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A B S T R A C T

Classification of sandstone microscopic images is an essential task in geology, and the classical method is either
subjective or time-consuming. Computer aided automatic classification has been proved useful, but it seldom
considers the situation where sandstone images are collected from separated regions. In this paper, we provide a
method called Festra, which uses transfer learning to handle the problem of interregional sandstone
microscopic image classification. The method contains two parts: one is feature selection, which aims to screen
out features having great difference between the regions, the other is instance transfer using an enhanced
TrAdaBoost, whose object is to mitigate the difference among thin section images collected from the regions.
Experiments are conducted based on the sandstone images taken from four regions in Tibet to study the
performance of Festra. The experimental results have proved both effectiveness and validity of Festra, which
provides competitive prediction performance on all the four regions, with few target instances labeled suitable
for the field use.

1. Introduction

Identification of rock microscopic thin section images is an essential
task in geology. Traditionally, the identification work is done manually
by geologists, which is quite time-consuming. Furthermore, by visual
estimation of the microscopic image, the mineral contents and textures
are difficult to be quantitatively analyzed, and the results may not be
repeatable between different identifiers. Currently, computer-aided
automatic methods (Albar et al., 2013; Młynarczuk et al., 2013;
Ślipek and Młynarczuk, 2013; Marmo et al., 2005; Zuo et al., 2009;
Singh et al., 2010; Goncalves and Leta, 2010; Chatterjee, 2013; Wei
et al., 2014a) have been developed for rock thin section identification.

Sandstone is one of the main reservoirs for oil, gas and ground-
water. For example, sandstones are the main reservoirs of the famous
Daqing, Shengli, Dagang and Karamay oil fields in China. Hence,
sandstone identification is essential in both oil and gas exploration,
which requires ocean and continental drilling, where the timely
identification plays a crucial role. The automatic identification of
sandstone microscopic images can satisfy the requirements of on-site
grinding and real-time thin sections identifying, which will facilitate
the drilling process.

Automatic identification of sandstone images requires the prior

knowledge learned from the identified sandstones with similar compo-
sitions. However, due to diverse geological environments, the textural
differences of the sandstones formed can be great among different
regions. Sandstone images collected from an unfamiliar region are
difficult to classify using the knowledge of identified images from
known regions since the images may be quite different from each other.
This problem can be defined as the interregional sandstone micro-
scopic image classification. To solve this problem, we develop a transfer
learning method Festra, which applies both feature and instance
transfer to minimize the textural differences among images from
multiple regions.

The main contributions of the paper are four-folds:

• We study the problem of automatic classification of sandstone
microscopic images collected from multiple distinct regions, and
formally define it as the interregional sandstone image classification.

• We propose the method Festra which combines the state-of-art
transfer learning technologies to handle the interregional sandstone
classification problem.

• We perform experiments on sandstone images collected from four
regions in Tibet, and the results demonstrate both effectiveness and
potentials of Festra.
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• We extract the color, texture and grain features from the images,
and make empirical studies on each feature group to compare the
effects, which can provide suggestions for field use.

Although currently, Festra classifies sandstones at the thin section
level, it can be extended to work at the mineral level for comprehensive
sandstone identification, which is part of our future work.

2. Interregional sandstone microscopic image classification

Due to diverse geological environments and diagenesis, the textural
differences of sandstones of similar types can be great between
separated regions. Fig. 1 gives four sandstone images collected from
different regions in Tibet, which belong to two sandstone types. As
shown in Fig. 1, the image of feldspar sandstone taken from Shannan
has great difference from the image of the same type taken from
Shigatse. In addition, the image of the quartz sandstone taken from Ali
and the image of the same type taken from Nagqu are totally different.
Moreover, the resolutions or magnifications of the images may be
different, and the thickness of the distinctive thin sections leads to
different sharpness or brightness. The classification is rather intricate,
and hard to determine even by experienced geologists.

In this paper, we study the interregional sandstone microscopic
image classification, which can be formally defined as follows: given the
sandstone microscopic images collected from the target region, a small
number of which have been manually identified (i.e. labeled). The

number may depend on the time and geologists available. The problem
is to automatically classify the unknown sandstone images using the
small fraction of labeled images, plus identified images collected from
other fully explored regions. The labeled sandstone images from the
target region are essential, but the number of them may be too small to
train a useful classifier. Hence, the labeled sandstone images collected
from other regions must be used, but those images are collected from
variant regions. The difference between the target images and those
images may be too great to make them directly helpful. A transfer
learning method shall be developed to make effective use of them.

Transfer learning is to handle the problem of cross-domain
classification (Ammar et al., 2015; Matasci et al., 2015). Transfer
learning methods aim to leverage abundant labeled data in the source
domain to build an accurate classifier for the target domain. The two
domains may have distinct feature space distributions or labeling
criteria (Pan and Yang, 2010).

3. Festra–the method

In this section, we describe the details of our proposed method
Festra (A Feature based transfer learning method), which combines the
feature transfer and instance transfer technologies, in order to solve the
interregional sandstone microscopic image classification. In the follow-
ing, we firstly give the formal notations, then describe the framework of
Festra and the image features, and finally explain the major parts of
Festra.

Fig. 1. The sandstone microscopic images of two types taken from separated regions.
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3.1. The problem and notations

Let the sandstone microscopic images collected from the new
region compose the target domain T, and the labeled sandstone images
from the known regions compose the source domain S. Let RT ∈lab

k l
( )

×

be the labeled sandstone images in the target domain, where k is the
number of the labeled and l is the number of image features. Similarly,
the set of unlabeled sandstone images in the target domain is denoted
as RT ∈unk

n l
( )

× , and the set of labeled images in the source domain is
denoted as RS ∈ m l× , where n and m are the numbers of sandstone
images in T unk( ) and S respectively.

Based on above notations, the function of Festra is to select the
suitable sandstone images from S to complement T lab( ), and screen out
harmful image features, so that the labeled image set is both sufficient
in size and coherent in feature distributions to build the classifier for
automatically classifying unlabeled sandstone images in T unk( ).

3.2. The framework

Festra has two parts: the first is feature selection (hereinafter
referred to as FS) which selects features based on distribution
similarity, the second is instance transfer which uses an enhanced
TrAdaBoost (Dai et al., 2007) (E-TrAdaBoost) dealing with hetero-
geneous instances (images). TrAdaBoost is a boosting method for
transfer learning, which iteratively selects suitable instances from
source domain to assist training an accuracy classifier for target
domain by adjusting the weights of labeled instances in both source
and target domain iteratively. Fig. 2 presents the framework of Festra.

3.3. The image features

Given a sandstone microscopic image, we extract the color, texture
and grain features, which are commonly used in visual sandstone thin
section identification in geology. Since the resolutions or magnifica-
tions of the images maybe different, we take the relative values rather
than the absolute ones for the features.

The color features are extracted from the gray level image of a
sandstone thin section. All the color features are extracted based on the
histogram of the gray levels (See Fig. 3), which include Mean, Variance,

Median, Mode, Range, Mean absolute deviation, Interquartile range,
Smoothness, Uniformity, Entropy, Skewness, Kurtosis and Fractal
dimension features (Chatterjee and Bhattacherjee, 2011; Gonzalez
et al., 2010). Table 1 shows the detailed descriptions of these statistics.
Totally, 13 color features are extracted.

We use the gray-level co-occurrence-based features as texture
features. To compute the gray-level co-occurrence-based features, two
steps are required. Firstly, four co-occurrence matrices are computed
from the gray level image along the 0°, 45°, 90° and 135° directions
respectively, where the distance is 1. Secondly, from each of the
matrices where elements are normalized to [0,1], four statistics are
computed including Energy, Entropy, Contrast and Correlation (See
Table 2) (Freund and Schapire, 1995). From the four co-occurrence
matrices, a total of 16 features are extracted.

The grain features include two parts, one is image-based features,
the other is grain-based features. The image-based features (Singh
et al., 2010) are computed from the whole image, including Binary
threshold, Number of Canny edge pixels, Number of perimeter pixels,
Number of white areas and Number of pixels of white areas. Binary

Fig. 2. The framework of Festra, which mainly involves two parts: Feature selection and Enhanced TrAdaBoost. In the figure, the source domain contains labeled data, while the target
domain has few data labeled (Colored objects). Feature selection can select suitable features (Red circles), while Enhanced TrAdaBoost trains an useful classifier iteratively by adjusting
the weights (Object sizes) of the labeled data in each iteration.
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Fig. 3. The histogram of the gray levels of the quartz sandstone thin section image
(Fig. 1a).
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threshold is the threshold value which separates the gray levels into
two classes (above / below the threshold) where the inter-class variance
reaches maximum. Number of Canny edge pixels is the number of
white pixels in the binary image which resulted after the Canny edge
detection (Canny, 1986). The rest three image-based features are
computed from the binary image, obtained by converting the gray
level image into binary using Ostu (Gonzalez et al., 2010), which takes
Binary threshold as the threshold. A perimeter pixel is the one which is
white and there is black pixels in its direct neighbors. Number of white
areas and Number of pixels of white areas are computed by counting
the continuous regions of white points in the binary image.

The grain-based features (Wei et al., 2014b) are computed using the
three biggest grains, resulted from the superpixel-based segmentation
(A method we developed for segmentation of sandstone thin section
image, see Fig. 4). From each grain, four features are computed, which
include Area of object, Convex deficiency, Extent and Solidity. Area of
object means the number of the pixels in the grain. Convex deficiency is
the percent difference of the grain area to the area of convex hull, which
is the smallest convex set that contains the grain(See Fig. 5). Extent is
the area of grain divided by area of its bounding box, which is the
smallest rectangle containing the grain. Solidity is the area of grain
divided by area of its convex hull. Totally 17 grain features are
extracted.

3.4. Feature selection

In this part, suitable features are selected which have similar

distributions between the source and target domains, so that the
modified source domain is useful to train classifiers for the target
domain.

The following three steps are involved in feature selection:
Step 1. Each feature is linearly normalized to [0,1] separately on

data from either the source or target domain, where the maximum
value is scaled to 1, and the minimum scaled to 0.

Step 2. For each feature, the frequency histogram of bins 0.1 is

Table 1
The detailed descriptions of the color features.

Statistics Formula Remarks

Mean
μ = i xi y xi

N
∑ =0

255 * ( ) Mean measures the average gray level of the image. In the formula, xi is the gray levels, while y x( )i
is the corresponding pixel number in the histogram; N is the total number of pixels. The same
below.

Variance
σ = i xi μ y xi

N
2 ∑ =0

255 ( − )2 * ( )
− 1

Variance measures the dispersion degree of the gray levels in an image.

Median y x∑ ( ) <i
m

i
N

=0
−1

2
and y x∑ ( ) ≥i

m
i

N
=0 2

Median measures the median value of the histogram of the gray levels. m is the value of this
statistic in the formula.

Mode M y x= argmax ( )xi i0 Mode measures the most frequent gray level, which reflects the concentration degree of the gray
level image. Function “ argmax ” returns xi, at which the value of y x( )i is greatest.

Range r x x= max( ) − min( )i i Range is range of the gray levels in an image. Function “ max ”(“ min ”) returns the greatest
(smallest) value.

Mean absolute deviation
MAD = i xi y xi

N
∑ =0

255 − μ * ( ) MAD is the average distance between each gray level and the mean.

Interquartile range IQR Q Q= −3 1 Interquartile range is a basic robust measure of gray scale. In the formula, Q3 is the 3rd quartile,
and Q1 is the 1st quartile within the gray level range.

Smoothness smoothness = 1 −
σ

1
1 + 2

Smoothness measures the degree of derivative continuous of the gray level histogram.

Uniformity U y x= ∑ ( )i i=0
255 2 Uniformity measures similarity of gray level spins in the histogram.

Entropy E y x y x= − ∑ ( )log ( )i i i=0
255 Entropy measures the degree of randomness of the gray levels.

Skewness
s =

N i y xi xi μ

N N σ

* ∑ =0
255 ( * ( − )3

( − 1) * ( − 2) * 3

Skewness measures the degree of asymmetry and direction of the gray level histogram.

Kurtosis
Kurt =

N i y xi xi μ

N N σ

( − 1) * ∑ =0
255 ( * ( − )4

( − 2) * ( − 3) * 4

Kurtosis is a descriptor of the shape of the histogram of gray levels.

Fractal dimension See paper Chatterjee and Bhattacherjee (2011) Fractal dimension measures the complexity and irregularity of patterns in the image.

Table 2
The detailed descriptions of the texture features.

Statistics Formula Remarks

Energy E M i j= − ∑ ∑ ( , )i j0 2 Energy measures the uniformity of the texture in the image. In the formula, M i j( , ) is the co-occurrence matrices, where i and j are
the row number and column number in the matrices respectively.

Entropy E M i j M i j= − ∑ ∑ ( , )log ( , )i j Entropy measures the randomness of gray level distribution, it indicates the complexity of the textures in the image.

Contrast con i j M i j= − ∑ ∑ ( − ) ( , )i j
2 Contrast measures the sharpness of the image and the depth degree of the texture grooves.

Correlation cor = − ∑ ∑i j
i μ j μ M i j

σ
( − )( − ) ( , )

2
Correlation measures the sum of correlations between each pixel and its neighbors in the image. In the formula, μ is the mean of
the matrices, and σ2 is the variance.

Fig. 4. The segmentation result of a quartz sandstone thin section image collected from
Nagqu.
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computed on the source and target data separately. Thus, each feature
is transformed into a vector of 10 frequency values.

Step 3. The Cosine similarity measure is computed for each feature
between the pair of vectors from both domains. After that, the features
are ranked in descending order by the similarity measure, and the high
rank features are selected to rebuild the source and target domain.

3.5. Enhanced TrAdaBoost

E-TrAdaBoost is an enhanced version of TrAdaBoost (Dai et al.,
2007). For interregional sandstone microscopic image classification, E-
TrAdaBoost makes the following enhancements.

• The sandstone microscopic images belong to more than two classes.
E-TrAdaBoost requires to identify arbitrary number of classes
instead of binary classification.

• TrAdaBoost requires the base classifiers be trained according to the
weights of the instances. This may limit the choice of effective base
classifiers. E-TrAdaBoost will make instance weighting optional.

Algorithm 1. E-TrAdaBoost.

Input:
Source domain data S, target domain data T T∪unk lab( ) ( ) and base

classifier
Output:
the predicted class for each instance in T unk( )

1: Use sampling to balance S and T lab( ) among the classes

2: for each target class do
3: Assign the label of target class as 1, the rest

classes as 0
4: Initialize weights of instances in S and T lab( ):

w w wW = ( , ,…, )m k1 2 +

assure that sum of the total weights is 1
5: for each t N∈ [1, ]
6: Train the classifier on T S∪lab( ) with W
7: Apply TrAdaBoost (Dai et al., 2007), modify W

accordingly

8: end for
9: Compute the hypothesis h(i) for each instance i in T unk( ):

⎡⎢ ⎤⎥
∏h i β( ) =

t N

N

t
i

= 2

− ( )t

10: end for
11: return the predicted class leading to the maximum h(i)

Algorithm 1 gives a formal description of E-TrAdaBoost, which
includes the following facilities.

Imbalanced data preprocessing. We reduce the possible data
imbalance by over-sampling the minority classes and under-sampling
the classes with too many instances.

Multiple class handling. E-TrAdaBoost deals with one target
class at a time, where the class is labeled as 1 while the rest classes
labeled as 0. Both the modified S and T lab( ) are relabeled before the
training process. After that, voting is used to determine the final class
of a target instance.

Instance weighting. If the base classifier does not use instance
weights, an instance selection process is applied to select instances
according to W to build a training set for . The total number of
instances selected is unchanged for either class 1 or class 0, but the
individual instance is selected randomly according to its weights. This
means that an instance with greater weight (usually from T lab( )) may be
selected multiple times, while an instance with lesser weight (usually
from S) may be filtered out from the training data. Such handling will
increase the proportion of instances selected from the target domain,
while decrease the proportion of misclassified instances from the
source domain.

Confidence-based prediction. The base classifiers trained from
N /2 to N rounds are combined to compute the hypothesis value of each
unlabeled instance in T unk( ) according to the current target class
(labeled as 1). Given instance i, its hypothesis value h(i) indicates the
confidence level of instance i belonging to the current target class.
Hence, after all the target classes are treated, for instance i, its
predicted class is the one which corresponds to the greatest hypothesis
value.

Fig. 5. The binary images of a grain and its convex hull.
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4. Experiment setup

In this section, we introduce the corpus, the performance measures
and experiment design to study the following research questions.

RQ 1. Whether Festra has better performance for interregional
sandstone microscopic image classification, compared with other
commonly used classification methods?

RQ 2. What is the effect of the number of labeled target instances on
the prediction performance of Festra?

RQ 3. What is the effect of the proportion of image feature selection
on the prediction performance of Festra?

RQ 4. Whether a specific group of image features leads to a better
prediction performance than others for interregional sandstone micro-
scopic image classification?

4.1. Corpus

The sandstone microscopic thin section images collected from four
separated regions in Tibet compose the corpus. Totally 279 sandstone
images are acquired, which include 78 images from Shigatse, 49 images
from Nagqu, 89 images from Shannan, and 63 images from Ali. Each
image is taken from a distinct sandstone thin section. All the
sandstones are classified into 3 classes (Dott, 1964): Feldspar sand-
stone, Lithic sandstone, and Quartz sandstone. Table 3 lists the number
of images of each class as well as their geological time and formations
taken from each region. In general, the resolution of the images is
1280×1024 pixels, and thickness of the thin sections is 0.03 mm.
Minor differences exist between images taken from different regions,
since they are collected by different teams.

The regions are selected to be representative, and the geological
times are different. Three regions are formed in singular geological
time, mostly the Cretaceous, while Nagqu contains two geological
times, the Jurassic and the Cretaceous. In addition, from Ali, the
sandstones are taken from the Cretaceous Duoni Formation and
Daxiong Formation in Coqen. From Nagqu, the sandstones are taken
from the Late Cretaceous Jingzhushan Formation in Bangoin, and the
Jurassic Sewa Formation, Suorika Formation and Biluocuo Formation
in Shuanghu. From Shigatse, the feldspar sandstones and lithic
sandstones are taken from the Forearc Basin in the Cretaceous, and
the quartz sandstones taken from the Cretaceous Gucuo Formation and
Jidula Formation at the northern margin of India. From Shannan, the
sandstones are taken from the Paleogene Zongzhuo Formation. Fig. 6
shows the simplified tectonic map showing the locations of the four
regions.

4.2. The performance measure

During the experiments, we compute the mean accuracy (herein-
after referred to as mean acc− ) (Long et al., 2015) and F1 (Powers,
2011) as the performance measures, which are suitable for datasets
with imbalanced class distributions. mean acc− measures the mean
prediction accuracy of the three classes, and is computed using the
following formula:

mean acc
acc

N
− =

∑i
N

i=1
(1)

where acci denotes the proportion of correct predictions for the ith

class, and N=3 denotes the number of sandstone classes.
F1 measure is computed using the following formula:

F TP
TP FN FP

1 = 2
2 + + (2)

where TP FN, and FP are the sample number of true positives, false
negatives and false positives respectively. Both mean acc− and F1
range from 0 to 1, and better classifier has greater values.

4.3. Experiment design

We conduct four experiments each using one of the four regions as
the unfamiliar target, and treating the rest as known regions. Under
each case, we take sandstone images taken from the target region as the
target domain, and the others as the source domain. We assume that
only a small number of sandstone microscopic images are labeled
(identified) in the target domain, and the images in the source domain
are already labeled.

For the methods, we implement Festra-40, Festra-80 and E-
TrAdaBoost, which means the proportion of features selected are
40%, 80% and 100% (i.e. no feature selection) respectively. We also
remove E-TrAdaBoost from Festra, which leaves only the feature
selection part (FS), to study its effect on interregional sandstone
microscopic image classification. For example, FS-40 and FS-80
represent the cases where the proportion of features selected are 40%
and 80% respectively. The base classifiers are used as the baselines
during the experiments.

We choose one of four commonly used classifiers, Support Vector
Machine (SVM) (Hearst et al., 1998), Logistic Regression (LR)
(Hosmer et al., 2000), Decision Tree (DT) (Swain and Hauska, 1977)
and Naïve Bayes (NB) (Murphy, 2006) as the base classifier, to study
the effects of different models on sandstone classification.

To study the research questions, we design four experiments.
Firstly, we randomly take one image (if exist, refer to Table 3) from
each of the three classes in the target region as the labeled instance,
and combine the images in the source domain to compose the training
set. We train all the methods on the training set to study whether
Festra has better performance for predicting unlabeled images in the
target domain. Secondly, we vary the number of target instances
labeled to investigate its effects on the prediction performance of
Festra. For each target region, the number of target instances labeled
from each of the three classes is set from 1 to 13 step by 1. Refer to
Table 1, if a certain class does not have enough images (e.g. Feldspar
sandstone or Quartz sandstone), the number of labeled target instances
will be half of the available ones. Thirdly, we vary the proportion of
features selected to investigate its effects on the prediction performance
of Festra. For each region, we vary the proportion from 10% to 100%
step by 10%. Fourthly, we compare the base classifier and E-
TrAdaBoost using one of the three categories (color, texture, grain) of
image features respectively, to investigate the effects of a specific

Table 3
The number of sandstone microscopic images taken from the four regions in Tibet.

Region Places Age Units Number of Images

Feldspar Sandstone Lithic Sandstone Quartz Sandstone Total

Ali Coqen Cretaceous Duoni,Daxiong 0 41 22 63
Nagqu Bangoin Cretaceous Jingzhushan 0 40 0 40

Shuanghu Jurassic Sewa, Suorika, Biluocuo 0 5 4 9
Shigatse Ngamring, Tingri, Zhongba,

Shigatse
Cretaceous Ngamring, Padana, Quxia, Jialazi, Weimei,

Jidula
3 45 30 78

Shannan Nangarze Paleogene Zongzhuo 8 75 6 89
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category of features for interregional sandstone image classification.
Start from the second experiment, the base classifier used is Naïve
Bayes. In the third and fourth experiments, the number of labeled
target instances from each class is 1.

For cross-validation, to reduce the randomness, we repeat each
experiment 50 times, each with randomly selected target instances as
labeled. The mean performance measures are computed for compar-
ison.

5. Results and analysis

As described in Section 4.3, experiments are conducted taking in
turn each of the four regions in Tibet as the target. Here we describe the
experiment results of each target region respectively.

5.1. Results and analysis of ali

To study the prediction performance of Festra on Ali, we conduct
experiments using the sandstone images taken from Ali as the target
domain, while the rest as the source domain. Table 4 and Fig. 7 present
the performance measures resulted from the four experiments.

Table 4 compares the performance measures among all the
methods. From the table, no matter which of the base classifiers is
used, Festra always has the best prediction performance. When the
base classifier is Naïve Bayes (NB), Festra-40 and Festra-80 can obtain
5.52% and 5.82% improvement in mean-acc as well as 1.92% and
2.33% improvement in F1 measure respectively by adding E-
TrAdaBoost, compared to the counterparts using only feature selection.
Similar improvements can be seen when using the other three base

classifiers. In addition, feature selection can also help improve the
prediction performance. Festra-40 performs the best in most case,
while Festra-80 performs the best in the rest. For example, using DT,
compared with the base classifier, FS-40 and FS-80 improve the
performance by 3.32% and 1.5% in mean-acc as well as 0.31% and
1.73% in F1 measure. Hence, both feature selection and E-TrAdaBoost
are useful, and their combination is valuable for sandstone image
classification on Ali.

Fig. 7(a) presents in line charts the effects of the number of labeled
target instances on the prediction performance of the methods.
According to the figure, when the number of labeled target instances
is small (less than four from each class), Festra has the best
performance. When the number of the labeled target instances is
greater, the merits of feature selection and E-TrAdaBoost are dimin-
ished. The reason may be that as the number of labeled target instances
increases, effects of the source domain will decrease, which makes
Festra less effective.

Fig. 7(b) presents in line charts the effects of the proportion of
selected image features on the prediction performance of feature
selection. According to the figure, as the proportion of selected features
increases, the prediction performance of either FS or Festra presents
similar trends. Both increase at first, then become steady after reaching
the peak. With feature selection only (FS), the prediction performance
reaches the peak point at proportion range 40–70%, and by adding E-
TrAdaBoost (Festra), the optimal proportion shifts backward to 40%.
Hence for Ali, Festra can make a good classification of sandstone
images with only 40% of the original image features.

Fig. 7(c) presents in bar charts the prediction performance of the
methods when a specific group of image features is used. According to

Fig. 6. Simplified tectonic map of the Tibetan Plateau. MBT - Main Boundary Thrust; MCT - Main Central Thrust; STDS - Southern Tibetan Detachment System; KF - Karakorum Fault;
ATF - Alty Tagh Fault.

Table 4
The mean-acc and F1 measure of all the methods using one of the four base classifiers on Ali. The highest measure of each method combination (column) is marked in bold.

Methods Mean-acc F1 Measure

NB DT LR SVM NB DT LR SVM

Base 74.47% 75.49% 76.68% 85.78% 0.8325 0.8115 0.8114 0.9045
FS−40 77.82% 78.81% 78.80% 86.07% 0.8544 0.8146 0.8160 0.9094
FS−80 76.44% 76.99% 78.10% 87.07% 0.8532 0.8288 0.8146 0.9106
E-TrAdaBoost 81.65% 78.96% 80.46% 87.80% 0.8586 0.8290 0.8185 0.9130
Festra−40 83.34% 80.34% 81.05% 89.19% 0.8736 0.8532 0.8443 0.9156
Festra−80 82.26% 79.38% 80.86% 89.93% 0.8765 0.8305 0.8372 0.9167
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the figure, the color features perform best on Ali. Both NB and E-
TrAdaBoost using the color features outperform those using the texture
or grain features. In addition, by adding feature selection (Festra-40),
the performance can be further improved with similar number of
features, which suggest that feature selection can provide a good means
of combining features from multiple categories.

Based on the above analysis, Festra has the best prediction
performance on the Ali samples, when the number of labeled target
instances is small. It requires only 40% of the image features to get a
good performance. In addition, the color features are more useful for
sandstone image classification on Ali than the texture and the grain
features.

5.2. The results of nagqu

Table 5 and Fig. 8 present the performance measures of the
methods using the sandstone images taken from Nagqu as the target
domain, while the rest as the source domain. As shown in Table 5, both
feature selection and E-TrAdaBoost improve the prediction perfor-
mance. No matter which of the base classifiers is used, Festra always
outperforms other methods, and Festra-40 performs the best in most
cases. In Fig. 8(a), when the number of labeled target instances is
small, both feature selection and E-TrAdaBoost can help improve the
performance. When the labeled target instances increase, both become
less effective. In Fig. 8(b), when the proportion of selected features is
within 30–60%, Festra performs the best. In Fig. 8(c), the color
features perform better than the other two groups, while Festra can
make use of both texture and grain features to improve the classifica-
tion performance.

5.3. The results of shigatse

Table 6 and Fig. 9 present the performance measures of the

methods using the sandstone images taken from Shigatse as the target
domain. As shown in Table 6, both feature selection and E-TrAdaBoost
are helpful for improving the prediction performance, and Festra
performs the best in all cases. Festra-40 performs the best when using
DT or SVM as the base classifier, while Festra-80 outperforms the
others when using NB or LR. In Fig. 9(a), when the number of labeled
target instances is small (less than five from each class), E-TrAdaBoost
is more effective than feature selection. When the labeled target
instances increase, the difference between all methods decreases. In
Fig. 9(b), the prediction performance of either NB+FS or Festra
becomes poor if too many features are selected. Festra works well
when the proportion of selected features is around 40%. In Fig. 9(c),
the color features perform poor on Shigatse, while Festra can still make
good use of the three feature categories.

5.4. The results of shannan

Table 7 and Fig. 10 present the performance measures of the
methods using the sandstone images taken from Shannan as the target
domain. As shown in Table 7, both feature selection and E-TrAdaBoost
improve the prediction performance of the four base classifiers. In
Fig. 10(a), when the number of labeled target instances is small (less
than four from each class), both feature selection and E-TrAdaBoost
can help improve the prediction performance. When the labeled target
instances increase, the merit of E-TrAdaBoost will decrease, while
feature selection still performs well. In Fig. 10(b), the optimal propor-
tion of selected features for Festra is around 40%. In Fig. 10(c), the
color features outperform the other groups when using the base
classifier alone, while Festra further improve the performance by
making use of other feature groups.

Fig. 7. The results of Ali.

Table 5
The mean-acc and F1 measure of all the methods using one of the four base classifiers on Nagqu. The highest measure of each method combination (column) is marked in bold.

Methods Mean-acc F1 Measure

NB DT LR SVM NB DT LR SVM

Base 77.36% 64.80% 86.64% 82.92% 0.8659 0.7636 0.8625 0.7949
FS−40 80.42% 70.23% 88.63% 83.95% 0.8706 0.7704 0.8731 0.8043
FS−80 81.64% 69.91% 89.60% 85.45% 0.8681 0.7512 0.8774 0.8126
E-TrAdaBoost 82.49% 71.66% 92.61% 85.54% 0.8672 0.7752 0.8754 0.8142
Festra−40 87.38% 74.83% 93.18% 85.52% 0.8773 0.7882 0.8713 0.8139
Festra−80 84.34% 71.07% 92.84% 86.93% 0.8682 0.7559 0.8815 0.8203
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6. Discussions

Based on the experiment results, we can have the following
conclusions: Festra has good the prediction performance for inter-
regional sandstone microscopic image classification. Both feature
selection and E-TrAdaBoost are useful, and their combination can
further improve the prediction performance.

The purpose of both feature selection and E-TrAdaBoost is to

reduce the difference in data distribution between the source and target
domain. Feature selection may screen out features which have great
difference between the target and source regions, while E-TrAdaBoost
can mitigate the difference among thin section images by the weighting
mechanism. During experiments, it is evident that both the number of
labeled instances from the target domain, and the proportion of
selected features will affect the prediction performance of Festra. In
case of the number of labeled instances, Festra has good performance

Fig. 8. The results of Nagqu.

Table 6
The mean-acc and F1 measure of all the methods using one of the four base classifiers on Shigatse. The highest measure of each method combination (column) is marked in bold.

Methods Mean-acc F1 Measure

NB DT LR SVM NB DT LR SVM

Base 52.77% 50.17% 52.85% 53.87% 0.6178 0.4999 0.5529 0.5696
FS−40 53.56% 51.15% 54.74% 55.44% 0.6232 0.5249 0.5597 0.5822
FS−80 54.12% 53.35% 57.99% 54.99% 0.6180 0.5159 0.5626 0.5907
E-TrAdaBoost 55.39% 54.09% 59.05% 55.91% 0.6357 0.5374 0.5664 0.5938
Festra−40 57.93% 58.04% 58.94% 57.38% 0.6504 0.5688 0.5691 0.6123
Festra−80 58.18% 55.89% 61.67% 56.40% 0.6392 0.5640 0.5859 0.6041

Fig. 9. The results of Shigatse.

Table 7
The mean-acc and F1 measure of all the methods using one of the four base classifiers on Shannan. The highest measure of each method combination (column) is marked in bold.

Methods Mean-acc F1 Measure
NB DT LR SVM NB DT LR SVM

Base 52.67% 45.38% 50.29% 43.16% 0.5286 0.4889 0.6266 0.5025
FS−40 53.95% 50.02% 53.45% 44.35% 0.5304 0.4911 0.6333 0.5079
FS−80 54.61% 51.27% 55.34% 43.96% 0.5342 0.4970 0.6359 0.5093
E-TrAdaBoost 56.02% 50.64% 52.83% 44.61% 0.5405 0.4983 0.6388 0.5109
Festra−40 58.30% 52.87% 54.94% 47.54% 0.5439 0.5152 0.6390 0.5186
Festra−80 56.05% 51.47% 60.75% 45.26% 0.5511 0.4973 0.6622 0.5239
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when the number of target instances labeled is small, which is suitable
for sandstone classification in the field. In case of the proportion of
features selected, the optimal proportion varies little by Festra in
different target regions. Specifically, the best proportion is 40% in Ali,
Shigatse and Shannan, while within 30–60% in Nagqu.

The color, texture and grain features are extracted from the
sandstone images during our experiments. The three groups are
commonly used by visual sandstone thin section identification in
geology. To investigate the effects of singular group of features for
interregional sandstone microscopic image classification,we conduct
experiments on each group separately. Based on the experiment
results, on average the color features perform best on three regions
except Shigatse. By adding feature selection and/or E-TrAdaBoost, the
performance can be further improved by selecting features from all
three groups. Hence, focusing on singular feature group is not enough,
and a combination of diverse image features besides color, texture, and
grain is helpful for interregional sandstone microscopic image classi-
fication.

The similarity measure is a key factor in the feature selection stage.
In order to choose the suitable measure, we conduct experiments
comparing different kinds of similarity measures (Cha, 2007), includ-
ing Cosine similarity, Euclidean distance, Jaccard coefficient and
Pearson coefficient. Table 8 lists the F1 measure of Festra-40 using
one of the four similarity measures on Shigatse. From the table, we find
that the performance difference is little among the similarity measures.
The same is true in the other three regions and using other feature
proportions. Hence, we can safely choose Cosine similarity as the
similarity measure without losing generality.

As described in Section 4.1, the geological times of the four regions
in Tibet are different. According to the experiment results, Festra works
best in Nagqu, which contains two geological times: the Jurassic and
the Cretaceous, and in Ali, which is formed in the Cretaceous with
multiple formations. In Shigatse, where the sandstones are collected
from formations in the Cretaceous, and in Shannan, which contains
singular formation in the Paleogene, the merits of Festra decrease.
Above suggests that compared with the difference in geological times,
the regional difference has more effect on Festra. For interregional
sandstone microscopic image classification, other methods are required
besides Festra.

It is important to note that although in this paper, Festra is applied
to sandstone classification at the thin section level, it can be extended
to the mineral level for composition analysis and comprehensive
sandstone identification, which is part of our future work.

7. Conclusions and future work

In this paper, we propose a transfer learning method Festra to
handle the problem of interregional sandstone microscopic image
classification. Festra includes both feature selection and E-
TrAdaBoost, which combines the techniques of both feature and
instance transfer. The object of feature selection is to screen out
features which have great difference between the target and source
regions, while E-TrAdaBoost is to mitigate the difference among thin
section images collected from different regions. Hence, labeled in-
stances from multiple regions can be used to train high-quality
classifiers for prediction in the target region. We conduct experiments
based on sandstone microscopic images collected from four separated
regions in Tibet, which involve different geologic times and formations.
The results demonstrate both effectiveness and potentials of Festra.

In our future work, on one hand, we plan to expand our dataset to
include sandstone images taken from other regions to verify the validity
of Festra. We also plan to apply Festra to other types of rock images to
explore the potentials of the method. On the other hand, we plan to
design extra image features to describe the characteristics of sandstone
images, and try other feature selection methods (e.g. Principal
Component Analysis) and use more comprehensive classifiers (e.g.
Neural Networks and deep learning methods) to handle the inter-
regional classification problem.

The authors thank Wei An, Wen Lai, Gaoyuan Sun, Anlin Ma, and
Bo Zhou for providing the sandstone microscopic images who manually
identified the images from samples in Tibet.
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