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A prospecting cost-benefit strategy is developed by quantitatively defining the prospecting cost and benefit in
mineral potential mapping. Suppose that some mineral deposits have been discovered in a study area of a set
of grid cells, the prospecting cost and benefit of a “unique” condition can be defined as the percentage of non-
deposit-bearing and deposit-bearing cells within the “unique” condition, respectively. By replacing the false pos-
itive and true positive rates in the receiver operating characteristic (ROC) curve analysis with the prospecting
cost and benefit, the Youden index, likelihood ratio, and lift index can be computed and used to express themin-
eral potential of the “unique” condition. Thus, themineral potential mapping in a study area can be implemented
by identifying all the possible “unique” conditions and then computing their mineral potential indicators such as
the Youden index, likelihood ratio, and lift index. By integrating an automatic “unique” condition searching algo-
rithmwith the techniques for computing themineral potential indicators for each “unique” condition, the follow-
ing prospecting cost-benefit strategy is developed for mineral potential mapping: (a) select map patterns closely
associatedwith the discoveredmineral deposits using theirmineral potential indicators, (b) automatically search
for all the possible “unique” conditions, (c) evaluate the mineral potential of each “unique” condition using its
mineral potential indicators, and (d) assess mineral potential mapping performance using the mineral potential
indicator diagrams. For demonstration purposes, the Baishan district in Southern Jilin Province in China, which
has a complex geological setting, is chosen as a case study area. The weights of evidence (WofE) modeling pos-
terior probability, Youden index, likelihood ratio, and lift index are applied in themineral potential mapping and
their performance are assessed using their ROC curves, cumulative lift charts, and Youden and likelihood ratio di-
agrams. The results show that (a) the likelihood ratio and lift index perform similarly well and (b) the posterior
probability performs a little bit worse than the likelihood ratio and lift index while a little bit better than the
Youden index. Therefore, the prospecting cost-benefit strategy provides a common paradigm for both mineral
potential mapping and the performance assessment.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Mineral potential mapping can be a key procedure inmineral explo-
ration. Its fundamental purpose is to minimize prospecting cost while
maximizing prospecting benefit of a mineral exploration program.
In the past decades, several dozens of mineral potential mapping
approaches have been developed. They can be classified into data-
driven, knowledge-driven, and hybrids of the two methods. Data-
driven methods make use of the relationship between discovered
mineral deposits and their surroundingmap patterns to set up amineral
potential mapping model. These methods include weights of evidence
or WofE (Agterberg, 1990, 1992; Agterberg et al., 1990; Bonham-Carter
et al., 1988, 1989; Brownet al., 2000; Carranza andHale, 2002a;Nykänen
urces Prognosis on Synthetic
hun, Jilin 130026, China.
Chen).
et al., 2008; Tangestani andMoore, 2001), extendedweights of evidence
(Mansour et al., 2009; Pan, 1996), fuzzy weights of evidence (Cheng
et al., 2007; Porwal et al., 2006a), logistic regression (Agterberg, 1974,
1989; Agterberg and Bonham-Carter, 1999; Carranza and Hale, 2001b;
Chen et al., 2011; Nykänen et al., 2008), feed-forward neural networks
(Brown et al., 2000; Skabar, 2003), multilayer perceptrons (Skabar,
2007), Bayesian networks (Porwal et al., 2006b), radial basis functional
link net (Leite and de Souza Filho, 2009a; Nykänen, 2008; Porwal et al.,
2003), probabilistic neural networks (Leite and de Souza Filho, 2009b),
certainty factor (Chen, 2003), evidence belief functions (An and Moon,
1993; Carranza and Hale, 2003; Carranza et al., 2005; Chen, 2004;
Moon, 1989, 1990, 1993; Moon and So, 1995), multifractal singularity
(Cheng, 2006; Cheng et al., 2009a, 2009b), and support vector machines
(Abedi et al., 2012a; Zuo and Carranza, 2011). Knowledge-driven
methods, however, apply empirical metallogenic and mineral-
system knowledge to establish a mineral potential mapping model.
They include Boolean logic (Bonham-Carter et al., 1989), index overlay
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(Bonham-Carter et al., 1989; Carranza et al., 1999), fuzzy logic (An et al.,
1991; Brown et al., 2000; Carranza and Hale, 2001a; Chung and Moon,
1990; D'Ercole et al., 2000; Karimi et al., 2008; Knox-Robinson, 2000;
Molan and Behnia, 2013; Nykänen et al., 2008), wildcat mapping
(Carranza, 2010; Carranza and Hale, 2002b), multiple criteria
decision-making (Abedi et al., 2012b, 2012c, 2013a), interval valued
fuzzy sets TOPSIS (Rad and Busch, 2011), outranking method (Abedi
et al., 2013b), and restricted Boltzmann machine (Chen, 2014).

In this paper, by quantitatively defining prospecting cost and benefit,
the fundamental purpose of mineral potential mapping is transformed
into a prospecting cost-benefit strategy. Suppose that somemineral de-
posits have been discovered in a study area of a set of grid cells, then the
prospecting cost and benefit of a “unique” condition can be defined as
the percentage of non-deposit-bearing and deposit-bearing cells within
the “unique” condition, respectively. The assumption is made that the
non-deposit bearing cells have been adequately sterilized. This defini-
tion just coincides with the false positive and true positive rates in the
receiver operating characteristic (ROC) curve analysis (Barreno et al.,
2008). By replacing the false positive and true positive rates with the
prospecting cost and benefit, the Youden index (Chen, 2014), likelihood
ratio (Chen et al., 2014), and lift index (Anjum, 2014) can be computed
and used as mineral potential indicators to express the mineral poten-
tial of the “unique” condition. The Youden index is negatively related
to the prospecting cost while positively related to the prospecting ben-
efit, and the likelihood ratio and lift index are inversely proportional to
the prospecting cost but proportional to the prospecting benefit. Thus,
maximizing these three mineral potential indicators is equivalent to
minimizing the prospecting cost while maximizing the prospecting
benefit of the mineral exploration program.

In mineral exploration, each “unique” condition is one class of min-
eral potential targets in a study area. Thus, the mineral potential map-
ping in a study area needs only to identify all the possible “unique”
conditions and then compute their mineral potential indicators such
as the Youden index, likelihood ratio, and lift index. The authors have
developed an algorithm for automatically searching for all the possible
“unique” conditions in a study area. By integrating this automatic
searching algorithmwith the techniques for computing themineral po-
tential indicators for each “unique” condition, the authors set up the fol-
lowing prospecting cost-benefit strategy formineral potentialmapping:
(a) select map patterns closely associated with the discovered mineral
deposits using their mineral potential indicators, (b) automatically
search for all the possible “unique” conditions, (c) evaluate the mineral
potential of each “unique” condition using its mineral potential indica-
tors, and (d) assess mineral potential mapping performance using the
mineral potential indicator diagrams. This strategy provides a common
paradigm for bothmineral potential mapping and themineral potential
mapping performance assessment of various models.

The Baishan district in Southern Jilin Province in China, which has a
complex geological setting, is chosen as a case study area. The WofE
modeling posterior probability, Youden index, likelihood ratio, and lift
index are applied to map the mineral potential of the study area and
their performance is assessed using their ROC curves, cumulative lift
charts, and Youden and likelihood ratio diagrams. The results show
that (a) the likelihood ratio and lift index perform similarly well and
(b) the posterior probability performs a little bit worse than the likeli-
hood ratio and lift index while a little bit better than the Youden
index. The ROC curve analysis is overviewed in Section 2, the
prospecting cost-benefit strategy are discussed in Section 3. A case
study follows in Section 4 and finally the conclusion and discussion.

2. Overview on ROC curve analysis

In dealing with a binary classification problem, one class can be la-
beled as a positive and the other one as a negative class. Assume that
the training sample set consists of p positive and n negative samples.
A classifier assigns a class label to each of them, but some of the
assignmentsmay of course bewrong. To assess the classification results,
the number of true positive (tp), true negative (tn), false positive (fp)
(actually negative, but classified as positive) and false negative (fn) (ac-
tually positive, but classified as negative) samples can be estimated
using a 2 × 2 contingence table. They satisfy

tpþ fn ¼ p; tnþ fp ¼ n: ð1Þ

The classifier assigned tp + fp samples to the positive class and
tn+ fn samples to the negative class. The followingmeasures can be de-
fined:

fprate ¼ fn
n
¼ 1� tn

n
¼ 1� specificity ð2Þ

tprate ¼ tp
p
¼ sensitivity ¼ recall ð3Þ

yrate ¼ tpþ fp
pþ n

ð4Þ

Youden index ¼ tprate� fprate ð5Þ

likelihood ratio ¼ tprate=fprate ð6Þ

lift ¼ tprate=yrate: ð7Þ

The tprate, sensitivity, or recall measures the fraction of positive
samples correctly classified, i.e., the classification accuracy of positive
samples. The fprate or 1- specificity measures the fraction of negative
samples that are misclassified as positive ones, i.e., the classification
error of negative samples. The yrate measures the fraction of samples
that are classified as positive ones, i.e., the fraction of targeted popula-
tion. The Youden index and likelihood ratio represent respectively the
difference and ratio between probability of a sample predicted as posi-
tive when it is truly positive, and probability of the sample predicted as
positive when actually it is not positive. The Youden index is a compre-
hensive classification accuracy, a higher Youden index indicates better
ability to avoid failure in binary classification. The likelihood ratio is a
comprehensive performance measure in binary classification, a higher
likelihood ratio means better classification performance on positive
class. The lift represents the effectiveness of a predictivemodel calculat-
ed as the ratio between the results obtained with and without the pre-
dictive model. It is the ratio between the classification accuracy of
positive samples to the fraction of targeted population. A lift value
tells howmuch better a classifier predicts compared to a random guess.

A classification model is a function f :X→[0,1] that maps each sam-
ple x to a real number f(x). Usually, a threshold t is chosen for which
the samples where f(x) ≥ t are considered positive samples and the
others are considered negative ones. This implies that each pair of a clas-
sifier and threshold t defines a binary classifier. Thus, a number of differ-
ent binary classifiers, that is to say a binary classifier system, can be
obtained by varying the threshold t.

A ROC curve is a graphical plot that illustrates the performance of a
binary classifier system as its discrimination threshold is varied. The
curve is created by plotting the tprate against the fprate at various
threshold settings. The steeper the curve is toward the upper left corner,
the better is the ability of the classifier to discriminate between positive
and negative classes. The ROC curve was first developed by electrical
and radar engineers during World War II for detecting enemy objects
in battlefields and was soon introduced to psychology to account for
perceptual detection of stimuli (Swets, 1996). The ROC curve analysis
since then has been used in medicine, radiology, biometrics, and other
areas formany decades (Zou et al., 2007) and is increasingly used inma-
chine learning and data mining research (Hernandez-Orallo, 2013).

The ROC curve analysis provides tools to select possibly optimal
models and to discard suboptimal ones independently from the class
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population distribution. Several ROC curves can be plotted in the same
space to compare the results of different models, in the simplest case,
a curve dominates others and modeling associated with the dominant
curve is considered the most effective. This represents a visually simple
instead of a qualitative interpretation of the ROC curve based on its
shape. However, in more complex cases, which are more frequent, sev-
eral curves may intersect, and it is more difficult to identify the top
model.

Various ideas were proposed to solve the ROC curve intersect situa-
tion. One feasible way is to compute the area under the ROC curve
(AUC). The AUC value is a summary indicator of ROC curve performance
that can summarize the performance of a classifier system into a single
metric. Unlike difficulties encountered in the comparison of different
ROC curves especially in cases where they intersect, the AUC value can
sort models by overall performance, as a result, the AUC value is consid-
eredmore often inmodels assessment. The AUC value can vary between
0.5 and 1 in practice. If the AUC value equals 0.5, the classification per-
formance is equivalent to a complete random guess; while if the AUC
value equals 1, the classification performance is perfect, i.e., the classifier
can correctly classify all samples. The AUC value of a classifier usually
falls in somewhere between 0.5 and 1. The AUC value of a classifier sys-
tem has an important statistical property as it is equivalent to the prob-
ability that the classifier system will rank a randomly chosen positive
sample higher than a randomly chosen negative one.

The AUC value is estimated through various techniques, and the
Wilcoxon Mann–Whitney test (Bergmann et al., 2000) is an often
used nonparametric method. According to this method, the AUC value
estimation is equivalent to the Wilcoxon test of ranks. Let xi (i = 1, 2,
…, p) represent the predicted value of the ith positive sample and yj
(j=1, 2,…, n) represent the predicted value of the jth negative sample.
Then, the AUC value can be estimated by

AUC ¼ 1
p� n

∑p
i¼1∑

n
j¼1φ xi; yj

� �
ð8Þ

φ xi; yj

� �
¼

1xiNyj
0:5xi ¼ yj
0xibyj

8<
: ð9Þ

The standard deviation of AUC can be written as

SAUC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AUC 1−AUCð Þ þ p−1ð Þ Q1−AUC2

� �
þ n−1ð Þ Q2−AUC2

� �
p� n

vuut
:

ð10Þ

Q1 and Q2 in Eq. (10) can be expressed by

Q1 ¼ AUC
2−AUC

;Q2 ¼ 2AUC2

1þ AUC
: ð11Þ

Test of hypotheses can be implemented to test whether the AUC
value is significantly different from AUC = 0.5. The following random
variable can be estimated:

ZAUC ¼ AUC−0:5
SAUC

: ð12Þ

Random variable ZAUC satisfies the standard normal distribution. The
value of ZAUC can be used to determine the probability of a Type I error
by finding the area in the tail of the normal distribution using the nor-
mal distribution table. For example, if ZAUC ± 1.96, the probability of a
Type I error is 0.05.
3. Prospecting cost-benefit strategy

In mineral exploration, the aforementioned prospecting cost and
benefit can be estimated and used to compute the Youden index, likeli-
hood ratio, and lift indexwhich can be further applied to selectmappat-
terns, map mineral potentials, and assess mineral potential mapping
performance.

3.1. Prospecting cost and benefit estimation

In mineral potential mapping, it is very often the case that some
mineral deposits have been discovered in a study area of a set of grid
cells. Under this circumstance, deposit-bearing and non-deposit-
bearing cells can be identified by superimposing the map of discovered
mineral deposits on themap of grid cells. It is quite reasonable to view a
mineral potential mapping procedure as a binary classification process
that classifies grid cells into deposit-bearing and non-deposit-bearing
cells. Then the prospecting cost and benefit defined in Section 1 can
be estimated on the basis of the identified and predicted deposit-
bearing and non-deposit-bearing cells by referring to the estimation
method of the false positive and true positive rates in the ROC curve
analysis.

Similar to binary classification, each pair of a mineral potential map-
pingmodel and a threshold can define a binary classifier which predicts
grid cells as mineral potential targets (deposit-bearing cells) and non-
mineral potential targets (non-deposit-bearing cells). Based on the
identified and predicted results, for each threshold, the number of cor-
rectly predicted deposit-bearing cells, the number of incorrectly pre-
dicted deposit-bearing cells, the number of correctly predicted non-
deposit-bearing cells, and the number of incorrectly predicted non-
deposit-bearing cells, as generated under the assumptions adopted in
the model, can be counted. These four indexes sequentially correspond
to the number of true positive (tp), thenumber of false negative (fn), the
number of true negative (tn), and the number of false positive (fp) in a
binary classification. Consequently, the prospecting cost and benefit,
with respect to the false positive rate (fprate) and true positive rate
(tprate) in a binary classification, can be straightforwardly computed
using Eqs. (2) and (3), respectively.

Prospecting cost and benefit may range from 0 to 1which is same as
the range of the fprate and tprate in a binary classification. A
prospecting cost = 0 implies that all the non-deposit-bearing cells
are correctly predicted; a prospecting cost = 1 indicates that all the
non-deposit-bearing cells are incorrectly predicted; a prospecting
benefit = 0 presents that all the deposit-bearing cells are incorrectly
predicted; and a prospecting benefit = 1 denotes that all the deposit-
bearing cells are correctly predicted.

3.2. Mineral potential indicator calculation

In mineral potential mapping, the mineral potential indicators such
as the Youden index, likelihood ratio, and lift index can be easily com-
puted on the basis of the estimated prospecting cost and benefit.

The Youden index can be computed using Eq. (5). It has been suc-
cessfully applied in diagnostic test (Ruopp et al., 2008). Chen (2014) ten-
tatively applied the Youden index to determine the optimal threshold
for geochemical anomaly identification. In mineral potential mapping,
the Youden index is defined as the difference between the fraction of
the correctly predicted deposit-bearing cells and the fraction of incor-
rectly predicted non-deposit-bearing cells. The range of Youden index
is between −1 and 1. A value 1 indicates a perfect prediction, a value
0 indicates that a prediction is the same as a random guess, and a nega-
tive value indicates that a prediction is worse than a random guess.

The likelihood ratio can be computed using Eq. (6). It has been
widely applied in machine learning (Johnson, 2004). Chen et al.
(2014) preliminarily applied the likelihood ratio to assess the perfor-
mance of geochemical anomaly recognition. In mineral potential
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mapping, the likelihood ratio is defined as the ratio between probability
of a cell predicted as a deposit-bearing cell when it is truly a deposit-
bearing cell and probability of the cell predicted as a deposit-bearing
cell when actually it is a non-deposit-bearing cell. The range of the like-
lihood ratio is from zero to positive infinity. A value 1 indicates that the
prediction is same as a random guess, a value toward infinity indicates a
perfect prediction, and a value less than one implies that the prediction
is worse than a random guess.

The lift index can be computed using Eq. (7). It has been widely ap-
plied in custom churn prediction (Anjum, 2014). In this paper, the lift
index is preliminarily applied in mineral potential mapping, it is used
to represent how much a mineral potential mapping model is more ef-
fective than a random guess. The range of the lift index is from zero to
positive infinity. A value 1 indicates that the prediction is same as a ran-
dom guess, a value toward positive infinity indicates a perfect predic-
tion, and a value less than one means that the prediction is worse
than a random guess.

The Youden index and likelihood ratio are independent of the rela-
tive sample size of deposit-bearing and non-deposit-bearing cells as
well as the absolute sample size of total grid cells. The lift index is not
independent of the relative sample size of deposit-bearing and non-
deposit-bearing cells but independent of the absolute sample size of
total grid cells. Inmineral potentialmapping, these threemineral poten-
tial indicators can be used in binary map pattern selection, continuous
map pattern optimal segmentation, mineral potential evaluation, and
model performance assessment.

3.3. Binary map pattern selection

A binary map pattern used for mineral potential mapping must be
closely associated with the discovered mineral deposits in a study
area. The Youden index, likelihood ratio, and lift index can be used to
measure the association between a map pattern and the discovered
mineral deposits. Suppose that a map pattern separates the study area
into two classes of subareas, one where the map pattern exists and
one where the map pattern does not exist. Each class of subareas can
be viewed as mineral exploration targets, so the fprates, tprates, and
yrates can be estimated using Eqs. (2) through (4), respectively. Then
the Youden index, likelihood ratio, and lift index can be computed
using Eqs. (5) through (7) sequentially. The map pattern is regarded to
be closely associatedwith the discoveredmineral deposits if the Youden
index for one class of subareas is muchmore than zero, or the likelihood
ratio or lift index for one class of subareas is much more than one.

3.4. Continuous map pattern selection

A continuous map pattern used for mineral potential mappingmust
be positively correlated to the discovered mineral deposits in a study
area. The higher the positive correlation between a continuousmappat-
tern and the discoveredmineral deposits, thehigher is the percentage of
the discovered mineral deposits within the positive anomalies of the
continuous map pattern, and consequently the better the continuous
map pattern performs in the mineral potential mapping.

The ROC curve of a continuous map pattern can graphically reflect
the correlation between the continuousmappattern and the discovered
mineral deposits. The steeper the curve is toward the upper left corner,
the higher is the correlation between the continuous map pattern and
the discovered mineral deposits. Thus, the continuous map patterns
which are highly correlated to the discovered mineral deposits can be
recognized using their ROC curves.

The AUC of a continuous map pattern can quantitatively express the
correlation between the continuous map pattern and the discovered
mineral deposits. It can be calculated by Eqs. (8) and (9) and its standard
deviation can be computed by Eqs. (10) and (11). An AUC-dependent
statistics ZAUC can be computed using Eq. (12) and used to test whether
the continuous map pattern is significantly correlated to the discovered
mineral deposits. The continuous map pattern is regarded to be signifi-
cantly correlated to the discovered mineral deposits at the level α =
0.05 if the absolute value of ZAUC is more than 1.96.

3.5. Continuous map pattern optimal segmentation

The selected continuous map patterns must be transformed into bi-
nary map patterns so that they can be further applied in mineral poten-
tial mapping. An anomaly identification method can transform
continuous map patterns (like geochemical element concentration
values) into binary map patterns (such as geochemical anomalies).
There is a variety of anomaly identificationmethods, for example, the it-
erative mean ± 2σ statistical methods (Galuszka, 2007; Hawkes and
Webb, 1962), box plot (Tukey, 1997), and fractal and multifractal
methods (Cheng, 1995, 2000, 2006, 2007, 2008; Zuo et al., 2009), to
name but a few. However, these methods do not take into account the
relationship between a continuous map pattern and the discovered
mineral deposits in the continuous map pattern segmentation.

In this paper, the authors provide an optimal threshold method
which can approximately maximize the association between the trans-
formed binary map pattern (i.e., the identified anomalies) and the dis-
covered mineral deposits in the continuous map pattern
segmentation. First, the continuous distribution of threshold values is
discretized by dividing the difference between the maximum and min-
imum into a number of equal intervals, which are progressively cumu-
lated. Then the Youden index, likelihood ratio, and lift index, with
respect to each of the discretized thresholds, can be computed and the
threshold with respect to the largest Youden index or likelihood ratio
or lift index is selected as the optimal threshold for the continuous
map pattern segmentation.

3.6. Search for “unique” conditions

Suppose that all the binary map patterns which are closely associat-
ed with the discovered mineral deposits have been selected and all the
selected continuous map patterns have been optimally segmented.
Then the cells with the samemap pattern composition display “unique”
conditions and represent a class of mineral exploration targets. The
main task of mineral potential mapping is to estimate the mineral po-
tential of each class of mineral exploration targets, thus all the possible
“unique” conditionsmust be identified first so that their mineral poten-
tials can be estimated further.

Let n and p denote the total numbers of grid cells and binary map
patterns, respectively. Two-dimensional array “data” with size of
n × (p + 1) is used to preserve the input data as follows: item datum
[i, 0] = 1 denotes that a mineral deposit exists in grid cell i while item
datum [i, 0] = 0 denotes that no mineral deposit exists in grid cell i;
and item datum [i, j] = 1 (1 ≤ j ≤ p) denotes that map pattern j exists
in grid cell i while item datum [i, j] = 0 denotes that map pattern j
does not exist in grid cell i. One-dimensional array “d” with size of n is
used to indicate whether a grid cell is located in a blank area. Item d
[i] = 0 denotes that grid cell i is located in a blank area while item d
[i] = 1 denotes that grid cell i contains a possible “unique” condition.
One-dimensional array “pattern” with size of n is used to preserve
which “unique” condition occurs in a grid cell. Item pattern [i] = 0 de-
notes that grid cell i is located in a blank area and item pattern [i] =
kk (kk ≥ 1) denotes that “unique” condition kk occurs in grid cell i.
Table 1 lists a Python 2.x module which can be applied to search for
each of all the possible “unique” conditions in a study area of n grid cells.

3.7. Mineral potential estimation

Suppose that all the possible “unique” conditions have been identi-
fied in a study area. Then for each “unique” condition, the following
three steps can be implemented: (a) count the number of deposit-
bearing and non-deposit-bearing cells that belong and do not belong



Table 1
Python 2.x module for “unique” condition search.

import numpy as np

def pattern_search (n, p, d, data):
pattern = np.zeros (n, int)
kk = 0
for i in range(n):

if d[i] == 1:
if pattern[i] ! = 0:
continue

kk += 1
pattern[i] = kk
for j in range(i + 1, n):

if d[i] == 1:
if pattern[ j] ! = 0:
continue

num  = 0
for k in range(1, p + 1):

if data[i, k] ! = data[ j, k]:
break

num += 1
if num == p:

pattern[ j] = pattern[i]
return pattern
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to the “unique” condition, these four statistics just correspond to tp, fp,
fn, and tn, respectively; (b) the fprate (prospecting cost) and tprate
(prospecting benefit) as well as the yrate of the “unique” condition
are then computed using Eqs. (2) through (4) sequentially; and
(c) theYouden index, likelihood ratio, and lift index of the “unique” con-
dition are computed on the basis of fprate, tprate, and yrate using
Eqs. (5) through (7), respectively. After the Youden indexes, likelihood
ratios, and lift indexes of all the possible “unique” conditions have
been computed, the mineral potential maps can be plotted on the
basis of each of the three mineral potential indicators.

Inmineral potentialmapping, each grid cell ismapped to a real num-
ber used for expressing itsmineral potential. Then a threshold value can
be chosen for which the cells the mineral potentials of which are more
than the threshold are considered mineral potential targets while the
others are considered non-mineral potential targets. By varying thresh-
old values step by step, different classes of mineral potential targets can
be sequentially obtained.

3.8. Model performance assessment

The performance of different mineral potential mappingmodels can
be evaluated using the similar performance assessing method in binary
classification. First, predefine a set of thresholdswhich distribute evenly
between the minimum and maximum values of a mineral potential
mapping result. Then with respect to each threshold, the prospecting
cost and benefit for the mineral potential mapping result are computed
and a ROC curve is drawn by plotting the prospecting benefit against the
prospecting cost at various threshold settings.

The ROC curves for differentmineral potential mapping results can be
plotted in the same space and the performance of thesemineral potential
mapping results canbe graphically compared to one another. Themineral
potential mapping result the ROC curve of which is nearer to the up-left
corner has comparatively better performance. Under the situation
where the ROC curves of different mineral potential mapping results
cross, AUC values can be computed and used to assess the overall perfor-
mance of different mineral potential mapping results (Chen, 2014). An
additional statistics ZAUC can be further computed on the basis of the
AUC values and used to test whether a mineral potential mapping result
is significantly different from the result obtained by a random guess.

Besides the ROC curves, cumulative gains and lift charts (Anjum,
2014) can be drawn by respectively plotting prospecting benefit and
lift index against yrate at various threshold settings. Similar to the
ROC curves, the cumulative gain curves of different mineral potential
mapping results can be plotted in the same ROC space. The mineral po-
tential mapping result the cumulative gain curve of which is nearer to
the up-left corner has comparatively better performance. For a cumula-
tive lift chart, the further it is away from the baseline of lift = 1.0, the
better is the performance of the mineral potential mapping result. In
the situations where different cumulative gain curves cross, the area
under the cumulative gain curve or AUL (Bekkar et al., 2013) can be
computed on the basis of the corresponding AUC and used to measure
the overall performance of different mineral potential mapping results.
The relation between the AUL and AUC can be expressed by

AUL ¼ p
2 pþ nð Þ þ 1−

p
pþ n

� �
� AUC ð13Þ

where: p and n are the number of deposit-bearing and non-deposit-
bearing cells, respectively.

In this paper, the authors provide two new curves that can be used to
compare the performance of different mineral potential mapping results.
They are the Youden and likelihood ratio diagrams obtained by respec-
tively plotting the Youden index and likelihood ratio against the
prospecting cost at various threshold settings. The performance of differ-
entmineral potentialmapping results can be assessed using these twodi-
agrams as follows. For the Youden diagram, the further the curve is away
from the axis of prospecting cost, the better is the performance of the
mineral potential mapping result. While for the likelihood ratio diagram,
the further the curve is away from the baseline of likelihood ratio = 1.0,
the better is the performance of the mineral potential mapping result.

4. Case study

The Baishan district in Southern Jilin Province in China, which has a
complex geological setting, is chosen as the case study area. The WofE
model and the prospecting cost-benefit strategy are applied in mapping
the mineral potential of the area. The posterior probability, Youden
index, likelihood ratio, and lift index are applied to expressmineral poten-
tial of each grid cell. The ROC curves, cumulative lift charts, Youden and
likelihood ratio diagrams, and AUCs (Chen, 2014) and AULs are applied
to measure the performance of these four mineral potential indicators.

4.1. Geological settings and mineral deposits

The study area is located in the eastern section of the northernmar-
gin of theNorthChina Platform. It has experienced four geotectonic evo-
lution stages which include the formation of the Archean-Proterozoic
basement, rifting in the middle to late Proterozoic, “soft” orogenesis in
the Paleozoic, extensional regime in the Mesozoic, and evolution of
basin-ridge geotectonic regime in the Cenozoic (Liu et al., 2000). This
complicated geotectonic evolution resulted in the distribution of the Ar-
chean granite–greenstone and Paleoproterozoic rift formation, and late
Proterozoic–Paleozoic and Mesozoic sedimentation in the study area
(Fig. 1). The lateMesozoicwas, in addition, a period of vigorous volcanic
eruptions and large-volume granitoid intrusion (Wu et al., 2005). These
volcanic eruptions and granitoid intrusion directly resulted in thewide-
ly distributed volcanic rocks and a number of outcrops of the Mesozoic
granites and granite porphyries in the study area (Fig. 1). The complicat-
ed geotectonic evolution also led to the appearance of middle Protero-
zoic and Mesozoic metallogenic epochs in the study area (Liu et al.,
2000). Dahenglu copper–cobalt deposit, Huanggoushan and Banmiaozi
gold deposits, and other 27 mineral deposits and mineral occurrences
have been discovered in the study area.

Dahenglu copper–cobalt deposit is genetically a deposit of subma-
rine hot-water deposition superimposed by late thermal solutions. It
was formed in the formation of phyllite with the intercalated beds of
quartzite (siliceous rocks) (Yang et al., 2001). The phyllite formation is
rich in boron and carbon and belongs to early Proterozoic Laoling
Group (Yang et al., 2001). Ore-bodies occurred in the form of beds and



Fig. 1. Simplified geologic map superimposed with the discovered mineral deposits.

Fig. 2. Diagram of lift indexes varying with buffering widths.
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saddles of carbon-bearing sericite phyllite, tourmaline-bearing sericite
phyllite, quartzite as well as tourmaline quartzite and their occurrences
are concordant with the bedding of the wall rocks (Yang et al., 2001).

The Huanggoushan and Banmiaozi gold deposits are genetically a
submarine hot-water deposition superimposed by late metamorphic-
hydrothermal solutions and karst water. The deposits occurred in the
accretionary terrain of early Proterozoic Laoling-Jilin rift zone and the
ore-bearing rocks are magnesium-rich carbonate rocks of Zhenzhumen
Formation of early Proterozoic Laoling Group (Yang et al., 1999). Arche-
an supracrustal rocks and the Late Proterozoic Laoling Group comprise
the main source beds and the northeastern deep faults are the main
ore-controlling tectonics (Li, 2009; Li et al., 2010). The gold deposits
were located at the intersection of NE-trending fractural belt and angu-
lar unconformity betweenmarble of the early Proterozoic Zhenzhumen
Formation and quartzite of Diaoyutai Formation of Neoproterozoic
Qingbaikou System. Gold localization was controlled by both the geo-
logical boundaries and fractural belts (Su and Zang, 2010).

The gold and polymetallic mineralization in the study area was
closely related to the four-stage tectonic evolution (Liu et al., 2000). Pro-
terozoic and Mesozoic are the two main metallogenic epochs. The
Dahenglu copper-cobalt deposit formed mainly in the Proterozoic
while the Huanggoushan and Banmiaozi gold deposits formed mainly
in the Mesozoic. However, these deposits are controlled by similar re-
gional geological factors, such as the northeastern deep faults, Archean
supracrustal rocks, and Proterozoic formations, Mesozoic volcano-
magmatic and hydrothermal activities are in these cases the principal
regional metallogenic controlling factors. Therefore, a combination of
the discovered mineral deposits was used to predict mineral potential
targets in this case study.

4.2. Geological map pattern selection

Based on the previousworks and results discussed in Section 4.1, the
following geologic entities were preliminarily selected as the evidence
map patterns for mineral potential mapping: (a) Archeanmetamorphic
rocks, (b) Proterozoic gneissose granitites, (c) Mesozoic granitite and
granitite porphyry, (d) Laoling Group rocks, (e) Neoproterozoic
Qingbaikou System rocks, (f) Sinian System rocks, (g) Cambrian-
Ordovician System rocks, (h) Carboniferous System rocks, (i) Jurassic
System rocks, (j) Jurassic volcanic rocks, and (k) northeastern faults.

Before quantitatively selecting the binary map patterns, the study
area was first divided into 15,000 grid cells (100 by 150) and each cell
is 1.2167 km high and 1.6365 km wide. A total of 5932 cells out of the
original 15,000were categorized as the blank area. The linear structures
were then optimally buffered. In order to determine the optimal buffer-
ing width of the linear structures, the following buffering widths are
predefined: 0.1 km, 0.2 km, 0.3 km, 0.4 km, 0.5 km, 0.6 km, 0.7 km,
0.8 km, 0.9 km, and 1.0 km. The optimal buffering width should maxi-
mize the association between the buffered linear structures and the dis-
covered mineral deposits. The lift index was applied to express the
association between the buffered linear structures and the discovered
mineral deposits. Except for cells in the blank area, 9068 cells were
used to estimate the lift indexes of the linear structures buffered at dif-
ferentwidths. Fig. 2 shows that the lift index reaches itsmaximumvalue
at 0.4 km buffer. Thus, 0.4 kmwas chosen as the optimal width for buff-
ering the linear structures in the study area.

Among binary map patterns, only those which are closely associated
with the discovered mineral deposits can contribute to mineral potential
mapping. The lift indexes were applied to measure the relationship be-
tween a binary map pattern and the discovered mineral deposits. The
9068 cells were used to estimate lift index of each binary map pattern.
The estimated lift indexes for the 11 geological binary map patterns are
listed in Table 2. These estimated lift indexes vary from 0.0 to 11.312.
Among them, 6 lift indexes are more than 2.0 and 5 lift indexes equal to
0.0. Thus, the following 6 geological map patterns are selected for mineral
potentialmapping: (a) Archeanmetamorphic rocks, (b)Mesozoic granitite



Table 2
Lift indexes for the 11 geological map patterns.

Map pattern Lift index Map pattern Lift index

Archean metamorphic rocks 2.072 Cambrian–Ordovician System rocks 2.121
Proterozoic gneissose granitites 0.0 Carboniferous System rocks 0.0
Mesozoic granitite and granitite porphyry 4.559 Jurassic System rocks 2.298
Laoling Group rocks 10.707 Jurassic volcanic rocks 0.0
Neoproterozoic Qingbaikou System rocks 0.0 Northeastern faults 11.312
Sinian System rocks 0.0
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and granitite porphyry, (c) Jurassic System rocks, (d) Cambrian–Ordovician
System rocks, (e) Laoling Group rocks, and (f) buffered northeastern faults.

The above 6 geological map patterns approximately coincide with the
principal metallogenic controlling factors in the study area. The Archean
metamorphic rocks provided theore-formingmaterial sources for the for-
mation of the Laoling Group rocks which are the main source beds of
polymetallic mineralization. The magmatic and hydrothermal activities,
which are genetically related to the Mesozoic granitite and granitite por-
phyries, provide the heat source and magmatic hydrothermal solutions
for the polymetallic mineralization. The volcanic activities genetically re-
lated to the Jurassic System rocks,which are volcanic-sedimentary forma-
tions, provide the heat source and volcanic hydrothermal solutions for the
polymetallic mineralization. The northeastern faults provide the most
favorable host space for the enrichment of ore-forming materials. The
Cambrian–Ordovician System rocks are mainly carbonate and clastic
rock formationswhich are not genetically related to the polymetallicmin-
eralization but spatially associated with the discovered mineral deposits.

4.3. Geochemical map pattern selection

A geochemical stream sediment survey has been conducted in the
study area. Stream sediment samples were collected at a 1 km × 1 km
grid within drainage basins in the 4 adjacent geological maps of scale
1:200,000 (Fig. 3). X-ray fluorescence spectrometry was used to mea-
sure the concentration values of geochemical indicators. The concentra-
tion values of 29 elements and 6 oxides in each of the sediment samples
have been analyzed in different concentration units: parts per billion
(ppb) for gold and silver; parts per million (ppm) for the other 27 ele-
ments; and weight/weight percent for the 6 oxides.

In order to express the spatial correlation between the 35 geochem-
ical variables and the discovered mineral deposits in the study area, the
AUC value and AUC-dependent statistics ZAUC for each geochemical var-
iable were calculated and listed in Table 3. From Table 3, it can be seen
that there are 17 geochemical variables which are significantly and pos-
itively correlated to the discoveredmineral deposits because their ZAUCs
aremore than the critical value 1.96 at the level α=0.05. Thus, they are
selected for mineral potential mapping.
Fig. 3.Map of geochemical sampling positions.
The lift index is applied to optimal segmentation of the above 17 se-
lected geochemical variables. In order to determine the optimal thresh-
old for identifying geochemical anomalies, 1000 thresholds were
predefined to distribute uniformly between the minimum and maxi-
mum concentration values of each geochemical variable. The lift
index, with respect to each threshold, is computed and the threshold
with respect to themaximized lift index is chosen as the optimal thresh-
old. Table 4 lists the maximized lift indexes with respect to the optimal
thresholds for the 17 selected geochemical variables. The extracted geo-
chemical anomalies then serve as binary geochemical map patterns.

4.4. Conditional independence test and map pattern combination

TheWofE model can be used to estimate the metallogenic posterior
probabilities if the conditionally independent map patterns given the
discovered mineral deposits are used in the mineral potential mapping
in a study area. An unfailingWofEmodeling result requires themappat-
terns to satisfy both pairwise and overall conditional independence as-
sumption. However, the different map patterns used for mineral
potentialmapping are always somewhatmutually conditionally depen-
dent in practical applications. Thus, the conditional independence tests
were conducted for the WofE modeling in our case study.

The contingency table and new conditional independence tests
(Agterberg and Cheng, 2002)were applied to test the 23 selected binary
map patterns (i.e., the 6 selected geological map patterns and the 17 se-
lected and discretized geochemicalmappatterns). The pairwise test sta-
tistic defined by Agterberg and Cheng (2002) is distributed asχ2 with a
single degree of freedom if the two binary map patterns are condition-
ally independent. The critical value of χ2-statistic with freedom one is
6.635 at the level α = 0.01. The results of pairwise tests show that the
following map patterns are not conditionally independent: (a) Ag is
conditionally dependent with Au, Cao, Cd, Hg, MgO, Pb, V, and Zn;
(b) As is conditionally dependentwith B, Sb, and Sn; (c) Au is condition-
ally dependent with CaO, MgO, and V; (d) B is conditionally dependent
with Sb and Sn; (e) Bi is conditionally dependentwith P; (f) CaO is con-
ditionally dependent with Hg, MgO, and V; (g) Cd is conditionally de-
pendent with Hg and Pb; (h) Hg is conditionally dependent with
MgO, Pb, V, and Zn; (i) MgO is conditionally dependent with V; (j) P is
conditionally dependent with Mesozoic granitite and granitite porphy-
ry; (k) Pb is conditionally dependentwith Zn; and (l) Sb is conditionally
Table 3
Estimated AUCs and ZAUCs of 35 geochemical variables.

Variable AUC ZAUC Variable AUC ZAUC Variable AUC ZAUC

Ag 0.741 4.616 Cu 0.801 6.190 Pb 0.718 4.095
Al2O3 0.567 1.231 Fe2O3 0.558 1.073 Sb 0.720 4.141
As 0.717 4.074 Hg 0.682 3.365 SiO2 0.385 −2.443
Au 0.773 5.412 La 0.484 −0.306 Sn 0.667 3.071
B 0.626 2.301 Li 0.590 1.651 Sr 0.555 1.019
Ba 0.491 −0.179 MgO 0.817 6.692 Ti 0.427 −1.477
Be 0.312 −4.560 Mn 0.501 0.011 V 0.683 3.373
Bi 0.742 4.629 Mo 0.498 −0.037 W 0.675 3.222
CaO 0.785 5.735 Na2O 0.407 −1.935 Y 0.386 −2.426
Cd 0.798 6.109 Nb 0.298 −5.035 Zn 0.670 3.120
Co 0.527 0.497 Ni 0.605 1.911 Zr 0.239 −7.630
Cr 0.556 1.029 P 0.697 3.663



Table 4
The maximized lift indexes and optimal thresholds for 17 geochemical variables.

Geochemical variable Maximized lift Optimal threshold

Ag 29.412 312.953
As 38.462 57.348
Au 25.862 6.886
B 100.0 208.192
Bi 90.909 1.778
CaO 71.429 10.281
Cd 18.519 1053.746
Cu 10.638 55.243
Hg 55.556 325.979
MgO 71.429 12.895
P 45.455 2432.925
Pb 22.727 91.561
Sb 41.667 2.291
Sn 13.514 10.713
V 11.628 184.664
W 8.929 4.269
Zn 55.556 504.984
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dependent with Sn. The new conditional independence test show that
ET − n = 57.205–30 = 27.205 N 1.645 ∗ s(T) = 1.645 × 8.836 =
14.535. Therefore, the 23 selected map patterns satisfy neither the
pairwise nor the overall conditional independence assumption.

In order to make the above 23 map patterns satisfy the conditional
independence assumptions in the WofE modeling. The two mutually
dependent map patterns A and B are combined into a comprehensive
map pattern AB using the set operation: AB=A∪B, and then replace B
with AB and delete A. This map pattern combination procedure can be
automatically implemented in a software program. Through this pro-
cessing, the 23 selectedmap patterns are combined into 11 comprehen-
sive map patterns. Both the pairwise and overall conditional
independence assumptions of the 11 comprehensive map patterns
were tested using Agterberg and Cheng's methods (2002). The results
show that the 11 comprehensivemappatterns violate the overall condi-
tional independence assumption due to the inequality that ET − n =
61.537–30 = 31.537 N 1.645 ∗ s(T) = 1.645 × 13.512 = 22.227. This
overall conditional dependence is caused by the two pairs of pairwise
conditional dependence that exist among the 11 comprehensive map
patterns. So, the map pattern combination procedure was further ap-
plied to the 11 comprehensive map patterns and finally 9 comprehen-
sive map patterns were constructed. The pairwise conditional
independence test reveals that the 9 comprehensivemap patterns satis-
fy pairwise conditional independence assumption (Table 5). The overall
conditional independence test shows that ET − n = 33.698–30 =
3.698 b 1.645 ∗ s(T) = 1.645 × 7.391= 12.158. Thus, the 9 comprehen-
sive map patterns satisfy overall conditional independence assumption.

4.5. Mineral potential mapping with the WofE model

The 9 comprehensive map patterns constructed in Section 4.4 were
applied to the WofE modeling. For each comprehensive map pattern,
two weights and the weight variances and the variance due to missing
data were estimated on the basis of the binary attributive data of the
Table 5
Pairwise conditional independence test for the 9 comprehensive map patterns.

a b c d

b 0.321
c 0.231 0.321
d 1.214 1.214 1.214
e 0.806 0.806 0.806 0.032
f 1.001 1.001 3.650 0.202
g 0.806 0.806 0.806 0.032
h 0.626 0.626 0.419 2.204
i 1.001 3.650 1.001 0.202

Note: a through i are the code number of the 9 comprehensive map patterns.
9068 grid cells and listed in Table 6. The metallogenic posterior proba-
bility and its deviation for each cell are computed by theWofEmodeling
procedure. Fig.4 shows the posterior probability and posterior probabil-
ity deviation maps.

4.6. Mineral potential mapping with the prospecting cost-benefit strategy

The 9 comprehensivemap patterns used in theWofEmodelingwere
also used in the prospecting cost-benefit strategy in mineral potential
mapping. First, the “unique” condition searching algorithm discussed
in Section 3.5 were applied to identify all the possible “unique” condi-
tions in the study area. Then for each “unique” condition, the number
of both non-deposit-bearing and deposit-bearing cells within subareas
where the “unique” condition appears are counted and used to compute
the prospecting cost and benefit defined in Section 3.1. Finally, the
Youden index, likelihood ratio, and lift index are calculated on the
basis of the prospecting cost and benefit of the “unique” condition.
The estimated three mineral potential indicators of all the possible
“unique” conditions in the study area are used to drawmineral potential
maps. Fig. 5 shows the maps of the Youden indexes, likelihood ratios,
and lift indexes.

4.7. Performance evaluation

For the four mineral potential mapping results obtained in Sections
4.5 and 4.6, 1000 thresholds were predefined to distribute evenly be-
tween the minimum and maximum values of each mineral potential
mapping result. Then, the prospecting cost and benefit with respect to
each threshold are computed and 1000 pairs of the prospecting cost
and benefits were finally used to draw the ROC curve. Fig. 6a shows
the ROC curves of the four mineral potential mapping results. From
Fig. 6a, the following conclusion can be drawn: (a) the ROC curves of
likelihood ratio and lift index almost coincide and they are located
nearer to the upper left corner compared to the other two, thus the like-
lihood ratio and lift index perform similarly well and a little bit better
than the WofE and Youden index; and (b) the ROC curves of the WofE
model andYouden index cross, so theperformance of these twomineral
potential indicators is difficult to differentiate using their ROC curves.

Fig. 6b through d sequentially shows theYouden and likelihood ratio
diagrams and cumulative lift charts of the four mineral potential map-
ping results. The Youden diagrams shown in Fig. 6b are similar to the
ROC curves shown in Fig. 6a. The Youden diagrams of the WofE and
Youden index cross. Thus the Youden diagrams cannot discriminate
the performance of the WofE and Youden index. However, the likeli-
hood ratio diagrams shown in Fig. 6c and the cumulative lift charts
shown in Fig. 6d can easily differentiate the performance of the four
mineral potential indicators. According to Fig. 6c and d, it can be con-
cluded that: (a) the likelihood ratio and lift index perform similarly
well and (b) the WofE model performs a little bit worse than the likeli-
hood ratio and lift index but a little bit better than the Youden index.

In order to measure the overall performance of the four mineral po-
tential mapping results, the AUC, AUL and ZAUC values are computed and
listed in Table 7. According to Table 7, the following conclusion can be
e f g h

0.021
0.100 0.0023
0.831 1.47 0.831
0.0023 0.048 2.827 1.153



Table 6
Weights, weight variances, and the variances due to missing data of the 9 comprehensive
map patterns.

Map patterns W+ σ (W+) W− σ (W−) σ (missing)

a 1.879 1.022 −0.0288 0.0346 1.682e−6
b 1.614 1.017 −0.0272 0.0346 1.159e−6
c 1.701 1.018 −0.0278 0.0346 1.315e−6
d 0.226 0.167 −0.0493 0.0418 1.326e−7
e 1.259 0.253 −0.105 0.0386 2.702e−6
f 0.330 0.201 −0.0547 0.0401 2.259e−7
g 0.249 0.251 −0.0334 0.0386 1.011e−7
h 1.649 0.102 −0.339 0.0501 1.298e−5
i 1.942 0.205 −0.158 0.0401 9.320e−6

Note: a through j denote the code number of the 9 comprehensive map patterns.
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drawn: (a) the overall performance of the likelihood ratio and lift index
is similarly good; and (b) the overall performance of theWofE model is
a little bitworse than that of the likelihood ratio and lift index but a little
bit better than that of the Youden index.
5. Conclusion and discussion

Mineral potential mapping is a key procedure for integrating multi-
source geologicalmappatterns to delineatemineral potential targets for
minimizing the prospecting cost while maximizing the prospecting
benefit in mineral exploration. In this study, prospecting cost and
Fig. 4.Maps of posterior probability (a) an
benefit are quantitatively defined and used to construct the Youden
index, likelihood ratio, and lift index which can serve as mineral poten-
tial indicators to select map patterns, estimate mineral potentials, and
assess mineral potential mapping performance. Based on these three
mineral potential indicators, a four-step prospecting cost-benefit strate-
gy for mineral potential mapping is developed and applied in the min-
eral potential mapping in a study area. The performance of different
mineral potential indicators was assessed using both the ROC curve
analysis and the diagrams of the three mineral potential indicators.
The results show that (a) the likelihood ratio and lift index perform sim-
ilarly well and (b) the WofE model performs a little bit worse than the
likelihood ratio and lift index while a little bit better than the Youden
index. Therefore, the prospecting cost-benefit strategy is a feasible par-
adigm for both mineral potential mapping and the performance
assessment.

A useful way of assessing the performance of different mineral
potential mappingmodels is to plot both the ROC curves and themineral
potential indicator diagrams. Different graphs can mutually complement
in the model performance assessment. The case study illustrates that
the ROC curves and the Youden diagrams cannot properly distinguish
the performance of theWofEmodel and the Youden index but the cumu-
lative lift charts and the likelihood ratio diagrams however can easily dif-
ferentiate the performance of the two models.

In the case study, the 9 comprehensive map patterns which satisfy
both pairwise and overall conditional independence assumption were
used in the mineral potential mapping with the prospecting cost-
d posterior probability deviation (b).



Fig. 5. Maps of Youden indexes (a), likelihood ratios (b) and lift indexes (c).
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benefit strategy. This is only for facilitating the comparison between the
performance of the three mineral potential indicators and the WofE
model. In fact, the Youden index, likelihood ratio, and lift index require
the map patterns used in mineral potential mapping to satisfy neither
pairwise nor overall conditional independence assumption. Thus, the
prospecting cost-benefit strategy can be directly applied to map the
mineral potential of a study area without taking the conditional inde-
pendence tests.
The likelihood ratio performs better than the Youden index in the
case study. This is because only the 9 comprehensive map patterns are
used in the mineral potential mapping. If the 23 selected map patterns
are used, the likelihood ratio performs worse than the Youden index.
The reason is that computing the likelihood ratio may lead to the situa-
tion where a value is divided by zero. In mineral potential mapping, in-
creasing map patterns may generate many small-sized “unique”
conditions whose fprates may equal to zero. In this case, the likelihood



Fig. 6. ROC curves (a), Youden (b) and likelihood ratio (c) diagrams, and cumulative lift charts (d) of the four mineral potential indicators.
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ratio is indefinite due to the situation where tprate is divided by zero-
valued fprate. This is thedrawbackof the likelihood ratio in the application.

It should be pointed out that not only the threemineral potential in-
dicators, discussed in this paper, but also othermineral potential indica-
tors, such as discriminant power (Powers, 2012) and Cohen kappa
(Powers, 2012), can be constructed on the basis of the prospecting
cost and benefit, when applying the prospecting cost-benefit strategy
tomineral potential mapping. Thus, the prospecting cost-benefit strate-
gy can use a series ofmineral potential indicators in bothmineral poten-
tial mapping and model performance evaluation.

In mineral exploration, the applicability of the prospecting cost-
benefit strategy for mineral potential mapping depends on whether
the deposit-bearing and non-deposit-bearing cells can be defined in a
Table 7
AUC, AUL, and ZAUC values for the four mineral potential mapping results.

Indicator AUC AUL ZAUC

Post-probability 0.8002 0.799 6.164
Youden index 0.773 0.772 5.399
Likelihood ratio 0.841 0.840 7.542
Lift index 0.841 0.840 7.542
study area. The exploration degree of a study area has a great influence
on the exactness of the defined deposit-bearing and non-deposit-
bearing cells. Thus, the prospecting cost-benefit strategy is suitable for
application in a study area where the exploration degree is high and
some mineral deposits have been discovered. In practice, it is very
often the case that some deposit-bearing cells (i.e., the cells contain un-
discovered mineral deposits) are defined incorrectly as non-deposit-
bearing cells. However, the overwhelmingmajority of the grid cell pop-
ulation belong to non-deposit-bearing cells in a study area. The incor-
rectly defined deposit-bearing cells are always only a tiny fraction of
the whole non-deposit-bearing cells. Thus, the inexactness of defined
deposit-bearing and non-deposit-bearing cells does not significantly af-
fect the result of mineral potential mapping of the prospecting cost-
benefit strategy.

The prospecting cost-benefit strategy usually uses binary map pat-
terns to map the mineral potential of a study area. It can also use cate-
gorical map patterns in mineral potential mapping if required. In this
case, the “unique condition” searching algorithm needs to be slightly
modified. It is quite expected that the prospecting cost-benefit strategy
can be modified to optimally combine a set of continuous map patterns
into a mineral potential map. The detailed algorithm is now under
investigation.
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The prospecting cost-benefit strategy can be straightforwardly used
to assess themineral potentialmapping performance of different detec-
tion techniques which may individually provide potentially different
patterns of prospectivity. Different detection techniquesmay use differ-
ent sampling techniques which often generate different cell popula-
tions. Thus, the deposit-bearing and non-deposit-bearing cells for each
detection technique need to be identified individually. But their ROC
curves (or lift charts, or Youden and likelihood ratio diagrams) can be
plotted in the same space for their performance assessment.
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