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A B S T R A C T

Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events,
Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case).
Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize
SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-
conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case
studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with
many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
1. Introduction

Geostatistical simulation provides an approach to quantify uncer-
tainty over spatially distributed variables. Several methods are available
depending on the properties of the random function considered.

For continuous variables, most methods are based on a multiGaussian
assumption, reducing the inference problem to finding the mean and
covariance function for pairs of points. Uncertainty quantification is
easily solved with kriging (Journel and Alabert, 1989; Deutsch and
Journel, 1998; Chil�es and Delfiner, 1999), which linearly infers the
conditional expectation and conditional variance of the Gaussian random
variables, requiring the two-point spatial covariance function, which in
turn can be inferred from available data. In the same context, Sequential
Gaussian Simulation (SGS) (Alabert, 1987; Isaaks, 1990) is one the most
straightforward methods for generating stochastic realizations of multi-
variate Gaussian random fields.

An alternative approach to multiGaussian methods is offered by
Sequential Indicator Simulation (SIS) (Alabert, 1987), where spatial
correlation can be tailored to show different behaviors for different
thresholds and also provides a flexible framework to integrate secondary
variables and trends (Zhu and Journel, 1993). This provides flexibility,
but also brings additional challenges related to order relations, spatial
correlation inside bins defined by the thresholds and spatial correlation
between simulated values from different bins (Machuca-Mory
et al., 2008).
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The case of categorical variables is particularly suited for high vari-
ability deposits where transitions between facies show low correlation.
Alternative methods based on truncation of Gaussian random fields,
namely Truncated Gaussian and PluriGaussian simulation (Matheron
et al., 1987), offer more flexibility to reproduce these transitions Deutsch
(2006), but are not as flexible when dealing with secondary variables and
trends (Yarus et al., 2012). SIS has been applied to the geological
modelling of ore deposits (Dimitrakopoulos, 1998; Dimitrakopoulos and
Dagbert, 1993; Journel and Isaaks, 1984; de Souza and Costa, 2013) and
oil reservoirs (Dubrule and Damsleth, 2001; Pan, 1997; dell’Arciprete
et al., 2012; de Almeida, 2010), as well as in other fields such as rock
fractures modelling (Dowd et al., 2007), imaging (van der Meer, 1994),
and soil science (Bierkens and Burrough, 1993; Goovaerts, 2001), to
name a few. The use of two-point statistics is clearly a limitation that can
be overcome through multiple-point simulation (MPS) (Daly and Caers,
2010; Bastante et al., 2008; Ortiz and Deutsch, 2004; Caers, 2005) to
improve the reproduction of the transition between classes defined by a
set of thresholds and, when dealing with categorical variables, the con-
nectivity of the geobodies. However, MPS methods require a training
image to infer these patterns statistics. These methods have a historical
importance in terms of large-scale simulations and novel implementa-
tions, as will be reviewed in subsequent paragraphs.

In terms of performance, parallel and distributed computational
techniques can decrease the execution time of the methods by increasing
the number of operations per cycle throughmulti-thread or multi-process
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execution. In this context, using the taxonomy defined by Mariethoz
(2010), three levels of parallelization can be developed for sequential
simulation codes: realization-level, path-level and node-level. The
straightforward approach is the realization-level, where each realization
is performed by different operating system processes or threads by
changing appropriately the pseudo-random seed or other structural pa-
rameters in each run. Peredo et al. (2015) and Navarro et al. (2014)
applied this approach to the SISIM and SGSIM routines from GSLIB
(Deutsch and Journel, 1998). Path-level parallelization is based on the
partition of the domain into zones that can be handled by different
processes or threads. Rasera et al. (2015), based on the strategy proposed
by Vargas et al. (2007), developed a novel path-level conflict-free par-
allelization for the SGS method with promising future results in the SIS
context. In the same context, Mariethoz (2010) and posteriorly Tahma-
sebi et al. (2012) developed a master-slave strategy that distributes the
grid nodes among several processors, using a multi-core cluster or a
graphical unit processor (GPU). Regarding the node-level parallelization,
where the computation of each grid node is parallelized, two-point
(Nunes and Almeida, 2010) and multi-point statistics (Straubhaar
et al., 2011; Peredo and Ortiz, 2011, 2012; Peredo et al., 2014) strategies
have been proposed.

In this work, a path-level strategy of parallelization is presented. The
main idea of the strategy is to group all nodes having no conflicting
neighbourhood following the original path, such that, all nodes of the
same group can be simulated simultaneously. In the next section the non-
parallel sequential simulation algorithm is described, using as base the
implementation of SGSIM and SISIM from GSLIB depicted in Deutsch and
Journel (1998). In Section 3 the path-level parallelization is described. In
Section 4 case studies are presented using SISIM and SGSIM codes, with
their time execution and speedup results. Finally in Section 5 the limi-
tations and advantages of the parallelization are presented, with some
ideas to improve the strategy in the future.

2. Non-parallel algorithm

The main concept of the sequential simulation family of algorithms is
based on the Bayes postulate applied to a joint probability distribution of
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several dependent variables (Devroye, 1986; Johnson, 1987). The suc-
cessive application of Bayes postulate to the joint probability leads to a
sequential backward inference of marginals and posterior distributions,
monotonically increasing the size of the prior data set as different grid
nodes are randomly visited and simulated.

In Algorithm 1 the main steps of the method can be viewed. These
steps are synthesized from SGSIM and SISIM codes from GSLIB. For
each realization isim, a simulation path P visiting all nodes of the
domain Ω is randomly generated (pseudo-routine create_random_path).
Following the simulation path, each node index of the domain is
simulated. Both simulation methods use different inner routines to
draw the simulated value, for simplicity we refer to these steps as
searchNeighbours and simulate. Some of the most important parame-
ters of the simulation steps are related with the local neighbourhood to
use for interpolation defined globally by the parameter κ. In this work,
we consider that this parameter contains the maximum and minimum
number of neighbours for interpolation, the number of sample data
values and previously simulated values, the size of search lookup
window, and neighbour offset indices, according to the specific search
startegy selected. The neighbourhood search strategy, such as super-
block or spiral search, as described in (Deutsch and Journel, 1998),
will be highly affected by the previous parameters, affecting the overall
performance of the simulation algorithm. In this work we consider only
the spiral search, since the alternative method implemented in the
GSLIB simulation routines is computationally expensive (two-step
search running first a super-block search for nearby data and then
execute the spiral search on previously simulated nodes). In line 6 of
Algorithm 1 the pseudo-routine spiral_search_neighbours is executed,
running the original GSLIB implementation of the spiral search. The
local neighbourhood information is stored in the structure Local-
Neighbourhood, consisting in the coordinates, indices, variable values
and other information of the neighbours inside the search lookup
window. In line 7 the simulation is performed in the pseudo-routine
simulate, by calculating one or more local interpolations centered in
the grid node Pixyz using the local neighbourhood information obtained
in the previous step.



Fig. 1. Top: Random path index (top-right corner or each cell) and initial assignment of level tags (only zeros for nodes with conditioning data). Middle: Final assignment of level tags, with
different color for different levels. The search lookup window in this example is a 3� 3 square centered in the node of interest. By walking through the random path and scanning the max
level tag in each window, adding 1 to it, the final assignment of levels can be obtained. Bottom: Data dependency graph associated with the level tags and neighbour relationships. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Parallel algorithm

3.1. Main algorithm

The parallel version of the method is presented in Algorithm 2. It is
based in two stages, the first one related to node tagging in order to group
all nodes with non conflicting neighbourhoods. The second stage is the
actual simulation, similarly to the single-thread algorithm, with a
different node loop formulation but the same neighbourhood data and
simulation method. The pseudo-routines with their steps detailed are
spiral_search_neighbours_push (Algorithm 3), build_level (Algorithm 4),
order_nodes_by_level (Algorithm 5) and spiral_search_neighbours_pop
(Algorithm 6).

Regarding the first stage, in steps 7 and 8 of Algorithm 2 two arrays
12
are defined, Level and Neighbours, which will store the level tags and
neighbours information (local and global indices). A first pass through
all nodes is performed between steps 9 and 12. The simulation path is
walked sequentially, scanning for neighbours around the current node
and storing basic information about them in the pseudo-routine spi-
ral_search_neighbours_push (Algorithm 3). This routine is essentially
the same as the original spiral search from GSLIB, with the only dif-
ference that, instead of actually calculating the coordinates and other
information about the neighbours, it only stores the neighbours
indices by pushing (copying) them into the array Neighbours. After the
neighbours have been calculated, a level tag to the current node is
assigned according to the pseudo-routine build_level which scans for
the maximum of all neighbours level tags and adds 1 to that value
(Algorithm 4). Initially all nodes with conditioning data are assigned
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with level tag 0 and non informed nodes are assigned with level tag
�1. With this initial assignment, nodes with some conditioning data
inside their search lookup window are assigned with level tag 1, nodes
with a level 1 neighbour are assigned with level tag 2, and so on. The
last part of the first stage is at step 13 of Algorithm 2, where the
pseudo-routine order_nodes_by_level performs a rearrangement pro-
cedure, storing the indices of the new order in the array IndexSort,
and the number of nodes and initial index per level in the arrays
LevelCount and LevelStart (Algorithm 5).

In Fig. 1 an example of the level assignment is presented using a
search lookup window of size 3� 3. Initially the conditioning data
nodes are placed in the locations 6, 13, 15, 18, 24 and 25 of the
13
random path (value in the top-right of each grid cell). The level tag for
those conditioning nodes is zero. Starting the assignment, the node in
location 1 is visited resulting in a level tag assignment of 1, since in its
search lookup window of 3� 3 there are only nodes with level tags of
0 (neighbours in locations 13, 15 and 24). Similarly, nodes in locations
2, 3 and 4 are assigned with level tag 1. Node in location 5 is assigned
with level tag 2, since in its search lookup window a neighbour with
level tag 1 is located (neighbour in location 4). Node in location 7 is
assigned with level tag 1 (neighbour in locations 6 and 25 with level
0), and node in location 8 is assigned with level tag 3 (neighbour in
location 5 with level 2), and so on.
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The second stage of Algorithm 2 involves the simulation in parallel of
all nodes in the same level, since no data dependencies arise between
those nodes. For each level, as shown in step 15, the initial and final
indices are calculated, lbegin and lend respectively in steps 16 and 17.
The index of the node to be simulated is obtained in step 19 using the re-
ordered array IndexSort. In step 20 the pseudo-routine spi-
ral_search_neighbours_pop (Algorithm 6) is called, which essentially is a
query to extract local neighbour indices from the array Neighbours,
previously stored by using spiral_search_neighbours_push in step 10
(Algorithm 3). With the local neighbour indices, the coordinates are
computed for each neighbour, and the simulation can be performed in
step 21 with the pseudo-routine simulate, as the single-thread orig-
inal algorithm.

In this work, OpenMP directives (OpenMP Architecture Review
Board, 2008) are included into the modified code. A synchronization
14
method must be used in order to keep the order of the levels being
processed, since threads can spend different time in the simulation of
their assigned nodes, causing race conditions when accessing neighbour
values that are being simulated or not simulated yet. A first alternative is
to use the implicit OpenMP barrier declared at the end of a parallel loop
region. Since this barrier adds a major overhead to the parallelization, a
second alternative was chosen based on lock variables that control when
all neighbour nodes of a node being simulated are available (have a
defined value). A pseudo-code of this strategy is depicted in Algorithm 7,
using an extra shared array Lock with size jΩj and values 1 or 0 indi-
cating if the corresponding grid node has been simulated or not. As the
neighbour node indices are collected, each thread waits until all neigh-
bours have lock value Lock(i) ¼ 1, in order to get out of the waiting loop
and continue with the simulation steps.





Fig. 2. Realization sample of the SGSIM case study.

Table 1
Parameters for SGSIM case study: grid sizes, search lookup window and variography for all
categories. For a description of each parameter, see Deutsch and Journel (1998) section
V.7.2.

Parameter Values

nx � ny � nz f800� 800� 160; 400� 800� 160g
xsiz; ysiz; zsiz 0:5;0:75;0:9
max data for kriging f16;32;64;128g
Max search radii 300;300;300
size of covariance lookup table 201� 201� 201
number of structures and type 3,fspherical,exponential,gaussiang

Fig. 3. Speedup and percentage of serial time of SGSIM case using 16 threads and
different maximum number of neighbours for kriging with a large (102,400,000 nodes)
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4. Results

In this section, two cases are presented, including their execution
times, speedup and maximum theoretical speedup. The base codes are
SGSIM and SISIM from GSLIB, developed by Deutsch and Journel (1998),
and posteriorly code-optimized by Peredo et al. (2015). On both codes, a
code optimization was applied on the routine that performs neighbour-
hood search, pseudo-routine spiral_search_neighbours_push. The source
code can be viewed in the corresponding link of Section 6.

All runs were executed in a single-node machine with Ubuntu 14.04.5
LTS with 2� 8-cores Intel(R) Xeon(R) CPU E5-2673 v3 at frequency
2.40 GHz, and a memory hierarchy of 116 GB RAM, 30 MB L3 cache,
256 KB L2 cache and 32KB/32 KB L1d/L1i cache. All programs were
compiled using GCC gfortran version 4.8.4 supporting OpenMP version
3.1, with the options -O2 -march ¼ native -ffast-math -ftree-vectorize in
all cases and -fopenmp in the multi-thread executions. All results are the
average value of 5 runs, in order to reduce external factors in the
measurement.

The serial and parallel parts of the code can be timemeasured (tser and
tpar) in all runs. With the percentage of serial time, an estimate of the
maximum theoretical speedup can be obtained using the
following formula:

speedupðPÞ ¼ ttotal

tser þ tpar
P

¼ 1

f þ 1� f
P

; with f ¼ tserial
ttotal

maxspeedup ¼ lim
P→∞

1

f þ 1� f
P

¼ 1
f

where P is the number of running processes or threads. The efficiency of a
parallelization using P running processes or threads is defined as

efficiencyðPÞ ¼ speedupðPÞ
P

(1)

If the efficiency is small, the obtained speedup is not optimal, since
the usage of the P processes or threads is not achieving the peak
16
performance (efficiencyðPÞ � 1).
4.1. SGSIM

The case study for the parallel SGSIM code uses a real mining 3D
dataset of 2376 diamond drill-hole samples with information of copper
grade composites. In Fig. 2 a realization sample is depicted, with
and small grids (51,200,000 nodes).



Fig. 4. Realization sample of the SISIM case study.
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standardized values simulating the copper grades. Table 1 contains all
relevant parameters, such as grid sizes, search lookup windows and
variographic parameters. The local interpolation is ordinary kriging.

The results are depicted in Tables 3–6 for the larger grid size with
800� 800� 160 nodes (102;400;000 nodes), and 7, 8, 9 and 10 for the
smaller grid size with 400� 800� 160 nodes (51;200;000 nodes).
Fig. 3 depicts the tendency of the achieved speedup according to the
number of maximum number of neighbours for kriging and grid size. We
can observe that as the number of maximum kriging neighbours in-
creases, the achieved speedup using 16 threads also increases since the
percentage of serial time (f) decreases proportionally. Using both grid
sizes, the percentage of serial time in each case remains similar, with
approximate values of 39%, 19%, 7% and 2% respectively. These per-
centages imply that the approximate theoretical maximum speedup that
can be reached with 16 threads is 2.1�, 3.6�, 6.4� and 11.5� for each
maximum number of neighbours for kriging, which are values far from
being optimal in terms of parallel efficiency Equation (1).
4.2. SISIM

Aminor modificationmust be done in the base code SISIM, in order to
run simulations on large domains (> 224 ¼ 16;777;216 nodes). The
array that stores the random path visiting order, denoted order, is
defined originally as a real structure. Since real is a single-precision
floating point representation, the maximum integer value that can be
represented with this data type is 224, since the size of the significant
precision bits is 24 (IEEE, 2008). By changing the data type of order to
Table 2
Parameters for SISIM case study: grid sizes, search lookup window and variography for all
categories. For a description of each parameter, see Deutsch and Journel (1998) section
V.8.1.

Parameter Values

nx � ny � nz f420� 600� 400;210� 600� 400g
xsiz; ysiz; zsiz 9:5; 10:0;3:0
max data for kriging f16;32;64;128g
max search radii ∞;∞;∞
size of covariance lookup table 51� 51� 166
number of categories 10
number of structures and type 10,fsphericalg
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integer, a maximum of 232 � 1 ¼ 2;147;483;647 nodes can be achieved.
The case study for the parallel SISIM code uses a synthetic 3D dataset

of 3000 random samples with 10 categories generated by truncation of a
convoluted Gaussian kernel with a white noise random field according to
the procedure described by Peredo et al. (2016) (Fig. 4 shows a reali-
zation using three categories). Table 2 contains all relevant parameters,
such as grid sizes, search lookup windows and variographic parameters.
In all cases the method of local interpolation was simple kriging, with the
option full indicator kriging active.

The results are depicted in Tables 11–14 for the larger grid size with
420� 600� 400 nodes (100;800;000 nodes), and 15, 16, 17 and 18 for
the smaller grid size with 210� 600� 400 nodes (50;400;000 nodes).
Fig. 5 depicts the tendency of the maximum achieved speedup according
to the maximum number of neighbours for kriging and grid size. Simi-
larly to the SGSIM case, as the maximum number of neighbours for
kriging increases, the achieved speedup using 16 threads also increases
Fig. 5. Speedup and percentage of serial time of SISIM case using 16 threads and different
maximum number of neighbours for kriging with a large (100,800,000 nodes) and small
grids (50,400,000 nodes).



Fig. 6. Relationship between efficiency of the parallelization and kriging neighbours
using 16 threads in all cases.

Fig. 8. Number of grid nodes per level in SISIM case.
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since the percentage of serial time decreases proportionally. The per-
centages of serial time using a large and small grid are similar, with
approximate values of 8%, 3%, 1% and 0.2% respectively. Since these
values are considerably lower that the percentages of the SGSIM case, the
maximum theoretical speedup that can be achieved with 16 threads is
higher, with approximate values of 7.0�, 10.7�, 13.8� and 15.5�
respectively.
4.3. Analysis

Fig. 6 shows the relationship between efficiency of the parallelization
and the maximum number of neighbours for kriging, according to the
previous results for SGSIM and SISIM using 16 threads from Tables 3–10
and 11–18. As mentioned before, as the number of maximum kriging
neighbours increases, the efficiency increases as well. The lower effi-
ciency obtained in the overall SGSIM results can be explained in part by
the relative small amount of computation involved in the execution of
these cases, compared against the SISIM case. The number of kriging
computations per node is exactly one, in contrast to SISIM where ten
interpolations must be solved (ten categories to simulate). As shown in
Fig. 7, a small number of grid nodes are simulated in parallel in the first
Fig. 7. Number of grid nodes per level in SGSIM case.

18
levels, which adds a large amount of overhead to thread initialization,
such as shared/private variables setup. The best result in terms of effi-
ciency for SGSIM is obtained using the larger maximum number of
neighbours, 128, which is directly related with higher number of com-
putations in the local interpolations. The efficiency obtained in all SISIM
cases is higher than the SGSIM cases and can be explained by the higher
amount of computation involved in the parallel step while the serial part
is kept identical. As mentioned before, by using ten categories for
simulation, ten local interpolation systems must be solved for each grid
node. Regarding the number of grid nodes per level, since a larger
number of levels contain sufficiently large number of grid nodes (Fig. 8),
high parallel efficiency values are obtained with more than 90% in
almost all cases. The best result for SISIM is obtained using the larger
maximum number of neighbours, 128, for the same reasons as the best
SGSIM case.

Regarding numerical precision of the results, in SGSIM only small
errors with absolute value less than 1:0�6 are present, as a result of non-
commuting floating-point operations using the different order of simu-
lation. As a reference, the results returned by SGSIM are single-precision
floats with 6–9 significant decimal digits (IEEE, 2008). To obtain the
error values a simple node by node subtraction is calculated between the
simulated values using the original SGSIM non-parallel code and the
values obtained using the parallel version, and then the histogram of
errors is calculated. In the case of SISIM, the results are exactly the same
since integer values are rounded for all categories, without small errors in
lower decimal digits as SGSIM.

In comparison with other reported parallelization strategies, partic-
ularly Rasera et al. (2015), the efficiency obtained is comparable only in
the larger cases of SISIM with 64 or 128 maximum neighbours. However,
the results reported must not be compared directly, since different base
codes and parameters were used. Since the proposed method of this work
aims to generate the exact same results as the non-parallel versions of the
simulation algorithms, the serial part of node reordering adds a major
bottleneck if small domains or small maximum neighbour number are
used in the configuration parameters. However, in some applications the
exactness property can be particularly useful, like audited practices in
mineral and ore reserves estimation (JORC, 2012).

In terms of computational resources, the parallelization strategy uses
a large amount of memory to perform the level and neighbourhood
storage in the current implementation version. The reason of this
requirement is that many additional shared arrays with the same
dimension of the simulation array must be allocated, and also additional
space is needed by the neighbour information array Neighbours,
extracted in the push stage of the spiral search (Algorithm 3). In the
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largest cases, with approximately 100 million nodes and 128 maximum
kriging neighbours, around 96 GB of memory where needed. This size
comes largely from the array Neighbours which stores approximate
100;000;000� 2� 128 4-byte integers. With 16, 32 and 64 maximum
kriging neighbours, the memory usage is around 12 GB, 24 GB and 48 GB
respectively. Since several cloud computing providers offer computa-
tional services at affordable prices, these memory usage values are not
prohibitive given the current technological trends. For instance, a Linux
virtual machine with 16 CPU-cores, 112 GB RAM and 800 GB of disk can
be rented by 1 dollar per hour (Microsoft Azure, 2017).

To sum up, SGSIM shows a significant efficiency in the largest sce-
narios and under performs in the smaller scenarios, decreasing approxi-
mately 12� the GSLIB baseline execution time in the best case with
efficiency of 74% using 16 threads. SISIM shows higher speedup and
efficiency, decreasing approximately 15� the baseline time in the best
case with efficiency of 97% using 16 threads, thanks to the lower serial
fraction which results from an increase of work in the simulation loop
(more kriging system solving in each node). Considering that no addi-
tional libraries or external tools were used in the parallelization (with
exception of OpenMP), further gains can be achieved by reducing the
serial time.

5. Conclusions and future work

We have shown a path-level parallelization of the sequential simu-
lation, using as base codes SGSIM and SISIM from GSLIB. Our paralleli-
zation delivers the exact same results as the original routine. The
proposed parallelization strategy groups the original unmodified simu-
lation path, by assigning a level to each grid node and, subsequently,
performing parallel processing in all nodes of each level, one level at a
time in ascending order. The strategy is straightforward to implement
using OpenMP directives in a well proven Fortran base code, without
using external libraries or packages, and keeping the same user interface
from the classic GSLIB.

The achieved speedup in the first case study, using the SGSIM code, is
reasonable using large number of maximum neighbours, but not optimal
in smaller tests, reaching efficiencies below 50% using 16 threads for 16
and 32 neighbours, and 50% and 74% using 16 threads for 64 and 128
neighbours. On the other hand, in the second case study using the SISIM
code with ten categories to simulate, the speedup obtained was consid-
erably better than the previous case, closer to the optimal and reaching
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an efficiency larger than 90% using 16 threads in almost all tests.
Applying a modification in the data types of the base code (particularly
the array that stores the random path), larger domains can be simulated
without further efforts (increased from 224 to 232 � 1 maximum
grid nodes).

In both cases, the serial part of the execution is the main bottleneck of
performance and efficiency of the parallelization. A possible strategy to
decrease the serial part is to aggressively optimize the internal routine
that searches for neighbours using the covariance lookup table di-
mensions (Algorithm 3).

Regarding multiple realizations of the simulation, distributed execu-
tions can be performed in different compute-nodes, using all threads in
each node to run one parallel execution. Future integration with the
code-optimized versions of SGSIM and SISIM from Peredo et al. (2015) is
being planned.

Source code

The current version of the code can be downloaded from https://
github.com/operedo/sisim-levels and https://github.com/operedo/
sgsim-levels.
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Annex. Tables with numerical results

Table 3
Time/Speedup of SGSIM, serial and parallel fractions: 102,400,000 grid nodes and maximum of 16 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 766.574
 1

1 (omp)
 811.090
 0.945
 320.949
 0.395
 1

2 (omp)
 588.970
 1.301
 325.524
 0.552
 1.432

4 (omp)
 522.970
 1.465
 311.224
 0.595
 1.828

8 (omp)
 381.586
 2.008
 310.503
 0.813
 2.122

16 (omp)
 362.666
 2.113
 325.929
 0.898
 2.306
Table 4
Time/Speedup of SGSIM, serial and parallel fractions: 102,400,000 grid nodes and maximum of 32 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 2743.532
 1

1 (omp)
 3036.122
 0.903
 601.266
 0.198
 1

2 (omp)
 1823.014
 1.504
 597.452
 0.327
 1.669

4 (omp)
 1217.604
 2.253
 591.161
 0.485
 2.509

8 (omp)
 918.545
 2.986
 602.056
 0.655
 3.352

16 (omp)
 743.966
 3.687
 585.737
 0.787
 4.029

https://github.com/operedo/sisim-levels
https://github.com/operedo/sisim-levels
https://github.com/operedo/sgsim-levels
https://github.com/operedo/sgsim-levels
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Table 5
Time/Speedup of SGSIM, serial and parallel fractions: 102,400,000 grid nodes and maximum of 64 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
20
1 (gslib)
 14795.288
 1

1 (omp)
 16337.288
 0.905
 1152.972
 0.070
 1

2 (omp)
 8719.349
 1.696
 1181.455
 0.135
 1.868

4 (omp)
 5116.514
 2.891
 1184.814
 0.231
 3.301

8 (omp)
 3235.145
 4.573
 1189.570
 0.367
 5.354

16 (omp)
 2278.863
 6.492
 1181.039
 0.518
 7.772
Table 6
Time/Speedup of SGSIM, serial and parallel fractions: 102,400,000 grid nodes and maximum of 128 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 106393.643
 1

1 (omp)
 109554.268
 0.971
 2420.665
 0.022
 1

2 (omp)
 51280.557
 2.074
 2413.071
 0.047
 1.956

4 (omp)
 27401.376
 3.882
 2408.623
 0.087
 3.752

8 (omp)
 15561.031
 6.837
 2446.570
 0.157
 6.932

16 (omp)
 9175.207
 11.595
 2423.585
 0.264
 12.030
Table 7
Time/Speedup of SGSIM, serial and parallel fractions: 51,200,000 grid nodes and maximum of 16 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 393.929
 1

1 (omp)
 413.479
 0.952
 161.854
 0.391
 1

2 (omp)
 299.263
 1.316
 165.900
 0.554
 1.437

4 (omp)
 235.154
 1.675
 165.991
 0.705
 1.839

8 (omp)
 204.316
 1.928
 167.452
 0.819
 2.138

16 (omp)
 190.589
 2.066
 166.153
 0.871
 2.328
Table 8
Time/Speedup of SGSIM, serial and parallel fractions: 51,200,000 grid nodes and maximum of 32 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 1453.179
 1

1 (omp)
 1497.249
 0.970
 293.959
 0.196
 1

2 (omp)
 888.965
 1.634
 288.895
 0.324
 1.671

4 (omp)
 600.941
 2.418
 288.974
 0.480
 2.517

8 (omp)
 448.859
 3.237
 291.008
 0.648
 3.369

16 (omp)
 371.572
 3.910
 290.456
 0.781
 4.055
Table 9
Time/Speedup of SGSIM, serial and parallel fractions: 51,200,000 grid nodes and maximum of 64 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 7921.930
 1

1 (omp)
 7908.930
 1.001
 541.059
 0.068
 1

2 (omp)
 4148.421
 1.909
 532.623
 0.128
 1.871

4 (omp)
 2382.522
 3.325
 532.860
 0.223
 3.318

8 (omp)
 1474.447
 5.372
 531.122
 0.360
 5.409

16 (omp)
 989.462
 8.006
 515.919
 0.521
 7.896
Table 10
Time/Speedup of SGSIM, serial and parallel fractions: 51,200,000 grid nodes and maximum of 128 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 51726.258
 1

1 (omp)
 48939.258
 1.056
 1070.864
 0.021
 1

2 (omp)
 26576.200
 1.946
 1088.212
 0.040
 1.957

4 (omp)
 14121.606
 3.662
 1105.343
 0.078
 3.753

8 (omp)
 7574.541
 6.828
 1098.133
 0.144
 6.937

16 (omp)
 4328.232
 11.950
 1096.891
 0.253
 12.046
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Table 11
Time/Speedup of SISIM, serial and parallel fractions: 100,800,000 grid nodes, 10 categories and maximum of 16 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
21
1 (gslib)
 4755.103
 1

1 (omp)
 4522.103
 1.051
 380.150
 0.084
 1

2 (omp)
 2533.220
 1.877
 380.019
 0.150
 1.844

4 (omp)
 1501.155
 3.167
 379.732
 0.252
 3.194

8 (omp)
 931.031
 5.107
 378.360
 0.406
 5.036

16 (omp)
 718.128
 6.621
 379.683
 0.528
 7.076
Table 12
Time/Speedup of SISIM, serial and parallel fractions: 100,800,000 grid nodes, 10 categories and maximum of 32 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 22560.543
 1

1 (omp)
 21325.543
 1.057
 696.359
 0.032
 1

2 (omp)
 11251.314
 2.005
 663.583
 0.058
 1.936

4 (omp)
 6221.798
 3.626
 662.079
 0.106
 3.643

8 (omp)
 3399.888
 6.635
 660.492
 0.194
 6.511

16 (omp)
 2332.582
 9.671
 661.245
 0.283
 10.739
Table 13
Time/Speedup of SISIM, serial and parallel fractions: 100,800,000 grid nodes, 10 categories and maximum of 64 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 140548
 1

1 (omp)
 137425.264
 1.022
 1446.443
 0.010
 1

2 (omp)
 71605.673
 1.962
 1386.161
 0.019
 1.979

4 (omp)
 36470.465
 3.853
 1255.436
 0.034
 3.877

8 (omp)
 18590.755
 7.560
 1261.528
 0.067
 7.451

16 (omp)
 10310.647
 13.63
 1385.712
 0.134
 13.818
Table 14
Time/Speedup of SISIM, serial and parallel fractions: 100,800,000 grid nodes, 10 categories and maximum of 128 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 1017870
 1

1 (omp)
 1001197.2
 1.016
 2211.853
 0.002
 1

2 (omp)
 511434.417
 1.990
 2309.101
 0.004
 1.996

4 (omp)
 252730.204
 4.027
 2294.369
 0.009
 3.976

8 (omp)
 125209.547
 8.129
 2349.094
 0.018
 7.889

16 (omp)
 63913.105
 15.925
 2257.121
 0.035
 15.533
Table 15
Time/Speedup of SISIM, serial and parallel fractions: 50,400,000 grid nodes, 10 categories and maximum of 16 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 2566.105
 1

1 (omp)
 2456.625
 1.044
 219.108
 0.089
 1

2 (omp)
 1328.791
 1.931
 219.435
 0.165
 1.836

4 (omp)
 793.696
 3.233
 217.062
 0.273
 3.155

8 (omp)
 505.963
 5.071
 215.699
 0.426
 4.925

16 (omp)
 362.476
 7.079
 217.765
 0.600
 6.843
Table 16
Time/Speedup of SISIM, serial and parallel fractions: 50,400,000 grid nodes, 10 categories and maximum of 32 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 12093.603
 1

1 (omp)
 11347.603
 1.065
 391.077
 0.034
 1

2 (omp)
 5850.835
 2.066
 389.079
 0.066
 1.933

4 (omp)
 3191.038
 3.789
 391.645
 0.122
 3.625

8 (omp)
 1824.460
 6.628
 404.207
 0.221
 6.445

16 (omp)
 1091.702
 11.077
 383.317
 0.351
 10.547



O.F. Peredo et al. Computers and Geosciences 110 (2018) 10–22
Table 17
Time/Speedup of SISIM, serial and parallel fractions: 50,400,000 grid nodes, 10 categories and maximum of 64 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
22
1 (gslib)
 73424.527
 1

1 (omp)
 70250.527
 1.045
 671.820
 0.009
 1

2 (omp)
 34813.426
 2.109
 668.964
 0.019
 1.981

4 (omp)
 18327.576
 4.006
 669.623
 0.036
 3.888

8 (omp)
 9629.237
 7.625
 673.144
 0.069
 7.498

16 (omp)
 5132.127
 14.306
 672.849
 0.131
 13.992
Table 18
Time/Speedup of SISIM, serial and parallel fractions: 50,400,000 grid nodes, 10 categories and maximum of 128 neighbours to infer conditional probability.

# Threads ttotal ¼ tser þ tpar [s] Speedup tser [s] f ¼ tser=ttotal Max Speedup
1 (gslib)
 490844
 1

1 (omp)
 487311.691
 1.007
 1293.773
 0.002
 1

2 (omp)
 255689.720
 1.919
 1284.359
 0.005
 1.994

4 (omp)
 128435.340
 3.821
 1201.493
 0.009
 3.968

8 (omp)
 64432.234
 7.617
 1301.860
 0.020
 7.854

16 (omp)
 32454.387
 15.124
 1311.743
 0.040
 15.387
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