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A B S T R A C T

The analysis of the growth of initial perturbations in dynamical systems is an important aspect of predictability
theory because it informs on error growth. The Conditional Nonlinear Optimal Perturbation (CNOP) method is
an approach where the nonlinear growth of perturbations is determined over a certain lead time. The CNOPs
can be found by a nonlinear constrained optimisation problem, which is typically solved using sequential
quadratic programming (SQP), a routine that requires an adjoint model. Such adjoint models are not always
available and hence we here study the performance of an adjoint-free optimisation method (COBYLA), in
combination with a dimension reduction technique, to determine CNOPs. The new technique is applied to a
quasi-geostrophic model of the wind-driven ocean circulation. We find that COBYLA is able to find good
approximations of CNOPs, albeit at a higher computational cost than conventional adjoint-based methods.

1. Introduction

In weather prediction and climate projection, the future state of a
model is determined by evolving an ensemble of initial states forward.
The spread of the states obtained from different ensemble members
gives a measure of the uncertainty of the forecast (Slingo and Palmer,
2011). The European Centre for Medium-Range Weather Forecasting
(ECMWF) uses linear singular vectors (LSV) for generating the
ensemble members. The LSV method is based on a linearisation of
the numerical weather prediction model, the tangent linear model
(TLM), and provides the (linearly) fastest growing perturbations over a
certain lead time.

In many applications, however, nonlinear effects are important for
error growth and dominate the development of perturbations, even for
short lead-times (Mu et al., 2003). Therefore, nonlinear extensions of
the LSV method have been developed to determine the fastest growing
initial perturbations. Examples are methods to determine nonlinear
singular vectors (NSVAs) (Mu, 2000), and conditional nonlinear
optimal perturbations (CNOPs) (Mu et al., 2003). The CNOP method
has been applied successfully to many problems in climate dynamics,
such as the wind-driven ocean circulation (Terwisscha van Scheltinga
and Dijkstra, 2008), the thermohaline ocean circulation (Zu et al.,
2016) and El Niño Duan et al.

A CNOP can be obtained by maximising an objective function
subject to constraints and this constrained optimisation problem is

usually solved by the Sequential Quadratic Programming (SQP)
method (Mu et al., 2003). However, SQP is only applicable for models
for which an adjoint model is available (Nocedal and Wright, 2006).
This adjoint model is used to determine gradients of the objective
function with respect to the initial condition (Kalnay, 2003). In this
way, the initial condition which optimises the objective function can be
efficiently determined. However, for many models the calculation of the
adjoint model is not straightforward and derivative-free methods for
optimisation are therefore needed.

Recently, particle swarm optimisation (PSO) has been successfully
applied for determining CNOPs of a model of intermediate complexity
(the Zebiak and Cane (ZC) model (Zebiak and Cane, 1987) of the
equatorial Pacific climate to find optimal precursors of El Niño events
(Mu et al., 2015). PSO is inspired by the behaviour of swarms, such as
flocks of birds or schools of fish, in which each individual seeks to
improve its position while responding to the behaviour of its neigh-
bours. The computational burden of PSO rapidly increases when the
dimension of the search space is increased, which is known in general
as the curse of dimensionality. Therefore, in order to apply PSO to
large-dimensional dynamical systems, dimension reduction is neces-
sary.

There have been several studies to compute CNOPs using model
reduction techniques. Sun et al. (2010) transformed the constrained
optimisation problem into an unconstrained optimisation problem by
reducing the dimension. A traditional unconstrained optimisation
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algorithm could then be applied to obtain the CNOP. Sun and Mu
(2013) applied a differential evolution method (Storn and Price, 1997),
which is an adjoint-free method, to compute the CNOP. In addition, in
Chen et al. (2015) an SVD-based ensemble projection algorithm was
applied to reduce the dimension of the optimisation problem to
compute the CNOP. Mu et al. (2015) use a combination of PCA
(principal component analysis) in conjunction with PSO. Although
they show that the CPU time is shortened by reducing the dimension of
the search space, this often leads to a less accurate CNOP, as compared
to the SQP solution. However, for a large enough dimension of the
search space, the spatial structure of the CNOPs found with PSO is
comparable to the CNOPs found by SQP. For the Zebiak-Cane model
used in Mu et al. (2015), the optimal size of the search space is found to
be 30, whereas the original dimension of the search space is 1080. Even
with this dramatic reduction of the search space dimension, the CPU
time of the PCA-based PSO is approximately three times larger than
that using SQP.

A disadvantage of PSO is that it is a highly heuristic method that
has many free, problem-specific, parameters that need to be tuned. In
this paper, we explore the use of the Constrained Optimisation by
Linear Approximation (COBYLA) method (Powell, 1994) for the
computation of CNOPs. COBYLA is based on the Nelder-Mead simplex
method (Nocedal and Wright, 2006) that is adapted for constrained
optimisation. This method has virtually no free parameters and there-
fore has application potential for a wide range of numerical weather
and climate models. Here, the performance of a combination of
COBYLA and a dimension-reduction method is compared to SQP, in
terms of accuracy and speed, when applied to a quasi-geostrophic
ocean model.

The paper is organized as follows. In Section 2, the theory behind
CNOPs and the quasi-geostrophic ocean model will be briefly de-
scribed. In Section 3 we will recall the algorithms behind COBYLA
(Powell, 1994), as well as the dimension-reduction methodology. In
Section 4, the effect of varying dimensionality on the performance of
COBYLA is discussed. We will show that COBYLA is able to compute
good approximations to the CNOPs, but at higher computational cost
(or with lower accuracy) than with SQP. We will end with a discussion
(Section 5) where the issue of the applicability of the new adjoint-free
method to solving CNOPs in high-dimensional dynamical systems is
addressed.

2. Formulation

For convenience, we shortly repeat in Section 2.1 the theory of the
CNOP (Mu et al., 2003) and the equations for the ocean model (Section
2.2) (Terwisscha van Scheltinga and Dijkstra, 2008).

2.1. CNOP

Assume that the dynamical system can be described by the
following finite dimensional system of ordinary differential equations
(ODEs)

w w
t

F∂
∂

+ ( ) = 0,
(1a)

w w| = ,t=0 0 (1b)

where w t( ) is the state vector, ( w t t, ) ∈ × [0, ]d
e . Furthermore, F is a

nonlinear operator, w0 is the initial state and t ∈e
+ is the lead time.

Suppose the initial value problem (1) is well-posed and is the
nonlinear propagator from 0 to time te, so w wt t( ) = ( )( )e e0 is well-
defined. Let w t( ) and w t( )∼ be two solutions of the system, with initial
conditions w0 and w w+0 0, respectively. Choose w0 a specific (in our
case, steady state) solution to the system and w0 a small initial
perturbation to this state. Integrating the state and the perturbed state
is done by applying the nonlinear propagator, i.e. w t( )( )e0 and

w w t( + )( )e0 0 .
The goal is to find an initial perturbation which causes the largest

growth after time te, as measured in a certain norm. The conditional
nonlinear optimal perturbation (CNOP) is formally defined as the
perturbation wδ

0 at which the objective function

w w w wJ t t( ) = ∥ ( + )( ) − ( )( )∥ ,e e0 0 0 0 2
2 (2)

attains its maximum value under the constraint that w δ∥ ∥ ≤0 . Here,
∥·∥2 denotes the standard Euclidian norm and ∥·∥ is an appropriate,
problem dependent, norm. To find the CNOPs of a dynamical system
we now need to solve the following constrained optimisation problem

w wJ δmax ( ) subject to ∥ ∥ ≤ .
w

0 0
0 (3)

2.2. Quasi-geostrophic model

As a test problem, we use a quasi-geostrophic model of the
midlatitude wind-driven ocean circulation. The quasi-geostrophic
model is a cornerstone model not only for the ocean circulation but
also for the midlatitude atmospheric circulation. Here, the model
describes the flow in a rectangular ocean basin of size L×L and depth
D. This basin is situated on a midlatitude β-plane with θ N= 45°0 ,
f Ω θ= 2 sin0 0 where Ω is the angular frequency of the Earth's rotation.
The meridional gradient of the Coriolis parameter is denoted by β0 and
x y, are local Cartesian (zonal and meridional) coordinates. We assume
a constant density ρ0 of the ocean water and a wind-forcing
τ τ τ x y τ x y= [ ( , ), ( , )]x y

0 , where τ0 is a typical amplitude.
The governing equations are made dimensionless by using the

horizontal length scale L, the vertical length scale D, a horizontal
velocity scale U and an advective timescale L U/ . The dimensionless
barotropic quasi-geostrophic model of the flow for the vorticity ζ and
the geostrophic stream function ψ is

⎡
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(4a)

ζ ψ= ∇ .2 (4b)

The horizontal velocities are given by

u ψ
y

v ψ
x

= −∂
∂

, = ∂
∂

.
(5)

The parameters in the governing equations are given by the Reynolds
number Re, the planetary vorticity gradient parameter β, and the wind
stress forcing strength, ατ . These are defined as

Re UL
A

β
β L
U

α τ L
ρDU

= , = , = .
H

τ
0

2
0

2

Here g is the gravitational acceleration, AH is the lateral friction
coefficient. We choose U τ ρDβ L= /( )0 0 (the so-called Sverdrup scaling)
from which it follows that α β=τ . All parameter values are chosen equal
to the values in Terwisscha van Scheltinga and Dijkstra (2008).

Finally, the boundary conditions are given by

ψ ψ
x

x x= ∂
∂

= 0 at = 0 and = 1,
(6a)

ψ ζ y y= = 0 at = 0 and = 1. (6b)

which represent no-slip at the continental boundaries x = 0, 1 and slip
at y = 0, 1. In this paper, the (north-south) symmetric dimensionless
wind-stress profile is prescribed as

τ
π

πy

τ

= − 1
2

cos(2 ),

= 0.

x

y
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2.3. Numerical implementation

The spatial discretisation of the QG model is done using second-
order central differences and the grid that is used in the implementa-
tion is N M× , with grid sizes x NΔ = 1/ and y MΔ = 1/ . This implies that
our state vector w, which consists of the ψ values at the grid points, has
a dimension of NM. Time integration is done using the second-order
implicit Crank-Nicolson (Terwisscha van Scheltinga and Dijkstra,
2008) scheme with a time step Δt . To apply the theory of CNOPs to
this model, the nonlinear propagator is required. This can be
calculated by solving the governing equations for a small time step Δt .
The action of the propagator on a specific initial condition now requires
t t/Δe timesteps.

The norm ∥·∥ that is implemented is the kinetic energy norm as
used in Terwisscha van Scheltinga and Dijkstra (2008), which is based
on the kinetic energy ∫ u vE x y= ( + )d d

V
1
2 0

2
0
2 , where u and v are the

vectors of zonal and meridional velocities at every grid point. For the
discretised quasi-geostropic model with state vector w the kinetic
energy norm is calculated as follows. Let K be a linear operator that
maps w (consisting of values of the streamfunction) to the velocity
vector according to the discretized equations (5), which express how
the velocity is calculated from the streamfunction. The kinetic energy
norm1 is then given by

w Kwx y∥ ∥ = 1
2

Δ Δ ∥ ∥ .2
2

(7)

3. Adjoint-free approach

In Terwisscha van Scheltinga and Dijkstra (2008), the CNOPs of the
quasi-geostrophic model, using the same norms as above, were
determined using the SQP method (Nocedal and Wright, 2006).
Indeed, for this model, an adjoint can easily be determined by
transposing the Jacobian matrix of the model (which is needed for
the Crank-Nicholson scheme). In this section, we will present the new
adjoint-free method to determined the CNOP of this model.

3.1. COBYLA

Constrained optimisation by linear approximation, COBYLA, is an
optimisation algorithm that iteratively defines a simplex on which the
objective function is linearised, by linear interpolation between the
values at the vertices, and optimised. After this a new simplex is
constructed by expanding, contracting or reflecting the current sim-
plex. The new simplex is chosen in order to improve the objective value
or the shape of the simplex. The size of the simplex edges is eventually
reduced during the process, starting from size ρstart. The process
terminates when the edges have size ρend. An illustration of the
COBYLA process in two-dimensions is shown in Fig. 1. The constraint
is implemented using a penalty function, which is adapted during the
iteration process. COBYLA can handle very general nonlinear con-
straint conditions, as within each iteration, these are approximated by
linear constraints. For example, for a constraint c x u( ) ≤ with

 c: →n m and u ∈ m, at every iteration xk, the constraint is
approximated through c x x x u∇ ( ) ( − ) ≤k

T
k .

The method is initialised from a position in the search space,
randomly chosen from a uniform distribution. One of the basic
methods underlying COBYLA is the Nelder-Mead (Nocedal and
Wright, 2006) method. This convergence of this method has been
proved for strictly convex functions in one and two dimensions
(Lagarias et al., 1998). This clearly does not apply to our objective
function, but Nelder-Mead is widely used and generally shows good

convergence results (Nocedal and Wright, 2006). Unfortunately, there
is no general rule for choosing ρend as the size of the simplex is
measured as an absolute Euclidian distance between two solution
vectors. In practice the Euclidian distance may not be a natural way to
measure the distance between two solutions, as this disregards any
physical interpretation the solution may have. The best one can do is to
investigate several solutions as the iterations proceed and decide when
to stop (and which one to use) based on expert knowledge of the
application. A more detailed description of the COBYLA method can be
found in Powell (1994) and its application here to computing the CNOP
is provided in Appendix B3.

3.2. Dimension reduction strategy

Because in general derivative-free optimisation algorithms do not
perform very well on large-dimensional search spaces, dimension
reduction is applied before using COBYLA. As argued in Osborne and
Pastorello (1993), in a forced-dissipative system like the quasi-geos-
trophic ocean model, equilibrium states can often be embedded into
low-dimensional subspaces. Properties of this space can, for example,
be determined from the analysis of the covariances of a long transient
simulation of the model (Osborne and Pastorello, 1993). Principle
Component Analysis (PCA) is a widely used and effective dimension
reduction method Hannachi (2004).

From the matrix W w w wt t t= [ ( ), ( ),…, ( )]K0 1 consisting of states of a
long time series, the principal components (PCs) are obtained using an
eigenvalue decomposition of the matrix WWT , i.e.,

WW a aλ=T

The eigenvectors ai, i d= 1,…, obtained this way are called Empirical
Orthogonal Functions (EOFs). The EOFs corresponding to the largest k
eigenvalues account for a fraction of the variance in the data equal to
the fraction of the sum of the corresponding eigenvalues and the sum of
all eigenvalues. So PCA is a reduction method that captures as much
variance as possible. The principal component ci corresponding to the
EOF ai is the projection of W onto this EOF:

c W a= .i
T

i

Hence, any state w can be approximated as

∑w w aα≈ = ,R
i

k

i i
=1

where wR is the reduced state, ai is the ith EOF and αi is the
contribution of ai to wR. When k = d, the coordinate transformation
is exact and w w=R .

A step-by-step guide for the implementation of COBYLA in
combination with PCA can be found in Appendix B.

4. Results

In this section we will compare the performance of the adjoint-free
method (presented in Section 3) to the adjoint-based method SQP as
applied to computing the CNOPs of the quasi-geostrophic ocean model
(Section 2).

Fig. 1. Illustration of COBYLA algorithm in two dimensions. The initial simplex with
edges of size ρstart is denoted by 1, subsequent simplexes in light blue are denoted by 2
and 3. The final simplex has edge length ρend.

1 Note that this is actually a 2-seminorm. However, it can still be used to measure the
constraint and objective value.
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4.1. Standard case

The bifurcation diagram of the quasi-geostrophic model versus the
Reynolds number (Re) was presented in Terwisscha van Scheltinga and
Dijkstra (2008) for a grid resolution of N = 60 and M = 40 (which
provides sufficiently accurate results). Up to the first pitchfork bifurca-
tion (at about ReP = 30) there is a unique anti-symmetric steady state
solution. For Re Re> P, there are at least two stable steady asymmetric
solutions and one unstable anti-symmetric solution. We choose a
solution from both the unique (Re = 25) and from the multiple
equilibrium (Re = 50) regime. The steady states of the model at these
values of Re are shown in the Figs. 2a and b, respectively.

In the transient calculations with the model, we choose a time step
tΔ = 0.001, which corresponds to about 1.65 days. The CNOPs are

calculated with a constraint condition δ = 0.1 and te = 6.6 days (4 time
steps). The CNOPs for these settings, as calculated by SQP, are shown
in Fig. 3. In Fig. 4 the value of the objective function between 0 and te
shows the growth of the CNOP in time. The SQP algorithm needs
approximately 600 objective function calls to find the CNOP for Re =
25, and 200 objective function calls to find the CNOP for Re = 50. The
solution of the SQP algorithm is reliable, as the algorithm performs
very consistently. In Terwisscha van Scheltinga and Dijkstra (2008) the
solution is assumed to be the global maximum; in this study this
assumption is made as well.

4.2. Dimension reduction

To use PCA, a training set of stream function fields is produced by

running the model for 10 years with an additional noise on the wind-
stress, starting from each steady state. The dimensionless zonal wind
stress field used is τ π πy r ζ πy= −1/(2 ) cos (2 ) + sin (2 )x

t where rt = 0.1
can be considered as the amplitude of the noise and ζ is a random
variable from a Gaussian distribution with mean 0 and variance 1. Each
column of the training set is a state vector at a certain time. All rows of
the training set are centered (by subtracting the temporal mean of the
state at each grid point), to obtain the centered training set
W w w wt t t= [ ( ), ( ),…, ( )]K0 1 .

In both cases Re = 25 and Re = 50, a training set of length K = 500
is used. The CNOPs as calculated with SQP are projected onto the EOFs

Fig. 2. Stream function of steady states of the quasi-geostrophic model. (a) The anti-symmetric state at Re = 25. (b) Jet-up state asymmetric state at Re = 50.
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Fig. 3. CNOP with δ = 0.1 and t =e 6.6 days for the steady states as in Fig. 2. The colors indicate the dimensionless stream function values at the grid points and x y, are the

dimensionless spatial coordinates. (a) Re = 25. (b) Re = 50.
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derived from these data and the contribution of the principal compo-
nents to the CNOP are shown in Fig. 5. The contribution αi of EOF ai is
calculated as w aα = ·0

δ
i i, where w0

δ indicates the CNOP. Both for Re = 25
and for Re = 50 we observe a steep decrease of the αi for the first 50
principal components. The values of αi for i 200 and 400 is larger for Re
= 50 than for Re = 25. From 500 principal components onward the
values of αi seem comparable again for both values of Re. However, we
are not able to draw strong conclusions about the differences in the
projections for both Reynolds numbers. It should be noted that the
variance of the training sets is small. Only as few as 10 PCs are needed
to account for more than 90% of the total variance in the data sets (for
both Re = 25 and Re = 50). The number of PCs actually used in the
application of COBYLA will be indicated below by P.

4.3. Performance of COBYLA

The COBYLA routine has been implemented using ρ = 0.1start and
ρ = 10end

−4. All results are obtained by applying the optimisation
method 10 times to the problem and by reporting the average and
best solution. For one specific case, Re = 25 and P = 100, the
optimisiation is repeated 100 times. The results are not significantly
different than those for 10 times and therefore using 10 simulations is
considered sufficient to address the accuracy of the approximation of
the CNOP. Apart from the objective value and number of objective
function calls also an ‘error norm’, which is a measure for the error in
the CNOP solution obtained with respect to the SQP solution for that
problem, is determined. The error E is defined as

w w
w

E =
∥ − ∥

∥ ∥
,C SQP

SQP

2
2

2
2

where wC is the CNOP solution found by COBYLA and wSQP is the CNOP
solution as found by SQP. Actually, the CNOPs come in pairs {w w, −δ δ

0 0 }
which both have the same objective function value. As COBYLA could

find either of these solutions, the error E is calculated with respect to
the closest of one of these solutions.

The error E is included because in this case our interest does not
focus on the best objective value (in which case the objective value
would be sufficient to measure the accuracy of the methods) but in the
CNOP (initial perturbation) that yields this objective value. This means
that if the objective value is nearly as good as the global maximum
value, but the value is found at a local maximum far from the global
maximum, the solution will not resemble the CNOP at all. Indeed, the
performance of the method can be low even though the objective value
is nearly perfect. The error E determines how close the solution is to
the CNOP obtained by the SQP method. The graphical results that are
plotted below are also included as Tables in Appendix A.

The results for Re = 25 are shown in Fig. 7 using different values of
P. The minimum number of principal components needed to find a
solution at the global optimum is about P = 80. However, using P = 100
leads to better results, and 150 principal components or more is almost
a guarantee for finding the global optimum. Of course using more
principal components also leads to a much more objective function
calls, as more principal components lead to more dimensions in the
search space. A typical example of a CNOP stream function pattern for
P = 100 is shown in Fig. 6a, showing quite a good agreement with the
one computed using the SQP method (cf. Fig. 3a).

It is interesting that the solution for P = 30 is significantly closer to
the correct solution than the solution at P = 50 which is probably due to
a poor convergence of the EOF decomposition of the CNOP. From
Fig. 7c, it is observed that for P = 100 the confidence interval is
relatively large as about half of the simulations converge to a local
optimum instead of to the CNOP. It should also be noted that, even
though not very well visible in Fig. 7c, a slight increase in the width of
the confidence interval occurs for P = 250 (see Table 1 in Appendix A).

The results for Re = 50 are shown in Fig. 8 using P = 50, 100 and
200. From Fig. 8 a and b we again observe an increase in objective
function value and number of objective function calls as the number of
principal components included increases. A typical example of a CNOP
stream function pattern for P = 200 is shown in Fig. 6b, showing quite a
good agreement with the one computed using the SQP method (cf.
Fig. 3b).

However, the error E decreases only slightly compared the results
for Re = 25. This suggests that more principal components are needed
to resolve the CNOP at Re = 50, which is in accordance with the results
in Fig. 5. However, when inspecting the solutions for P = 200, the
pattern of the CNOP is overall similar to the one found by SQP. This
suggests that even though the error E is quite large, and there are clear
differences between the CNOP solutions of COBYLA and SQP, the
solutions found by COBYLA might be useful if we are only interested in
the global pattern of the CNOP.

We already indicated that up to P = 150, some solutions ap-
proached a local optimum and not the global optimum. The increase in
principal components leads to more solutions with the global optimum.
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Fig. 5. Contribution αi of the first 800 principle components to the CNOP calculated by
SQP, when projected onto the EOFs for Re = 25 (blue) and Re = 50 (red), respectively.
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Fig. 6. (a) Spatial pattern of the streamfunction for the CNOP determined with COBYLA and P = 100 for Re = 25; for this solution, the value of the error E = 0.0177. (b) Same as (a) but
now for P = 200 for Re = 50; for this solution, the value of the error E = 0.3308.
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For Re = 25 the convergence with P of only those solutions that are in
the global optimum have been investigated. These solutions are
selected by a subjective measure, i.e., inspecting the spatial pattern of
the CNOP. For these solutions (Fig. 9) the objective function is almost
converged at P = 250 and the number of objective function calls
appears to increase linearly with P. The error norm of the best solution
is decreasing with the number of principal components. The average
value is increasing from P = 250, as is its confidence interval. Only
including the solutions that converged to the global optimum, we find
that the error norm converges to a value around 0.02 instead of zero.

Because the error norm increases slightly from P = 250, more principle
components will not necessarily lead to a more accurate solution.

4.4. Restarted COBYLA

We have seen that, in general, a large dimensionality of the search
space leads to more accurate solutions, while small dimensionality leads
to fast convergence. This suggests that it might be efficient to first solve a
low dimensional version of the problem, and restarting COBYLA with a
higher dimension using the low dimensional solution as a starting point.
This has been done for a value P = 30, using this solution as initial point
for P = 100 calculations, and for initial dimensionality P = 50, using the

Fig. 7. Best and average of 10 results for COBYLA with a confidence interval of one
standard deviation, using ρ = 0.1start , ρ = 10end

−4, Re = 25 and varying the number of

PCs. The dots in (c) denote the individual runs.

Fig. 8. Best and average of 10 results for COBYLA with a confidence interval of one
standard deviation, using ρ = 0.1start , ρ = 10end

−4, Re = 50 and varying the number of

PCs. The dots in (c) denote the individual simulations.
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solution as initial point for P = 100 and P = 200 computations. For all
implementations, a small value of ρstart of 0.01 is used, as it is to be
expected that the solution is closer to the correct one than a random
solution would be. The results are seen in Fig. 10.

It is interesting that using a solution obtained in 30 dimensions as
initial point for the restart leads to good results, while using a solution
obtained in 50 dimensions does not. This is, however, in agreement
with the results in Fig. 7, where we observed that the solution with P =
30 resembles the correct solution better than the solution with P = 50.
This means that even though the objective function value of this

solution is worse, it is still a better restart point for the larger
dimensional optimisation. We also compare the COBYLA result start-
ing with P = 30 and restarting with P = 100 to the general COBYLA
result with P = 100. It can be observed that the number of objective
function calls has increased, the objective function value increased and
the error norm decreased, all within the confidence interval of the
original P = 100 solution. The number of objective function calls in
restarted COBYLA is less than that of the general COBYLA version (cf.
compare with Fig. 9b).

Fig. 9. Best and average of only the solutions that are determined with COBYLA to be in
the global optimum, with confidence interval of one standard deviation, using ρ = 0.1start ,

ρ = 10end
−4, Re = 25 and varying the number of PCs.

Fig. 10. Best and average of 10 solutions with confidence interval of one standard
deviation, using COBYLA with ρ = 10start

−2, ρ = 10end
−4, Re = 25 and using P = 100, with

as initial state the solution for P = 30 or P = 50, and for P = 200 with as initial state the
solution with P = 50. The black error bars are the solutions of COBYLA using P = 100 and
P = 200 as in Fig. 7.
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5. Summary and discussion

A new adjoint-free optimisation method for calculating CNOPs,
combining COBYLA and Principal Component Analysis (PCA) dimen-
sion reduction, was presented. The performance of this method has
been tested using a quasi-geostrophic (QG) ocean model using a
comparison with the results obtained with the adjoint-based SQP
method. We have seen that COBYLA is robust for 150 principal
components or more at Re = 25. There is no convergence yet with
200 PCs for Re = 50. This shows that for Re = 25 and Re = 50 the
objective landscape and/or the effect of dimension reduction is
significantly different. It is clear that the number of PCs does increase
with Re, as the flow shows more variability, but it is out of the scope of
this paper to determine the precise dependence of the number of PCs
on Re, if at all possible.

When comparing COBYLA to SQP in terms of performance, we see
that for robust results COBYLA needs approximately 30,000 objective
function calls, while SQP needs 200–600 calls to obtain the CNOPs to a
much higher accuracy. So SQP outperforms COBYLA in terms of both
accuracy and speed. However COBYLA is able to find the CNOPs
without the use of the adjoint model. Restarted COBYLA is an
improvement compared to general COBYLA when a good initial
solution is used for the restart, for example by using a COBYLA
solution determined within a lower dimensional search space.

Comparing our results to Mu et al. (2015), we conclude that even
though better values of the objective function are found with COBYLA
compared to SQP, the amount of dimensions required is much larger
for the QG model than for the ZC model: approximately 200 dimen-
sions for a 2400 dimensional search space for the QG model, and only

30 dimensions for a 1080 dimensional search space for the ZC model.
This results in a relatively slow algorithm compared to the PCA based
PSO of Mu et al. (2015). While their algorithm is only three times as
slow as SQP, PCA based COBYLA is approximately 100 times as slow as
SQP. The large difference in amount of principal components required
to find the CNOPs in both models is remarkable. It is likely due to the
fact that the ZC model is quasi linear (where only a nonlinearity in the
temperature equation appears and the equatorial wave dynamics is
linear) while there is a strong advective nonlinearity in the QG model.

Many other adjoint-free optimisation methods could be implemen-
ted on comparable models, to see whether they are suitable to resolve
the CNOPs. Many of these models, however, suffer from the ‘curse of
dimensionality’, which means it is hard to find a method that is known
a priori to converge also on more complex high-dimensional models,
such as general circulation models. This shows that the dimension
reduction is essential to solve these kind of problems. We have
discussed PCA as a method of dimension reduction but other methods
of dimension reduction could also be considered. For the QG model,
one could also project on eigenvectors instead of using PCs. The clear
challenge is to find an efficient algorithm for dimension reduction that
is able to resolve CNOPs of dynamical systems using COBYLA in low-
dimensional spaces, even if the model dimensionality is very large.
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Appendix A. Tables of results

Table A.1 Table A.2 Table A.3

Table A.1
Best objective value, average objective value, average number of objective function calls and average error norm with respect to SQP solution for ρ = 0.1start , ρ = 10end

−4, Re = 25 versus
the number of PCs.

#PC Best obj Mean objective Mean #Calls Mean error norm

30 0.1115 0.11143 ± 0.00002 19000 ± 7600 0.7 ± 0.1
50 0.1172 0.1170 ± 0.0003 30000 ± 23000 1.31 ± 0.09
80 0.1196 0.1191 ± 0.0004 61000 ± 34000 0.6 ± 0.4
100 0.1218 0.121 ± 0.001 140000 ± 110000 0.5 ± 0.6
150 0.1236 0.12357 ± 0.00003 320000 ± 96000 0.018 ± 0.005
200 0.1241 0.12406 ± 0.00005 430000 ± 140000 0.018 ± 0.006
250 0.1243 0.12417 ± 0.00009 580000 ± 100000 0.02 ± 0.01

Table A.2
Best objective function value, average objective function value, average number of objective function calls and average error norm with respect to SQP solution for ρ = 0.1start ,
ρ = 10end

−4, Re = 50 versus the number of PCs.

#PC Best obj Mean objective Mean #Calls Mean error norm

50 0.1524 0.15236 ± 0.00005 26000 ± 7300 0.38 ± 0.05
100 0.1668 0.1664 ± 0.0004 55000 ± 16000 0.42 ± 0.05
200 0.1731 0.1729 ± 0.0003 300000 ± 120000 0.29 ± 0.06
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Appendix B. Implementation

Here we will discuss which steps have to be taken to use COBYLA to calculate CNOPs in a dynamical system after dimension reduction. We
assume that for a certain system a model integration function exists, and that we want to calculate a CNOP in a specific norm, with constraint
boundary δ and integration time te, with respect to a certain background state wb.

B.1. PCA

For principal component analysis, we need the following steps.

1. Obtain a training set by running the model for a long period, at least 100 times te. The training set should be a matrix with columns consisting of
states: each column is a time-sample of the integration.

2. Centre the training set: subtract from each row the average of this row. This yields W , the centered training set.
3. Calculate WWT , and its eigenvalue decomposition. For example with NAG routine F01CKF (Mark 21)2 and F02FCF (Mark 21).
4. Write the eigenvectors in a file, to be read by the optimisation program. Preferably the eigenvectors are written in direction of decreasing

corresponding eigenvalue.

B.2. Working in reduced dimensionality

The search space used by COBYLA is of a reduced dimensionality. However, the model integration is done in the original dimension of the
model. Therefore we need a translation from reduced space to the original space.

1. Read the eigenvectors from the file. Read as many as the desired dimensionality in which the CNOPs are to be solved, say, the first k.
2. Write a function that projects a state w in the reduced dimensionality to a model state in the original dimension. The model state should be a sum

w w ai= ∑ ( )m i
k

i=1 where w i( ) is the ith component of the reduced state, ai is the ith eigenvector, wm is the model state, and k is the reduced dimensionality.

B.3. COBYLA

To implement COBYLA and calculate the CNOPs, we need the following steps.

1. Download the COBYLA software (for Fortran) from http://mat.uc.pt/zhang/software.html#cobyla. Example optimisation problems are included
in the code.

2. Write an implementation of the norm in which the CNOP is to be calculated, which is a function of the state (in the original dimensionality) and
returns the norm.

3. Write a function CALCFC of variable w, to be used by COBYLA, in which the objective and constraint are calculated and returned. The constraint
value wc ( ) is calculated as w wc δ( ) = ∥ ∥ −m where the implementation of the norm is used, δ is the chosen constraint boundary, and wm is the
model state obtained from the reduced state. The objective value wJ ( ) is calculated by integrating the state w w+b m for time te, integrating the
state wb for time te, subtracting the integrated states and calculating the norm of the result. Here wm is again the model state obtained from the
reduced state. Note that if wb is a steady state, of course integrating w separately is not necessary.

4. Provide COBYLA with CALCFC, a value of ρstart and ρend, an initial solution, the search space dimension and a maximum number of calls to CALCFC.
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