particles (low
weight), it could lead to problems of having multiple copies of just a few
particles (low diversity of the particles). The ASIR filter was introduced
to improve diversity of particles. The idea is to perform resampling at
time k − 1 using information from the measurement at time k, as is also
the case for the optimal proposal distribution in the standard SIR filter
(Doucet et al., 2006). The main idea is to ‘look ahead’ with each particle
by computing some characteristic of next measurement, typically the
mean or a sample. From these characteristics, it is possible to compute
weights as in the standard particle filter. A resampling of the particles
(not the characteristics) can then be performed based on these weights.
The particles can then be propagated forward in time with the model
noise, resulting in a more diverse set of particles. New weights can be
computed based on the actual particles. Unless the model noise is very
large, these particles should match the data well so that the weights
should not vary too much and resampling should not be required.
Mathematically speaking this is done by augmenting the state space
with an integer variable, i N= 1… representing the particle indices. The
distribution of the new integer variables is simply defined by the
particle weights. Hence P i j w( = ) = k

j at time k. The distribution of the
augmented state vector X i( , )k

i can be updated by applying Bayes' rule to
the augmented state

p x i y g y x κ X x w( , | ) ∝ ( | ) ( , ) ,k k k k k k
i

k k
i

0: −1 −1 (5)

where wk
i
−1 is the importance weight of particle i at time k − 1. By

defining a characteristic, νk
i, of Xk

i given Xk
i
−1 (typically the mean or a

sample), a proposal density q is constructed on  ×n
Nx , where N is the

set N{1,…, }, as

q x i y q x i y q i y κ X x g y ν w( , | ) = ( | , ) ( | ) = ( , ) ( | ) .k k k k k k k
i

k k k
i

k
i

0: 0: 0:
def

−1 −1 (6)

A sample Xk
j is constructed by sampling an index ij with probability

proportional to g y ν w( | )k k
i

k
i
−1 and then sample from κ X x( , )k k

i
k−1

j
. The

importance weights are then given by the ratio of Eqs. (5) and (6) as

w
g y X

g y ν
∝

( | )

( | )
.k

j k k
j

k k
i j

(7)

For more details see (M. Pitt and Shephard, 1999; Arulampalam et al.,
2002). The original algorithm was proposed with an additional
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resampling which can be disregarded (Fearnhead, 1998). Similar to
optimal transport (see e.g. Reich (2013) and references therein) and
implicit filtering (Chorin et al., 2010), we propose to add a transforma-
tion  T: →n nx x. Since the particles in the SIR and ASIR filters are
sampled or characterized by κk, it is the likelihood term g that causes a
degeneracy or collapse of the filter. The idea behind the transformed
filter is to balance between the two terms. Since the weights of the
transformed filter contains both g and κ, it is possible to choose a
transform that increase the value of g while reducing the value of κ.
This is a key point that separates the new filter from SIR and ASIR.
Instead of being a pure rejection algorithm (SIR, ASIR), it allows the
particles to move closer to the observations without violating Bayes'
law. The importance function on  ×n

Nx is defined by

q x i y q x i y q i y κ T X x g y ν w( , | ) = ( | , ) ( | ) = ( ( ), ) ( | ) ,T k k T k k T k k k
i

k T k k
i

k
i

0: 0: 0:
def

−1 −1

(8)

and the weights of the transformed ASIR filter are updated as

w
g y X κ X X

g y ν κ T X X
∝

( | ) ( , )

( | ) ( ( ), )
.k

j k k
j

k k
i

k
j

T k k
i

k k
i

k
j

−1

−1

j

j j
(9)

The likelihood function under the transformation, gT, can in principle be
chosen arbitrary but should reflect the transformation T. If T is the
identity operator then g g=T and we regain the ASIR filter. The size of
the transformation, T x x∥ ( ) − ∥, should depend on XVar ( )κk so that if the

variance is small then T x x∥ ( ) − ∥ should be small to avoid a weight
collapse. Ideally T should be chosen to minimize the variance of the
weights in Eq. (9). Just like in the optimal SIR, one could look for a
transformation T that minimizes the variance of the weights conditioned
on Xk−1, or one could even try to minimize the unconditional variance for
optimal performance. However, this would be a case specific and
practically an impossible task (except in the linear Gaussian case). We
therefore propose to define the transformation T using the theory of
Gaussian mixtures since the Gaussian mixture filters can be viewed as a
robust approximation of the SIR filter (Stordal et al., 2011).

2.2. Optimal importance function

The above transformed ASIR filter can be combined with the
optimal SIR (OSIR) filter if q p x x y= ( | , )k k kopt −1 is known. A particular
case is when the model and observation noise is additive and the
observation operator is linear, see (Doucet et al., 2000). After resam-
pling and transformation, we sample from p x T x y( | ( ), )k k k−1 . The
weights can then be evaluated as

w
g y T X κ X X

g y ν κ T X X
∝

( | ( )) ( , )

( | ) ( ( ), )
.k

j k k
i

k k
i

k
j

T k k
i

k k
i

k
j

−1 −1

−1

j j

j j
(10)

However, since the optimal importance function is unknown in
general, we propose to combine the transformed filter with the
standard ASIR in the following.

Fig. 1. Mean and standard deviation from 500 runs of the RMSE computed over 100 time steps. The sample size is given on the x-axis, and the root mean square error is given on the Y-
axis, (a) RMSE second model, (b) RMSE std. first model, (c) RMSE std. second model.
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2.3. Gaussian mixtures

A Gaussian mixture filter may, as the ASIR, be viewed as an
approximation of the optimal SIR filter (Stordal et al., 2011) using a
regularization prior to Bayes' theorem, rather than after as in the
regularized SIR filter. The additional assumption is that the measure-
ment error is Gaussian and additive. Assume that we have, at time
k − 1, a weighted sample X w{ , }k

i
k
i

i
N

−1 −1 =1 approximating πk−1. By sam-

pling X κ X x∼ ( , )k
i

k k
i

k−1 and augmenting the state vector with X( )k
i we

may estimate the joint posterior density of Z X X= [ , ( )]k k k
def

using a
Gaussian kernel density estimator (Silverman, 1986) and Bayes'
theorem (assuming a Gaussian likelihood function)

  ∑π z w ϕ z Z ϕ y z( ) ∝ ( − | ) ( − | ),k
N

k
i

N

k
i

k k
i

k
i

k k
=1

−1
(11)

where ϕ Σ(·| ) denotes a zero mean Gaussian density with covariance
matrix Σ,  is the covariance of the measurement error and  is a
binary matrix selecting X( )k

i from Zk
i and  k

i is a positive definite
matrix. Typically it is the sample covariance, which is independent of i.
The expression in Eq. (11) may be rewritten as

    ∑π z ϕ z Z w ϕ y Z( ) ∝ ( − | ) ( − | + ),∼ ∼
k
N

k
i

N

k k
i

k
i

k
i

k k
i

k
i T

=1
−1

(12)

where

       

    

Z Z y Z= + ( − ), = ( − ) ,

= ( + ) .

∼ ∼
k
i

k
i

k
i

k k
i

k
i

k
i

k
i

k
i

k
i T

k
i T −1

(13)

For more details on Gaussian Mixture filters see e.g. Chen and Liu
(2000) and Kotecha and Djurić (2003).

2.4. Transform via Gaussian mixture

The ASGM algorithm combines the ASIR with a Gaussian mixture
as follows. A key point is that we want to apply the Gaussian mixture to

Fig. 2. Mean RMSE for 500 runs and 1000 timesteps. The sample size is given on the x-axis, (a) RMSE first parameter, (b) RMSE second parameter, (c) RMSE third parameter.

Fig. 3. Sketch of producer (not to scale). Note that measured depth is zero at seabed,
approximately 380 m below the sea level.
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Xk−1 instead of Xk in the first step of the algorithm and then compute
the weights as described in (9) for the second part of the algorithm.
First the characteristic νk

i are computed/sampled given Xk
i
−1. Here we

use the model prediction ν x= ( )k k−1 . That is, we propagate the
particles forward in time using the model, but without adding the
model noise. The next step is to use the update equations (13) with
Z X ν= [ , ( )]k

i
k
i

k
i

−1 as a rough approximation of p z y( | )k k−1 1: . Note the

difference with (11) where we approximated π z p z y( ) = ( | )k k k1: . The first

part of the updated vector, Z∼k
i
−1 ((13) with k replaced by k − 1), is given

by X͠k
i
−1, which defines our transformation T X( )k−1 . Finally, we perform

resampling (here we use multinomial sampling, see e.g. Arulampalam
et al. (2002)) at time k − 1 using information from the measurement
one step ahead. A set of integers ij is sampled with probabilities

   P i i w ϕ y Z( = ) ∝ ( − | + )j
k
i

k k
i

k
i T

−1 −1 −1 , where the last part is
obtained from (13) and corresponds to gT in the transformed ASIR
algorithm. For each i j N, = 1,…,j a new sample Xk

j is sampled from

κ X x( , )͠k k
i

k−1
j

and the ASGM weights are computed as

   
w

g y X κ X X

ϕ y Z κ X X
∝

( | ) ( , )

( − | + ) ( , )
.

͠
k
j k k

j
k k

i
k
j

k k
i

k
i T

k k
i

k
j

−1

−1 −1 −1

j

j j
(14)

Here, X͠k
i
−1
j

is the first part of the updated state vector Z∼i j
after

resampling. This filter can be formulated as the transform filter defined
above with the affine transformation T(x) given by (13). In the
following examples, k in (11), is defined as the sample covariance
matrix of Z{ }k

i
i
N
=1.

The ASGM distinguishes itself from the ASIR filter in two ways.
First, the linear update step that aims at moving the particles closer to
the measurements, and second, the weights that are computed after the
auxiliary step contains the transition density κk, contrary to the ASIR.
The first may improve upon the ASIR filter if the measurement noise is
small. The second step might deteriorate the behavior of ASGM if the

Fig. 4. Estimated flowrates (Q1 and Q2) for each simulation run as function of time. The true gas flowrates are shown in red, and the estimated flowrates are shown as blue curves, (a)
ASGM (400), (b) ASIR (400). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 5. RMSE for AGM (800), ASGM (400), and ASIR (400).
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Fig. 6. Estimated (blue) and synthetic observations (red) using AGM (800). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article).

Fig. 7. Estimated (blue) and real observations (red) using ASGM (400). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article).
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model error is small, and it is therefore important to balance between
the size of the update step (using the bandwidth parameter h described
in Stordal et al. (2011)), and the model error. Further, there should
also be a balance between the auxiliary weights given by the character-
istic, νk, and the size of the update. This is automatically achieved by
the Gaussian mixture filter as it balances the size of the update and the
sharpness of the weight function via the bandwidth parameter h. In the
examples presented below, the bandwidth parameter h is selected
based on experience. A thorough analysis of the filter performance for
different values of the bandwidth parameter, and the relation to
different values for the measurement error and model error, is an
interesting and important task (see e.g Li et al. (2016)). A further
analysis is however beyond the scope of this paper, and we refer to
future work for this task.

Further improvements in nonlinear systems can be achieved with
local Kalman updates (Stordal et al., 2012) which, however, is more
time consuming as the Kalman gain has to be calculated locally for each
particle.

3. Results

In this section we present two synthetic examples, and one example
using real observations. First we study a simple one dimensional
nonlinear state space model, and compare ASGM, ASIR (M Pitt and
Shephard, 1999), SIR (Gordon, 1993), and OSIR (Doucet et al., 2000).
Then we move to the Lorenz63 model and compare ASGM, ASIR, and
OSIR. Next we consider a full-scale production well, and compare
ASGM, ASIR, and the adaptive Gaussian mixture (AGM) filter, using
synthetic generated measurements. The AGM filter is introduced in
Stordal et al. (2011) as a hybrid between the ensemble Kalman filter
(EnKF, Evensen (2004)) and traditional particle filters. Finally, we run
the ASGM using real observations, and present estimated flowrates and
compare real and simulated measurements. The results are also
compared to the estimated flowrates using the AGM filter, even though
we do not have the actual (true) flowrates available. The experiment
demonstrates a solution to a real rate allocation problem, and shows
that the ASGM computes stable and reliable results using sensor data
from complex systems.

3.1. One dimensional state space model

The model is described by

X X X X
X

k η k∼ (1, 1), = 1
2

+ 25
1 +

+ 8 cos(1.2 ) + , > 0,k k
k

k
k0 −1

−1

−1
2

(15)

where ηk is a zero mean Gaussian variable with standard deviation of
0.5 for all k > 0. We consider two models for the measurement process

Y X k j= ( ) + ϵ , > 0, = 1, 2,k j k k (16)

where

Fig. 8. Estimated (blue) and real observations (red) using ASIR (400). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article).

Fig. 9. Choke opening shown as fraction of maximum diameter.
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Fig. 10. Estimated flowrates in mainbore (m) and lateral (l). The color code re present reliability of the estimated parameters (green=Good, orange=Fair, red=Bad). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 11. Estimated (blue) and real observations (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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x x x x( ) =
90

, ( ) = ,1
3

2 (17)

and ϵk is a standard Gaussian variable for all k > 0. We run the
experiment with bandwidth parameter h fixed at 0.1 and varying
sample size. For the first model we compare it with the ASIR and SIR
filter while in the second model we compare it with the ASIR and the
optimal SIR filter since the measurement operator is linear in this case.
For both models a SIR filter with 5 × 105 particles is regarded as the
true optimal solution to the filter problem. The experiments are
repeated five hundred times and the mean root square error over
100 time steps and 500 runs are reported together with the standard
deviation over the five hundred runs. We clearly see from Fig. 1 the
improvement of the new proposed ASGM method where the x-axis
indicates the sample size. We stress that when the sample size of ASIR
and ASGM is N, the sample size of SIR and OSIR is N2 since the ASIR
and ASGM require twice evaluation of the likelihood function and may
require twice evaluation of the model for each time step. For this
experiment N ranges from 20 to 500 and the RMSE for the mean and
standard deviation compared with the optimal solution, is plotted is a
function of the sample size in Fig. 1.

3.2. The Lorenz63 model

Our second numerical example is a modified version of the Lorenz
63 model (Lorenz, 1963). It is a chaotic model and requires a lot more
particles than the previous example in order to successfully track the
hidden states. Our state vector is x x x x= [ ] ∈T

1 2 3
3 and we denote by

x( ) the solution to the differential equation

dx
dt

a x x dx
dt

x b x x dx
dt

x x cx= ( − ), = ( − ) − , = − ,1
2 1

2
1 3 2

3
1 2 3 (18)

which we solve using a fourth order Runge-Kutta scheme. For our
experiment a b c[ , , ] = [10, 28, 8/3] and δt = 0.01. The hidden
Markov model evolves as

 X X X η k K∼ ( , ), = ( ) + , = 1,…, ,k k k0 −1 (19)

where the time between Xk and Xk−1 is δt , K=1000 and ηk is a zero
mean Gaussian variable with covariance matrix 0. 0012 independent of
everything else. The measurement process, Y ∈k

2, is defined by

 
⎛
⎝⎜

⎞
⎠⎟Y X k K= + ϵ , = 1,…, , = 1 0 0

0 1 0 ,k k k
(20)

where ϵk is a zero mean Gaussian variable with covariance matrix
0. 252 . As for the previous example, we run the experiment 500 times,

and compute the RMSE over all runs and timesteps. The results are
summarized in Fig. 2 for different sample sizes ranging from 25 to
5000. We clearly see that ASGM converges faster than both ASIR and
the OSIR for this particular experiment.

3.3. Full scale well model – synthetic data

Below is a sketch (Fig. 3) of a branched producer, including the
sensors, wellhead choke and downhole ICVs. The outlet pressure and
temperature are 70 bar and 4 °C, respectively. The wellhead choke has
4 in. (maximum) diameter, and the actual opening is 35% of the
maximum. The geothermal temperature gradient is 0.04 degrees
Celsius per meter. The mainbore ICV has 3.5 in. (maximum) diameter,
and is operating with 75% opening. The lateral ICV has 5.5 in.
(maximum) diameter, and is operating with 35% opening. The
uncertainty (error standard deviation) for the measurements are 5%
for flowrate measurements (gas), and 0.2% for pressure and tempera-
ture measurements. There is one sensor above both ICVs measuring
the combined pressure and temperature, and one sensor below each
ICV in the mainbore and lateral.

For this synthetic case we estimate the flowrates of gas entering the
mainbore and the lateral. We limit this study to one phase flow in order
to isolate the filer performance and reduce the effect of spurious
updates (due to limited ensemble size). We compare the AGM filter and
the ASIR filter with the ASGM filter. We use 400 ensemble members
for the ASGM and ASIR, and 800 ensemble members for the AGM.
This ensures that the computational time is equal for the three
methods. The bandwidth parameter h (see (Stordal et al., 2011)) is
0.8. The well reaches a measured depth at approximately 4551 m, but
the numerical well flow model ends right after the downhole ICVs, and
in the model inflow from the reservoirs also occur directly after the
ICVs. We update the flowrates every 10 min for approximately 17 h.
We also run the example three times using different random seeds.

In this context, the flowrates correspond to Xk in Eq. (1), and the
stochastic model is given by a multiple switching model character-
ized by a few possible multiplication values:

X X T U η i r= ( , , , ), = 1,…, .k i k i
pr

i i+1, , (21)

Assuming r parameters, X X X= ( , … )k k k r
T

,1 , is the vector of the un-
known parameters (flowrates). Further, the multiplication values are

Fig. 12. Estimated flowrates using ASGM minus estimated flowrates using AGM.
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given by the vector Ui, and Tpr is a probability matrix used to select a
given value from Ui. The well flow model corresponds to the operator

in Eq. (2). For additional details regarding both the switching model
and the well flow model, we refer the papers (Lorentzen et al., 2014,
2016). For the rest of Section 3 we represent unknown parameters by
Qk, indicating flowrates.

We use three multiplication values for the flowrates, given by

U i= (0.95, 1, 1.05), = 1, 2.i (22)

We use the same three multiplication values for both rates. The
transition probabilities is a 3×3 matrix with equal rows, where each
row is given by (0.1, 0.8, 0.1). The standard deviation for the
(constant) Gaussian error term is set to σ = 0.04.

Initially, the gas flowrates are 1 kg/s in both the mainbore and the
lateral. The flowrates are then ramped up to 4 kg/s in the mainbore and
6 kg/s in the lateral. The ramping starts first in the lateral, and this
branch has the steepest gas rate inclination. The results for the three
runs are shown on Fig. 4. The difference between AGM, ASIR and
ASGM is not large, but the most important improvement can be seen
during the gas rate increase, where the AGM and ASIR underestimates
the true value. This is clearly seen by comparing the average (over
simulation runs) root mean square errors (RMSE) for the estimated
flowrates. Fig. 5 shows the RMSE for the filters as function of time. The
sum of the error (denoted SRMSE) decreases from 27.6 and 22.5 for
the ASIR and AGM respectively, to 17.7 for the ASGM. Most of the
difference is due to the gas inclination period, but the ASGM has better
performance also after the ramping period.

The synthetic observations and the estimated measurements are
shown on Figs. 6–8. The increasing gas flowrate leads to increased
pressure drop over the wellhead choke, resulting in higher wellhead
pressure (upper left plot). Higher wellhead pressure, and increased
pipe wall friction, leads to higher downhole pressure and higher
temperatures. The estimated measurements are shown as blue
lines. The two filters produce almost the same results, but the AGM
and ASIR returns simulated temperature observations with more
oscillations.

3.4. Full scale well model – real data

The real data are collected from the multiphase producer shown in
Fig. 3. The specification of the well and sensors are the same as used in
the previous example, except that the outlet pressure is approximately
53 bar in this case, and the actual choke and ICV openings are
different. The choke opening is shown on Fig. 9, and the well is shut
in during a period of approximately 6 h. The ICV in the mainbore is
constantly set at 75% of maximum diameter, and the ICV in the lateral
is 50% before the shut-in period, and 41% after the shut-in period. The
data are cleaned for erroneous outliers identified by zero pressure or
zero temperature, and the flowrate measurements are averaged over
10 min. The data frequency for the flowrate measurements is approxi-
mately 0.008 s−1. The data frequency for pressure and temperature is
approximately 0.03 s−1. The pressure and temperature data are inter-
polated linearly in time if sampling points do not coincide with the data
assimilation points. The measurement uncertainty is the same as for
the previous example. In this example we estimate oil, water and gas
entering the mainbore and the lateral. Except for a small amount of
water directly after the shut-in period, the water measurements are
approximately zero. It is however important to continuously estimate
the water flowrates to detect water breakthrough at an early stage
(before it is seen from the wellhead measurements). Initially we split
the measured wellhead flowrates equally, and use the values as initial
flowrates in the mainbore and the lateral. We then spin up the
ensemble for 10,000 s to generate an initial state.

We use three multiplication values for the flowrates, given by

U i= (0.95, 1, 1.05), = 1,…,6.i (23)

We use the same three multiplication values for all rates. The transition
probabilities is a 3×3 matrix with equal rows, where each row is given
by (0.1, 0.8, 0.1). The Gaussian error terms are in this case set to 1% of
the corresponding measured total flowrate at the outlet. E.g. if the
measured oil rate is qk, then σ q= /100k i k, , for i corresponding to
variables representing oil rates in the mainbore and lateral. The
number of particles is 80 in this case, and the bandwidth parameter
h is 0.8. We update the flowrates every 10 min for approximately 96 h.
Note that relatively frequent updates are selected here to capture most
of the dynamic behavior. In this case only the ASGM is run using the
real observations, as we do not have the true solution in this case, and
are not able to compute the root mean square errors.

The filter methodology provides a standard deviations for the
estimates, but as the parameters have different magnitude it is difficult
to use these measures alone to determine the reliability for each
parameter. Instead, we use the coefficient of variation (cv), which is a
relative standard deviation, given by

c Q
Q e

= Std( )
(Mean( ) + 1 − 3)

.v i
i

i
,

(24)

We consider three levels of reliability for the flowrates: Good if
c ≤ 0.075v ; Fair if c0.075 < ≤ 0.15v ; and Bad otherwise. In the following
we use the colors green, orange and red to indicate these categories.

Fig. 10 shows oil, water and gas flowrates entering the mainbore
(upper row) and the lateral (lower row). A particularly difficult dataset
is selected, due to the variations in the choke (see Fig. 9) and the shut-
in period. It is possible to distinguish flowrates in the mainbore and the
lateral due to the pressure and temperature difference before and after
the downhole ICVs. The gas flowrates have higher influence on the
pressure drop over the ICV than the oil flowrates, and the estimated gas
flowrates are therefore generally more reliable (green areas on Fig. 10).
It is also possible to see the effect of the lateral ICV variation that shift
from 50% opening to 41%. The gas flowrate is higher in the lateral than
the mainbore before the shut-in period. After the shut-in period, and
the change in the lateral ICV opening, the situation is opposite.

The estimated and real observations are shown on Fig. 11. It is
generally small differences, but deviations are seen for pressure and
temperature during the shut-in period. These are mainly due to
numerical inaccuracies associated with the transition from a pressure
boundary condition to zero-flow boundary condition at the outlet,
when the choke is closed, and the opposite transition of boundary
conditions when the choke opens.

For comparison, we have run the standard AGM filter on the same
dataset. Fig. 12 shows the difference between the estimated flowrates,
e.g. Q Q−ASGM AGM. The results prior to the shut-in period (approxi-
mately 40 h) show that the filters have almost equal performance, and
the differences are probably due to stochastic and numerical effects.
However, during and after the shut-in period the differences for the gas
flowrates are larger, and at some point almost 5 kg/s. Towards the end
of the assimilation period we can also identify trends in the difference
for the estimated oil flowrates.

4. Conclusions

Motivated by the auxiliary sequential importance sampling (ASIR)
filter, we have deduced the theory for a transformed particle filter.
Further, we have applied a specific transformation given by the
sequential Gaussian mixture filter, resulting in a new estimator
denoted by auxiliary sequential Gaussian mixture (ASGM) filter. The
theory for the transformed particle filter is general, and any transfor-
mation T aiming at minimizing the variance of the weights can be
applied. In the same framework, we have also shown the formula for
computing the weights for the optimal sequential importance sampling
(OSIR) filter. The filters have been compared for several synthetic cases
of varying complexity. The ASGM has superior performance. The final
example shows the results using real measurements from a multiphase
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producer, during a period of large choke variations. The estimated
flowrates are credible, and the data match is good. Given proper
selection of the bandwidth parameter h, the suggested approach
improves performance when estimating parameters in cases with large
variations of the observed variables.

Acknowledgments

The authors from IRIS acknowledge ENGIE E& P Norge AS for
financial support through the Project Advanced Transient Flowrate
Allocation (Grant No. 710.4116).

References

Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., 2002. A tutorial on particle filters
for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50
(2), 174–188.

Bengtsson, T., Snyder, C., Nychka, D., 2003. Toward a nonlinear ensemble filter for high-
dimensional systems. J. Geophys. Res.—Atmos. 108 (D24), ARTN 8775.

Bengtsson, T., Bickel, P., Li, B., 2008. Curse-of-dimensionality revisited: collapse of
particle filter in very large scale systems. Probab. Stat. 2, 316–334.

Beskos, A., Crisan, D., Jasra, A., On the stability of sequential Monte Carlo methods in
high dimensions. arXiv:1103.3965.

Carpenter, J., Clifford, P., Fearnhead, P., 1999. Improved particle filter for nonlinear
problems. IEEE Proc. Radar Sonar Navig. 146 (1), 2–7.

Chen, R., Liu, J.S., 2000. Mixture kalman filters. J. R. Stat. Soc. Ser. B Stat. Methodol. 60,
493–508.

Chorin, A., Morzfeld, M., Tu, X., 2010. Implicit particle filters for data assimilation.
Commun. Appl. Math. Comput. Sci. 5 (2), 221–240.

Crisan, D., Li, K., 2015. Generalised particle filters with gaussian mixtures. Stoch.
Process. Appl. 125 (7), 2643–2673.

Doucet, A., Godsill, S., Andrieu, C., 2000. On sequential monte carlo sampling methods
for bayesian filtering. Stat. Comput. 10, 197–208.

Doucet, A., de Freitas, N., Gordon, N. (Eds.), 2001. Sequential Monte-Carlo Methods in
Practice. Springer-Verlag, New York.

Doucet, A., del Moral, P., Jasra, A., 2006. Sequential monte carlo samplers. J. R. Stat.
Soc. B 68 (3), 411–436.

Doucet, A., De Freitas, N., Murphy, K., Russell, S., 2000. Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In: Proceedings of the Sixteenth conference
on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., pp. 176–
183.

Elgammal, A., Duraiswami, R., Davis, L.S., 2003. Efficient kernel density estimation
using the fast gauss transform with applications to color modeling and tracking.
IEEE Trans. Pattern Anal. Mach. Intell. 25 (11), 1499–1504.

Evensen, G., 2004. Sampling strategies and square root analysis schemes for the EnKF.
Ocean Dyn. 54 (6), 539–560.

Evensen, G., 2007. Data Assimilation: The Ensemble Kalman Filter. Springer-verlag,
Berlin, Heidelberg, (ISBN 978-3-642-03711-5).

Fearnhead, P., 1998. Sequential Monte Carlo Methods in Filter Theory (Ph.D. thesis). ,
University of Oxford.

Frei, M., Künsch, H.R., 2013. Mixture ensemble Kalman filters, Computational Statistics
and Data Analysis http://dx.doi.org/10.1016/j.csda.2011.04.013.

Gordon, N., 1993. Bayesian Methods for Tracking (Ph.D. thesis). . University of London.
Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R.,

Nordlund, P.-J., 2002. Particle filters for positioning, navigation, and tracking. IEEE

Trans. Signal Process. 50 (2), 425–437.
Hoteit, I., Pham, D.T., Triantafyllou, G., Korres, G., 2008. A new approximate solution of

the optimal nonlinear filter for data assimilation in meteorology and oceanography.
Mon. Weather Rev. 136 (1), 317–334. http://dx.doi.org/10.1175/2007MWR1927.1,
(ISSN 0027-0644).

Kotecha, J.H., Djurić, P.M., 2003. Gaussian sum particle filtering. IEEE 51 (10),
2602–2612.

Künsch, H.R., 2005. Recursive monte carlo filters: algorithms and theoretical analysis.
Ann. Stat. 33 (5), 1983–2021.

Li, T., Corchado, J.M., Bajo, J., Sun, S., Paz, J.F.D., 2016. Effectiveness of bayesian
filters: an information fusion perspective. Inf. Sci. 329, 670–689. http://dx.doi.org/
10.1016/j.ins.2015.09.041, (ISSN 0020-0255).

Liu, B., Ait-El-Fquih, B., Hoteit, I., 2016. Efficient Kernel-Based Ensemble Gaussian
Mixture Filtering. Monthly Weather Review, Published online February 2016.
http://dx.doi.org/10.1175/MWR-D-14-00292.1.

Lorentzen, R.J., Stordal, A.S., Luo, X., Nævdal, G., 2016. Estimation of production rates
using transient well flow modeling and the auxiliary particle filter - full-scale
applications. SPE Prod. Oper. 31 (02), 163–175. http://dx.doi.org/10.2118/176033-
PA.

Lorentzen, R.J., Stordal, A.S., Nævdal, G., Karlsen, H.A., Skaug, H.J., 2014. Estimation of
production rates using transient well flow modeling and the auxiliary particle filter.
SPE J. 19 (1), 172–180. http://dx.doi.org/10.2118/165582-PA, (SPE-165582-PA).

Lorenz, E., 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130–141.
Mandel, J., Beezley, J., 2009. An ensemble kalman-particle predictor-corrector filter for

non-Gaussian data assimilation. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada,
G., Dongarra, J., Sloot, P., (Eds.), ICCS 2009: Computational Science. vol. 5545 of
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 470–478.

Moral, P.D., Jacod, J., 2004. The Monte-Carlo Method for filtering with discrete time
observations: central limit theorems. In: Lyons T.J., Salisbury T.S., (Eds.), The Fields
Institute Communications, Numerical Methods and Stochastics. American
Mathematical Society.

Musso, C., Oudjane, N., Le Gland, F., 2001. Improving regularised particle filters. In:
Sequential Monte Carlo Methods in Practice. Springer, pp. 247–271.

Papadakis, N., Mèmin, E., Cuzol, A., Gengembre, N., 2010. Data assimilation with the
weighted ensemble Kalman filter. Tellus Ser. A Dyn. Meteorol. Oceanogr. 62 (5),
673–697. http://dx.doi.org/10.1111/j.1600-0870.2010.00461.x.

Pasha, S.A., Vo, B.-N., Tuan, H.D., Ma, W.-K., Gaussian, A., 2009. Mixture PHD filter for
jump Markov system models. IEEE Trans. Aerosp. Electron. Syst. 45 (3), 919–936.

Pitt, M., Shephard, N., 1999. Filtering via simulation based auxiliary particle filters. J.
Am. Stat. Assoc. 94, 590–599. http://dx.doi.org/10.1080/
01621459.1999.10474153.

Reich, S., 2013. A nonparametric ensemble transform method for Bayesian inference.
SIAM J. Sci. Comput. 35 (4), A2013–A2024.

Ristic, B., Arulampalam, S., Gordon, N., 2004. Beyond the Kalman filter. Artech House,
45–47, (ISBN 978-1580536318).

Silverman, B.W., 1986. Density Estimation for Statistics and Data analysis. Chapman and
Hall, (ISBN 978-0412246203).

Stordal, A., Karlsen, H., Nævdal, G., Oliver, D., Skaug, H., 2012. Filtering with state space
localized Kalman gain. Physica D. 241 (13), 1123–1135.

Stordal, A.S., Karlsen, H.A., Nævdal, G., Skaug, H.J., Vallès, B., 2011. Bridging the
ensemble kalman filter and particle filters: the adaptive gaussian mixture filter.
Comput. Geosci. 15, 293–305.

Stordal A.S., Lorentzen R.J., 2012. An iterative version of the adaptive Gaussian mixture
filter. In: Proceedings of the EAGE European Conference on the Mathematics of Oil
Recovery. Biarritz, France, 2012.

Stordal, A.S., 2011. Sequential Data Assimilation in High Dimensional Nonlinear
Systems (Ph.D. thesis). . University of Bergen.

Vo, B.-N., Ma, W.-K., 2006. The gaussian mixture probability hypothesis density filter.
IEEE Trans. Signal Process. 54 (11), 4091–4104.

R.J. Lorentzen et al. Computers & Geosciences 102 (2017) 34–44

44

http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref1
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref1
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref1
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref2
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref2
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref3
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref3
http://arXiv:1103.3965
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref4
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref4
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref5
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref5
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref6
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref6
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref7
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref7
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref8
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref8
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref9
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref9
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref10
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref10
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref11
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref11
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref11
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref12
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref12
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref13
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref13
http://dx.doi.org/10.1016/j.csda.2011.04.013
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref14
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref14
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref14
http://dx.doi.org/10.1175/2007MWR1927.1
http://dx.doi.org/10.1175/2007MWR1927.1
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref16
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref16
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref17
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref17
http://dx.doi.org/10.1016/j.ins.2015.09.041
http://dx.doi.org/10.1016/j.ins.2015.09.041
http://dx.doi.org/10.1175/MWR-D-14-00292.1
http://dx.doi.org/10.2118/176033-PA
http://dx.doi.org/10.2118/176033-PA
http://dx.doi.org/10.2118/165582-PA
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref21
http://dx.doi.org/10.1111/j.1600-0870.2010.00461.x
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref23
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref23
http://dx.doi.org/10.1080/01621459.1999.10474153
http://dx.doi.org/10.1080/01621459.1999.10474153
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref25
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref25
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref26
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref26
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref27
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref27
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref28
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref28
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref29
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref29
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref29
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref30
http://refhub.elsevier.com/S0098-3004(17)30130-9/sbref30

	An auxiliary adaptive Gaussian mixture filter applied to flowrate allocation using real data from a multiphase producer
	Introduction
	Method and theory
	Auxiliary transform particle filter
	Optimal importance function
	Gaussian mixtures
	Transform via Gaussian mixture

	Results
	One dimensional state space model
	The Lorenz63 model
	Full scale well model – synthetic data
	Full scale well model – real data

	Conclusions
	Acknowledgments
	References




