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A B S T R A C T

Rapidly growing topic, the discrete fracture network engineering (DFNE), has already attracted many talents
from diverse disciplines in academia and industry around the world to challenge difficult problems related to
mining, geothermal, civil, oil and gas, water and many other projects. Although, there are few commercial
software capable of providing some useful functionalities fundamental for DFNE, their costs, closed code (black
box) distributions and hence limited programmability and tractability encouraged us to respond to this rising
demand with a new solution. This paper introduces an open source comprehensive software package for
stochastic modeling of fracture networks in two- and three-dimension in discrete formulation. Functionalities
included are geometric modeling (e.g., complex polygonal fracture faces, and utilizing directional statistics),
simulations, characterizations (e.g., intersection, clustering and connectivity analyses) and applications (e.g.,
fluid flow). The package is completely written in Matlab scripting language. Significant efforts have been made
to bring maximum flexibility to the functions in order to solve problems in both two- and three-dimensions in
an easy and united way that is suitable for beginners, advanced and experienced users.

1. Introduction

Fractures are everywhere. They occur in bones, natural or artificial
materials, and literally in the entire nature; the most dominant
exposures however are associated with rocks. Under variant critical
internal and external stress conditions (i.e., stress regime) rock failures
take place which in turn result in fractured domains (CFCFF, 1996). A
fractured rock generally therefore refers to a domain that consists of
intact parts of rock also called “rock blocks” and to separations between
the blocks also called “fractures” (Goodman and Shi, 1985; Jing, 2003).
A broader classification for fractures would include all types of
separations in the rock such as faults, joints, bedding and so on.

Fractures are important as they play critical role in material
strength, rock block stability, as well as in creating pathways for fluid
and gas flow (Dverstorp, 1991; CFCFF, 1996; Berkowitz, 2002, Koyama
et al., 2009, Fadakar-A et al. 2013b-2013c). In mining (Elmo et al.,
2013, 2014), civil (Staub et al., 2002) and geothermal projects
(Hanano, 2004; Wyborn et al., 2005; Grasby et al., 2012) it is extremely
vital to study fractures for optimum and safe mineral exploitation, for
designing proper support systems in tunnels (Hernqvist, 2009) and
other underground works, and for modeling of fluid (heat) flow in heat
chambers, respectively. It is also of great importance in oil and gas
industry (Cosgrove, 1998; Nelson, 2001) particularly in unconventional
reservoirs (shale gas) where through fractures (preexist or stimulated)

the oil and gas is translated and extracted. In water reservoirs
(Zimmerman and Bodvarsson, 1996; Singhal and Gupta, 2010) the
extent and the quality of an aquifer is directly affected by the
characteristics of fractures in the host and surrounding rocks. For
mineral concentrations (Nelson, 2001) the presence of fractures prior
to or during mineralization stage dictates the type (geneses, formation)
and extent of reserves e.g., gold vein formation. Another important
application is in nuclear waste disposal sites where the host rock is
thoroughly investigated and continuously monitored for fractures and
their connectivity to maintain safety requirements and to avoid
catastrophic failures (Follin et al., 2006).

Fracture and fracture network modeling and simulations are active
researches most notably in the last decade. The recent exponential
growth in the modeling of fractured rock is greatly supported by rapid
developments in the computing hardware and software. A typical
model of small fracture network consists of thousands of fractures
which expectedly results in several folds more complexity in inter-
connectivity between fractures and other characteristics. The modeling
and simulations of fractures and fracture network are commonly
carried out in two- or three-dimensional space (Dershowitz et al.,
2000; Jing and Stephansson, 2007; Fadakar-A, 2014). The choice of
dimension is determined primarily by the nature of study and expected
goals as well. Nevertheless, due to extensive complexity in geometrical
modeling in three-dimension, researches have noticeably been tailored
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towards two-dimensional case studies (Huseby et al., 1997; Staub
et al., 2002; Vogel, 2002; Koike and Ichikawa, 2006; Blocher et al.,
2010). Some related recent works on three-dimensional fracture net-
work modeling to name are Gringarten (1996); Merrien-Soukatchoff
et al. (2012); Koike et al. (2015). It is worth noting here that there are
few proprietary and commercial software applications that are capable
of dealing with both two- and three-dimensional cases. Beside their
high costs, the two most important considerations and limits in their
use are, however, “closed source” releases and missing development
capability for “end users”. Where the later issue basically limits their
potential use as reliable research tools, the former issue gives no
chance for any development; hence, these limits significantly discou-
rage conducting fundamental researches due to non-tractable results.
To address these issues and also to help to popularize fracture network
engineering concepts specifically in discrete formulation (Dershowitz
et al., 2000; Fadakar-A, 2014), we here introduce Alghalandis Discrete
Fracture Network Engineering (ADFNE), a comprehensive fracture and
fracture network modeling software package which is open source
Matlab readable code. It consists of 295 (and growing) functions, for
general and specialized purposes, that work together seamlessly to
handle variety of needs including geometrical modeling, model simula-
tions, model characterizations and applications, and data exchange
(importing and exporting). The package is aimed to elegantly and
efficiently deal with both two and three dimensional use cases. All hard
works remain in the background (source code is provided) in a way a
novice user would interact quickly with the functions, while experi-
enced users would explore the source code for further learning of the
tactics and concepts implemented, any improvement and further
development as it happened to become a need during research.

2. Discrete fracture network engineering

Discrete fracture network engineering (DFNE) deeply rooted in
stochastic modeling (Kendall, 2003; Chiles, 2004; Fadakar-A, 2014)
provides useful tools to characterize fractured rock for wide range of
interests in research and industry including stability analysis of rock
blocks (in rock mechanics and geotechnics, for example) and fluid flow
modeling (in geothermal, oil and gas, groundwater, for example).
Mathematically and statistically robust, the stochastic principles of
DFNE and its comprehensive, flexible and scalable framework and
tools ensure obtaining utmost information from even limited, sparse
and often multi-type dataset (Fadakar-A et al., 2013a) which often is
the case in fractured rock problems. Surface observations (scanline,
compass measurements), subsurface loggings (Ozkaya and Mattner,
2003 from boreholes, tunnels etc.) or deep seismic event records (Tang
et al., 1996; Fadakar-A et al., 2013a), whatever the data type is, the
model can benefit from them during the establishment, calibration,
validation and improvement of governing functions in every stage of
simulation. DFNE tools can also be adapted such to utmost represent
any need while preserving legitimacy, reliability and performance of
every stage. This goal can be achieved due to modular structure of
DFNE frameworks.

Based on the principles, every fracture is built discretely following
some key rules such as: a fracture is a flat object, its shape, if not an
infinite plane, is a convex polygon (rectangle, ellipse or more complex
form), and its size follows a known distribution function such as
negative exponential (Diggle, 2003; Baddeley, 2010). Similarly, its
location is obtained by means of spatial functions such as two- or three-
dimensional uniform or Poisson distributions. Spatial inhomogeneity
(Chiles, 2004; Illian et al., 2008) can be applied to the fracture
locations to impose nonstationary density of points. The orientation
information can be extracted from uniform or Fisher distributions, for
example. Further adjustments such as obtaining desired intersection
system (e.g., fracture termination forms ×: two crossing fractures, ⋋:
one terminates as it reaches another fracture, or ∧: both fractures
terminate at the intersection) can also be utilized at this stage.

Advanced refinements such as spatial clustering and connectivity can
also be implemented by means of optimization tools such as simulated
annealing (Andersson and Dverstorp, 1987; Deutsch and Cockerham,
1994).

In summary, fractures appear in many real world applications and
hence advanced fracture network modeling is of great interest in
research and industry communities. Recent developments in comput-
ing systems are pushing forward even further the growth of DFNE
applications. Future perspective spread over all disciplines that are
associated with fractured domain phenomena in any scale.

3. Alghalandis discrete fracture network engineering
package

Despite the increasing interests in the application of DFNE
concepts, available software tools are very limited, mainly due to the
complicated code implementation of the concepts. Typically, a com-
prehensive tool for DFNE includes routines for building, inspection
and processing of the geometry of fractures, topology and spatial
distributions of fractures in two- and three-dimensional spaces. Any of
these features is a challenging topic on its own. Considering them all
together suggests big challenges, reportedly. Furthermore, due to the
nature of problems in DFNE it is quite ordinary to work on fracture
networks with populations over several thousand fractures. Efficient
codes are therefore required. For couple of million or more in size,
beside the optimized codes, parallel computing, cluster computing and
access to super computers are to be considered.

1. Closed Code Solutions
In the industry, few commercial packages are available for DFNE

which are completely closed source and quite expensive as well. They
also are limited by design to specific tasks with near to no
functionality for broader researches. Some of them support internal
scripting which basically works only for automatization of built-in
processes. Developing of an idea foreign to the existing functionality
of them is however impossible due to being closed source. Practically
speaking, for implementation of emerging ideas the use of closed
codes is quiet impractical if not impossible.

2. An Open Source Solution

ADFNE package is written in Matlab (Mathworks, 2016), a well-
documented standard code scripting language (popular in both acade-
mia and industry), and is fully readable even by novice users. The open
source package provides users unique opportunity to monitor what is
going on in the code here or there, that is, there is no “black box”
situation. Such a transparency in ADFNE (and under its easy and free
of charge licensing, Fadakar-A, 2016) gives researchers even a chance
to adapt the code into their particular interests whenever needed. As a
result, further developments become plausible and fast as well.
Furthermore, the philosophy behind the package structure design
supports elegantly and efficiently the scalability for complex projects
and delivers high performance such that many functions can be
adapted with minimum efforts for parallel computing, hence, broader
applications are even foreseeable. Worth noting that with a reasonable
effort every function in ADFNE can be translated effectively into other
popular programming language such as Python (Python Foundation,
2016). Indeed, we aim to implement full functionality of ADFNE in
Python (as an open source programming language) in future works. It
is also worth noting here the Octave open source project that can run
Matlab scripts quite well.

3.1. Structure design

The current release of ADFNE package includes 295 functions from
which 63 functions are specialized to deal with two-dimensional
applications (Table 1) and 100 functions for three-dimension
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applications (Table 2). The package also provides 132 generic functions
(Table 3) that handle both dimensions delivering variety of function-
alities including data import and export, visualizations (Goodman and
O'Rourke, 2004; Vince, 2005; Freeden et al., 2010), data manipulation
and analysis and special purposes.

The naming protocol for functions used in ADFNE package follows
meaningful and descriptive, short, distinguishable, and extendable
schemes. Briefly, if there was no dimension reference in the name
(i.e., 2D or 3D) then the function is empowered to automatically handle
both two- and three-dimensional data. In addition, some functions for
three-dimensional cases have been developed over their two-dimen-
sional function's structure, that is, similar stages are implemented to
bring more readability and user friendliness to the entire package. This
helps users to learn quickly and to have a good coverage of functionality
in both dimensional applications.

3.2. Fracture network models

The simulation of fracture networks, characterization and applica-
tions all are straightforward by using ADFNE package. For example, a
two-dimensional fracture network is easily simulated by means of
GenFNM2D function as follows.

lines GenFNM D n theta kappa minl maxl rgn= 2 ( , , , , , );

where n is the number of fractures, theta is the mean orientation
π[0. . 2 ), kappa is dispersion factor for the orientation ( ≥ 0), minl is

minimum length ( > 0) and maxl is maximum length minl(> ) for
fractures, and rgn is the region of study x x y y[ , , , ]min max min max by which
the simulated fracture network is clipped. Note that, von Mises-Fisher
distribution is used for orientation in which a value close to zero (≪1)
for kappa results in omnidirectional orientation (almost Uniform
distribution, U) for a fracture network. Kappa values higher than 5,
observably, dictate the direction defined by theta for the entire
network. The use of minl and maxl helps to avoid generating very
short and very long fractures. The length value for each fracture is
obtained from negative Exponential (E) distribution. Other distribution
functions can also easily be used by modifying the code.

For simulation of three dimensional fracture networks the following
function is used in a similar fashion.

polys GenFNM D n dip ddip ddir dddir rgn s= 3 ( , , , , , , );

where n is the number of fractures, dip is the mean dip angle π[0. . /2),

Table 1
Functions for two-dimensional cases, few from 63 functions available in ADFNE.

Function Description

BBoxLines2D.m Bounding box of lines
BreakLinesX2D.m Splits lines into segments at their

intersections
CFi2D.m Connectivity Field (Pixel Edition) for 2D

fracture networks
ClipLinesByPoly2D.m Clips 2D lines by a polygonal region
ConnectivityField2D.m Connectivity Field for 2D fracture

networks
ConnectivityIndex2D.m Connectivity Index for 2D fracture

networks
Density2D.m True Density of 2D fracture networks
DrawPoly2D.m Draws 2D polygons
ExtendCollapseFractures2D.m Manipulate stochastically the length of 2D

fractures
GeneralisedConnectivityField2D.m Generalized Connectivity Field for 2D

fracture networks
GenFNM2D.m Simulates 2D fracture networks
GridXLines2D.m Returns intersections between a grid and

2D lines
IsolatedLines2D.m Isolation test for 2D lines
Lengths2D.m Returns length of 2D lines
LineSimilarity2D.m Evaluates similarity between 2D line sets
LinesToClusters2D.m Clustering (grouping) information of 2D

lines
LinesX2D.m All intersections between 2D lines
LinesXLines2D.m All intersections between two sets of 2D

lines
RandLinesInPoly2D.m Random 2D lines inside a 2D polygon
Resize2D.m Resizes a 2D matrix (e.g., image)
SaveLinesAsHTML2D.m Saves 2D fracture network in HTML

format
SaveLinesAsSVG2D.m Saves 2D fracture network in SVG format
SupCSup2D.m Examines if two 2D support cells are

connected
SupXLines2D.m Intersections between a 2D support cell

and lines

Table 2
Functions for three-dimensional cases, few from 100 functions available in ADFNE.

Function Description

BBox3D.m Bounding box of 3D points
Centroids3D.m Centroids of 3D polygons (fractures)
ClassifyPipes3D.m Classifies pipes into inlet, outlet and inner pipes
ClipPolys3D.m Clips 3D polygons by a given domain (e.g., cube)
CompareDFNs3D.m Compares 3D fracture networks for similarities
DrawGraph3D.m Visualization of graph (nodes, edges)
DrawPipes3D.m Visualization of pipe model
DrawPolys3D.m Vsualization of fracture polygons
DrawSlices3D.m Slice graph for volumetric data (such as CF)
Exchange3D.m Exchanges fractures in the 3D fracture network

(perturbation)
FNMPipes3D.m Generates pipe model from 3D fracture network
GenFNM3D.m Simulation of 3D fracture networks
IsolatedLines3D.m Examines isolation of 3D fractures in the network
Lengths3D.m Lengths (e.g., maximum size) of 3D fractures
Orientation3D.m Orientation information of 3D fractures
PolyInfo3D.m All geometrical and spatial information of 3D fractures
PolysX3D.m All intersections between 3D fractures
PolysXPolys3D.m Intersections between two sets of 3D fractures

(polygons)
PolyToDipDir3D.m Sets a 3D polygon to desired direction
RandPoly3D.m Random polygon in space
Resize3D.m Resizes volumetric data
SavePolysToVTK3D.m Saves fracture network in VTK format
SaveToFile3D.m Saves points as file
ScaleFNM3D.m Scales fracture network
SetAxes3D.m Sets graph axes into three-dimension
Size3D.m Determines lengths of fractures
SupCSup3D.m Evaluates connection between two supports
VolRender3D.m Volumetric rendering e.g., for CF, GCF, etc.

Table 3
Generic functions, few from 132 functions available in ADFNE.

Function Description

Backbone.m Backbone (skeleton) of 2D/3D fracture networks
Bbox.m Bounding box of input (points, lines etc.)
BoxPlotE.m Boxplot graph
Clusters.m Clustering (grouping) based on intersection information
CompareHistogram.m Compares two histograms
ConnectivityMatrix.m Connectivity Matrix
CosineSimilarity.m Cosine similarity index for 2D lines
FNMToGraph.m Graph structure from given fracture network
Histo.m Draws histogram
Labels.m Labels fractures based on clusters
P10fromP32.m Generates P10 from P32
P21fromP32.m Generates P21 from P32
P21G.m Generates P21 grid edition
P21Pix.m Generates P21 pixel edition
P22G.m Generates P22 grid edition
RandFisher.m Fisher random numbers
Relabel.m Relabels cluster labels by their size
Rose.m Rose diagram
SaveFig.m Saves figure in high resolution
Scale.m Scales data to desired bounds
Statistics.m Returns statistics of the input
Stereonet.m Draws Stereonet graph
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ddip is variation limit around the dip angle ddip π(0 ≤ ≤ /4), ddir is the
mean orientation π[0. . 2 ) and dddir is variation limit around the ddir
angle dddir π(0 ≤ ≤ ) for fractures, rgn is the region of study
x x y y z z[ , , , , , ]min max min max min max (a cube) by which the simulated fracture
network is clipped and s is the scaling factor to determine maximum
size (s=Smax) for generated fracture lengths which follow negative
exponential distribution. The resulting data is of Matlab “cell” datatype
in which every element contains coordinates of fracture polygons. Note
that, in this implementation a four-vertex fracture polygon (Fadakar-A
et al., 2011) would result in an oriented irregular polygon with between
4 and 8 vertices due to clipping by the region (cube) boundaries. Hence
the cell structure is preferred to accommodate all variants of number of
vertices in the resulting polygons. Referring to the source code of
GenFNM3D function, it becomes clear that this function can handle
any convex polygon (Corrochano, 2005) with an arbitrary number of
vertices including digitized ellipses, with no additional work.

According to Matlab coding convention, the two introduced simula-
tion functions can also be used as [lines, olines] = GenFNM2D(…); and
[polys, opolys] = GenFNM3D(…); where olines and opolys are the
simulated fractures without clipping. Example fracture networks for
two and three dimensional cases are demonstrated in Fig. 1. Their
associated parameters and statistics are Kappa = 0 i.e., a Uniform
distribution (U) for theta bounded to [0,90] degrees; where length
follows negative Exponential distribution (E) bounded between 0.05
and 0.5 for two-dimensional model. For three-dimensional models the
dip angle varies between 0 and 45 degrees following Fisher distribution
around the mean dip, 45 degree, and dip-direction angle varies
between 0 and 360 degrees. Simulation of fracture networks by means
of ADFNE is quite efficient and fast as it takes only about 23 s for two-
dimensional case and only 6 min for three-dimensional case for
100,000 fractures each (tested on a laptop: CPU one core 1.8 GHz,
RAM 2 GB). These timings include fracture and network generation,
and intersection and clustering analyses, as well.

Adjustment of settings for the function helps to simulated different
models with no limits. For example, in Fig. 2 variation in the size
constraint (s) of a three dimensional fracture network model is
demonstrated. These capabilities provide opportunities to represent
complicated fracture networks.

The procedural structure of ADFNE and its functions allow
simulating even very complex DFN models by combining multiple
simulations and stages. For example, in two-dimensional case, one may
opt to honor various geological regions with different DFN models.
This goal can easily be achieved by means of the parameter rgn in
GenFNM2D, for example. A simple framework for this would include
dividing the region of study into desired sub-regions (polygons)
corresponding to the geological settings. The resulting polygons can

then be used as the rgn value in multiple runs of GenFNM2D. Finally,
all generated DFN models are combined (using Matlab built-in
functions) to build a single complex DFN (see Fig. 3 for a demonstra-
tion). The framework described here is of simple but effective condi-
tional simulation techniques. Similar strategies can be planned for
three-dimensional cases. Note that, the clipping shape available in the
current release of ADFNE is a cube for three-dimensional fracture
networks; nevertheless, the above mentioned steps can be used as
guidelines for simulating complicated scenarios.

In similar steps, one may opt to apply inhomogeneous density of
fractures over the study area. This goal can easily be achieved by
adjusting a proper point process for the locations in both two- and
three- dimensional cases. A recommendation here would be to
duplicate the generator function (e.g., GenFNM2D) and then modify
the locations inside (pts = rand(n,2);) to any desired form. Apparently,
the distribution function used (e.g., rand which stands for Uniform
distribution) can be replaced by any random function or even
combination of multiple functions (e.g., if multiple modes are re-
quired). For example, using pts = randn(n, 2); (Matlab built-in function
for Gaussian distribution) would result in centrally dense fracture
networks useful for especial cases. Similar approaches can be pursued
for three-dimensional DFN models. The main finding here is that,
complex systems could be somehow satisfactorily modeled by iterative
and or multiple runs as well as customized functions. Future releases of
ADFNE would hopefully provide even more predefined functions for
advanced conditional simulations including honoring borehole and
well data, geological settings, mechanical and geomechanical proper-
ties, and so on.

3.2.1. Verifying DFN simulation results
In principles, if the amount of available useful information is

extensive for DFN simulations, the resulting DFN will be quite
satisfactory as it will be more representative of the reality. Generally,
cross-validation may be conducted using “constructing” parameters
such as length distributions or by means of “responses”, such as
connectivity, permeability etc. In the next section, both methods are
explained in details. Practically speaking, depending on the purpose of
simulation, one might choose one method over the other.
Characterization tools available in ADFNE help to extract key informa-
tion from candidate fracture networks (measured vs. measured,
measured vs. simulated or simulated vs. simulated) to assess for
differences and or to conduct cross-validation. It is also possible to
compare responses (secondary characteristic, e.g., connectivity) be-
tween fractured networks.

Fig. 1. Simulated two and three dimensional fracture networks. Settings were {n theta U π L E= 200, = (0, 2 ), = (0.05, 0.5)} and {n dip π ddir π S= 100, = (0, /2), = (0, 2 ), = 0.5max },

respectively.
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3.3. Characterization of fracture networks

A fracture network can be a complex phenomenon and difficult for
characterization. Geometrical complexity and topological complica-
tions (e.g., due to large number of intersecting fractures in the network)
make the characterization a challenging problem. It becomes even
more complicated and difficult when three dimensional fracture net-
works are the case. A key requirement here is to establish a framework
capable of extracting intersection information for any fracture network
in an efficient way. Intersection analysis (Fadakar-A et al., 2011;
Fadakar-A, 2014) examines association between fractures. The result-
ing intersection information (intersection points, indices and so on)
leads to determination of any interconnections between fractures, i.e.,
connectivity of fracture networks (Ozkaya and Mattner, 2003; Fadakar-
A et al., 2014). Modeling of flow (fluid or heat) through fractures
(Dverstorp, 1991; CFCFF, 1996; Berkowitz, 2002; Karvounis and
Jenny, 2011; Fadakar-A et al., 2013b) is under direct effect of the
connectivity properties of fracture networks, as is the modeling of rock
block stability (Goodman, 1985, Jimenez-Rodriguez and Sitar, 2008),
for example.

3.3.1. Intersection analysis
In two dimensional fracture networks any two fractures can

intersect in a single point (red circles in Fig. 1 left) while for three
dimensional fracture networks the resulting intersection could be a
point (touching vertex) or line (Fadakar-A, 2014). Either case, inter-
sections are the most important characteristic of fracture networks as
they define the connectivity properties of the network which is a key
and determinative player in almost any application of DFNE. For
example, fluids flow through fractures as they commute from one to
another location (fracture) via intersections between fractures; and the
movement of rock blocks is mainly associated with the type of
connectivity established between fractures (joints).

Analysis of intersection for two dimensional fracture networks is
handled by means of LinesX2D function in ADFNE package. Applying
to the fracture network given in Fig. 1(left) as [xts, ids, La] =
LinesX2D(lines); results in a total of 224 intersection points marked
as red circles. In Fig. 4(right) the contour map shows the density of the
intersection points which is also an important factor in the determina-
tion of flow distribution in the fracture network. Density of fractures
(i.e., true density) shown in Fig. 4(left) is obtained by means of

Fig. 2. Simulated three dimensional fracture networks with different fracture maximum size (Smax) limits 0.25, 0.75 and 2 from left to right respectively.

Fig. 3. A complex DFN is built over multiple simpler fracture networks. For this example, the parameters used for GenFNM2D are shown in the right. Region polygons can be any
simple or complex shape. The separations can be due to fault or layering, for example.
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Density2D function (see also Section 3.4). The comparison given in
Fig. 4 is to emphasize the differences between the two densities purely
in terms of overall trend and distribution (more comparisons in
Fadakar-A et al., 2011). Note that, as the two density measures
apparently vary in different domains to make the comparison mean-
ingful, focused and unbiased we projected both densities into [0..1]
corresponding to the low and high areas in the figure. It is worth noting
here that any result in Matlab and so in ADFNE is ultimately a
collection of numbers. That is, for interested user all values are always
accessible. With that being said, for the purpose of this comparison,
i.e., the spatial trend of variation, observing the areas with higher
density of fractures but lower density of intersections (e.g., top-right)
depicts the fact that the density of fractures does not necessarily
correspond to the interconnection between fractures. This is a key
parameter in many applications such as modeling of fluid flow through
fractures. Note that despite how dense a fracture network would be its
role in fluid flowing (under some assumptions such as channeling effect
and governing simple relationships between hydraulic properties and
fracture surface geometry) is closely affected by the density of inter-
sections. The density of fractures is also suggested to be effective in
geo-hazards. Displacement of rock blocks and formations underground
under governing stress regime would easier happen if the areas with
high density of fractures show high interconnectivity. A closely
associated topic in rock engineering is the rock-bridge concept (e.g.,
in rock slope stability analysis). Hence the two densities can be seen of
critical importance for risk evaluations, as well.

Application of intersection analysis to three dimensional fracture
networks is also exemplified in Fig. 5 in which the intersection lines are
shown in red tubes. The following function extracts complete intersec-
tion information from any three dimensional fracture networks.

xts ids La PolysX D polys Intersection Analysis D[ , , ] = 3 ( ); % , 3

where xts is set of intersection lines, ids is set of two intersecting
fractures for every line in xts, and La is the clustering labels for all
fractures in the network. In Fig. 5 the histogram of intersection lines
(Fadakar-A et al., 2011) is approximately fitted by an Exponential
distribution function. This finding appears important in the character-
ization of fluid flow through fractures as it demonstrates that the flow
can pass mainly through small connections between fractures.

3.3.2. Cluster analysis
The resulting information from intersection analysis can be used to

determine fracture clusters in the network. A fracture cluster is
basically defined as group of interconnected fractures. The intercon-
nection can occur either directly or via intermediate fractures between

any two fractures in the network. The clustering information helps to
localize the evaluation of the network, as all fractures in a cluster are
connected to each other directly or indirectly. This implies observing
clustered behaviors (such as the forms seen in fluid flow distribution)
in the network in some extent. A connection between two isolated
clusters can be made by pairing only two fractures one from each. This
suggests an interesting application where expansion of fracture net-
works is of demand, e.g., in geothermal heat exchange chamber
(Hayashi et al., 1999). That is, there are critical areas in the fracture
network domain in which if additional fracturing happens larger
clusters would emerge. In ADFNE, the clustering is determined by
means of the following generic functions.

La Labels Clusters ids n= ( ( ), );

where ids is set of two intersecting fractures to which clustering
function, Cluster, is applied, function Labels assigns unique labels for
every cluster, and La is the resulting cluster labels. Note that Labels
and Cluster are generic functions and so apply to intersection
information obtained for both two and three dimensional cases.
Fig. 6 demonstrates an application of clustering to the two and three
dimensional fracture networks given in Fig. 1.

3.3.3. Connectivity analysis
Connectivity of fractures in fracture networks is another key

characteristic for variety of applications such as stability of rock blocks,
and preferential pathways for fluid flow (Priest, 1993, Fadakar-A et al.
2013b-2013c). More connected fractures more the readiness is for
slipping and failure of rock mass according to probability principles
apply to risk analysis. The complexity of preferential fluid pathways
through fractures, spatial distribution pattern of active fracture clusters
in the network, approaching percolation threshold, establishing a
sustainable flow rate between injection and production wells (i.e., in
geothermal and oil reservoir systems) are all closely associated with the
connectivity properties of fracture network (Meyer and Einstein, 2002;
Xu et al., 2006; Fadakar-A et al., 2014; Preisig et al., 2015). Hence, the
evaluation of connectivity and understanding its behavior in fracture
networks is a fundamental study which requires a proper definition and
comprehensive framework, indeed.

– Connectivity Index

A simple connectivity assessment can be carried out by means of
evaluation of the probability of connection between two points in an n-
dimensional space. Such a probability can be determined via connec-
tivity index (CI, Xu et al., 2006), for example. If two fractures are

Fig. 4. Density maps; (left) density of fractures, (right) density of intersection points. Compare the significant differences, top-right corner, for example. Both maps report densities
projected between 0 (low) and 1 (high).
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connected directly or via other intermediate fractures, its connectivity
value is “one” otherwise “zero”, i.e., f f f f{1 : ↔ , 0 : ↮ }1 2 1 2 . In a
simulation of several realizations from a fracture network model the
number of times that the two portions (sub-regions, supports) of the
area of study remain connected via fractures determines the CI
probability value between them. For two dimensional fracture net-
works the CI can be computed as follows.

CI ConnectivityIndex D lines La d d p q= 2 ( , , 1, 2, , )

where lines is fracture network, La is cluster labels, d1 and d2 are
dimensions for the sampling grid, p and q are indices for target cell,
and CI is the resulting connectivity index. In Fig. 7 the CI is applied to
two sets of 60 realizations obtained from simulation of two fracture
network models. The first model is omnidirectional, while the second is
mainly (kappa=10) oriented towards 45 degrees counterclockwise.

– Connectivity Field

The connectivity evaluation for the entire fracture network is
obtained by means of the Connectivity Field (CF, Fadakar-A et al.,
2014) measure. Practically speaking, in a simplistic implementation,
the whole study area is mapped onto a grid in which for any pair of cells
the connectivity is measured. The evaluation can be further developed
by incorporation of weighting system (Fadakar-A et al., 2013b) to

distinguish individual connectivity elements due to length, aperture
and permeability, for example. Obviously, the CF applies same
principles to two- and three-dimensional fracture networks. The
following function computes the CF for two dimensional cases.

CF ConnectivityField D lines La d d= 2 ( , , 1, 2)

where CF is the resulting connectivity field. In Fig. 8 CF is applied to
the two dimensional fracture network model given in Fig. 1.

The large grid cell sizes (i.e., smaller d1 and d2 values) would cause
the CF to appear blocky, Fig. 8 (left). On the other hand, very small cell
sizes could extract no further information than fracture itself. A
solution is to implement the Generalized CF (GCF, Fadakar-A et al.,
2014), as shown in Fig. 8 (right). The GCF can be computed by a loop
over CF with increasing d1 and d2 values. The resulting individual CF
matrices can then be resized by means of Resize2D function into a fixed
size. The mean value of all matrices produces the GCF, i.e., an “E-type”
map. The GCF is reported to be robust against cell size choice as well as
clean of edge effects due to sampling grid (see Fadakar-A et al., 2014
for detailed discussions).

3.4. Density analysis

Traditional measures for quantifying density (and intensity) of

Fig. 5. Intersection analysis applied to the fracture network shown in Fig. 1(right) resulted in 244 intersection lines for which the histogram (right) is drawn with an approximate fit of
Exponential distribution (red curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Clustering applied to the same two and three dimensional fracture networks introduced in Fig. 1. Isolated fractures are shown in gray. Warmer the color, larger the cluster size
(i.e., the number of members) is. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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fracture networks include P series from which P21 (length of fractures
per area) and P32 (area of fractures per volume) are common
(Dershowitz et al., 2000). These measures are easy to be quantified,
but, produce only a single value for the entire network. Fracture
networks are often heterogeneous in many aspects including the
density, hence, a single value measures appear too simplified. The
solution is to use a comprehensive and advanced measure, the Fracture
Density (FD, Fadakar-A, 2014, for example), in which the measure-
ment is carried out on an arbitrary grid covering the study area. Every
cell is examined for the number of intersecting fractures. The total
length (area in three-dimension cases) of fracture parts can also be
taken into account for determination of the fracture density in cells.
The resulting is a complete density map for the fracture network. The
FD can be extended into three-dimension under the same concept and
straightforwardly. The FD can also be seen as the field of density (i.e.,
full information). The density maps can be generated as follows.

FD Density D lines La m n= 2 ( , , , )

where FD is the resulting density field (map). Fig. 9 demonstrates the
FD applied to a two dimensional fracture network given in Fig. 1.

An interesting and important note here is that, the computation of
FD is neither constrained to a specific cell shape (e.g., square) nor to
sampling grid. Indeed, the principles are the same if one chooses an
arbitrary shape for cells (e.g., circle) and or an arbitrary sampling
scheme (e.g., random sampling). This is a key feature of the concept

and can be implemented by means of ADFNE functions quite straight-
forwardly. For example, intersections between fractures and a circle
can be found by digitizing a circle as a polygon. There are also
opportunities to implement analytical solutions, if preferred.

3.5. Graph theory

Application of graph theory would benefit many operations in
characterization of fracture networks and would extend their uses
significantly (Fadakar-A et al., 2013b). A rigorous framework borrowed
from principles of graph theory includes extraction of nodes, edges and
their associations (topology). The first step here is to extract the
backbone (also known as skeleton, Priest, 1993) structure of fracture
networks which is by itself a key step for fluid flow modeling in the
network, for example. Generating backbone from two- and three-
dimensional fracture networks follows the same stages as easy as follows.

bls BreakLinesX D lines D FNM
bbn Backbone bls Backbone
pip Pipes D polys D FNM
bbn Backbone pip Backbone

= 2 ( ); % 2
= ( ); % −−
= 3 ( ); % 3
= ( ); % −−

where lines is fracture network, bls is broken lines in their intersections
by means of BreakLinesX2D function, and bbn is the resulting backbone
structure. For three dimensional fracture network (polys), Pipes3D
function generates pipe model from which the backbone structure is

Fig. 7. Connectivity Index for two dimensional fracture network models. (left) CI for omnidirectional model, (right) CI for oriented model. Apparently, CI is affected by the preferential
orientation of fractures in the network.

Fig. 8. Connectivity Field for the two dimensional fracture network given in Fig. 1. (left) CF computed on sampling grid (10×10); (middle) CF computed on sampling grid (20×20);
(right) Generalized CF, sampling grid (10×10..30×30).
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extracted. A pipe for a fracture can be made between its centroid and its
center of intersection with another fracture. Fig. 10 demonstrates
backbone structures extracted from the two- and three-dimensional
fracture networks given in Fig. 1.

Generic function BackboneToGraph transforms backbone structure
into graph structure in which nodes, edges and the associated topology
provide an exceptional opportunity to investigate complex properties of
fracture networks in a very straightforward manner. An example for
this is the fluid flow modeling (Fadakar-A et al., 2013b) by application
of finite difference methods which can be elegantly done based on the
graph inlet, inner and outlet nodes and some efficient functions such as
neighboring.

3.6. Flow modeling

A simple and handful fluid flow modeling technique is founded on
an application of finite difference method (Priest, 1993, Fadakar-A
et al., 2013b). The basics are quite simple, well studied and documen-
ted. All income and outgoing flow to and from a node must fully match,
that is, mass conservation is in place. Under Darcy's law for laminar
flow of incompressible fluid, the following simplified equations are
used to determine the pressure head distribution for every node in the
graph of any two-dimensional fracture networks (Priest, 1993).

H
C H
C

n C ga b
vL

=
∑
∑

, ∈ [2, 3, 4]; =
12j

i
n

ij i

i
n

ij
ij

=1

=1

3

where Cij is the conductance between nodes i and j calculated based on
g, the gravity acceleration (9.8 m/s2), a, the aperture (m), b, the third
dimension of fracture (here 1 for two-dimensional case), v, the
kinematic viscosity (10−6 m2/s for water), and L, the length (m). Hj

is the head pressure at node j.
Practically, nodes are categorized into three types: inlet, inner and

outlet nodes. The flow (here pressure head, for example) starts from
the inlet nodes and distributes through the inner nodes to reach the
outlet nodes. Based on graph structure, for every inner node the
neighboring nodes are found for which the matrix of unknowns is
constructed following the above equations. As shown, the values
inserted in the matrix incorporate conductance factor (Priest, 1993)
which itself is calculated based on the neighboring edges’ properties as
explained. When the matrix system (AX=B) is fully prepared, a simple
linear algebra technique helps to find a solution (X=A/B). The resulting
solution includes pressure head value for all inner nodes. The following
functions from ADFNE help to achieve the mentioned flow solution.

g BackboneToGraph bbn
g SolveFlow g inlet outlet

= ( );
= ( , , );

where bbn is backbone, g is the resulting graph. SolveFlow function
accepts the graph g, inlet and outlet pressure heads and returns the
solution as an updated graph.

In Fig. 11 an example fluid pressure flow problem is solved as
described. The resulting pressure head values at nodes and the
interpolated pressure values for edges are demonstrated in Fig. 11

Fig. 9. The Density Field for the two dimensional fracture network given in Fig. 1. (left) The block map of the FD computed on the sampling grid of 20×20; (middle) The contour map of
the CF computed on the sampling grid of 20×20; (right) The contour map of the FD computed on the sampling grid of 40×40.

Fig. 10. Backbone (Skeleton) structure of the two- and three-dimensional fracture networks given in Fig. 1.

Y. Fadakar Alghalandis Computers & Geosciences 102 (2017) 1–11

9



depicting the direction of pressure diffusions. The flow modeling
demonstrated above assumes channeling in effect on fracture networks.
Due to this effect the fluid commutes through preferential pathways on
fracture surfaces connecting one to another in the network simplified
here as the backbone structure.

4. Future developments

The diversity of DFNE applications and users’ needs require
continuous development of ADFNE package. This demand is further
emphasized by recent exceptional growth of DFNE concepts both in
academia and industry. Contributions of the community of DFNE in
the future developments of ADFNE package would include adding
dedicated functions for conducting (i) comprehensive conditional
simulations (e.g., honoring borehole data, logs, and density map,
etc.), (ii) complete flow simulations (e.g., modeling permeability of
rock mass, fluid and or heat flow, pressure, etc.), (iii) geomechanically
coupled fracture simulations (e.g., adapted truncation modes), and (iv)
high performance simulations using parallel and cluster computing. It
would also be useful to have additional functions to conduct spatial and
statistical analysis on fracture and cluster drainage area (volume).

5. Conclusions

An open source software package, Alghalandis Discrete Fracture
Network Engineering, ADFNE, was introduced with example codes and
demonstrations. A quick review of fundamentals of DFNE was also
provided. It was shown that several key topics in DFNE including
fracture generations, simulation, characterization (intersection analy-
sis, connectivity index, connectivity field, density and so on), applica-
tions such as evaluation of the risks in rock mass associated with the
density of fractures and fracture intersections, the fluid flow modeling
are covered in ADFNE. The simplistic end-user interface (i.e., handy,
generic and flexible functions) but efficient and fairly sophisticated
internal design and advanced coding provide reliable framework for
conducting researches and even future developments. All the illustra-
tions in this paper were produced by ADFNE, as well as the develop-
ment of the concepts. The package is aimed to help and encourage
primarily researchers in the field of DFNE for exploring, examining and
quick implementation of ideas but would even be useful in any other
disciplines. The current release of ADFNE package together with
sample complete programs and tutorials are available for download
at http://alghalandis.net/products/adfne.
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