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A B S T R A C T

Singularity analysis is one of the most important models in the fractal/multifractal family that has been
demonstrated as an efficient tool for identifying hybrid distribution patterns of geochemical data, such as
normal and multifractal distributions. However, the question of how to appropriately separate these patterns
using reasonable thresholds has not been well answered. In the present study, a new method termed singularity-
quantile (S-Q) analysis was proposed to separate multiple geochemical anomaly populations based on
integrating singularity analysis and quantile-quantile plot (QQ-plot) analysis. The new method provides
excellent abilities for characterizing frequency distribution patterns of singularity indices by plotting singularity
index quantiles vs. standard normal quantiles. From a perspective of geochemical element enrichment
processes, distribution patterns of singularity indices can be evidently separated into three groups by means
of the new method, corresponding to element enrichment, element generality and element depletion,
respectively. A case study for chromitite exploration based on geochemical data in the western Junggar region
(China), was employed to examine the potential application of the new method. The results revealed that the
proposed method was very sensitive to the changes of singularity indices with three segments when it was
applied to characterize geochemical element enrichment processes. And hence, the S-Q method can be
considered as an efficient and powerful tool for separating hybrid geochemical anomalies on the basis of
statistical and inherent fractal/multifractal properties.

1. Introduction

How to efficiently distinguish geochemical anomalies from back-
ground, aiming for mineral resource assessment, is still one of the most
important concerns faced by exploration geochemical data processing.
The challenge for geochemical anomaly identification is to determine
reasonable thresholds for separating anomalies from background. In
the past several decades, various methods have been applied for
geochemical anomaly identification and threshold separation, mainly
including frequency-based univariate statistical methods (Sinclair,
1974; Stanley and Sinclair, 1987; Carranza, 2010, 2011), multivariate
statistical methods (Reimann et al., 2002; Yousefi et al., 2012, 2013,
2014; Liu et al., 2014a; Geranian et al., 2015; Gonbadi et al., 2015;
Nazarpour et al., 2016), and power-law based fractal/multifractal
models (Afzal et al., 2013; Cheng et al., 1996, 2000; Cheng, 2007,
2012; Goncalves et al., 2001; Zhao et al., 2012; Liu et al., 2013, 2014b;

Xie and Bao, 2004; Arias et al., 2012; Zuo et al., 2013; Agterberg, 2014;
Luz et al., 2014; Khalajmasoumi et al., 2016; Parsa et al., 2016).
Traditional univariate and multivariate statistical methods are suitable
for processing dataset with normal or lognormal distributions, whether
or not these methods are applied in frequency domain or/and space
domain (Ahrens, 1954; Miller and Goldberg, 1955; Xie et al., 2007).
Therefore, geochemical anomalies with extreme values might be not
detected from background by these traditional statistic methods,
especially when weak anomalies are hidden in complex geological
settings or the difference between anomaly and background is feeble
(Cheng, 2007).

In the past two decades, many power-law based fractal/multifractal
models have been developed for mineral exploration, such as the
singularity analysis (Cheng, 2007, 2015), concentration–area fractal
model (C-A; Cheng et al., 1994), spectrum–area model (S-A; Cheng
et al., 2000), concentration–distance model (C-D; Li et al., 2003),
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spectrum–volume model (S-V; Afzal et al., 2012), concentration–
volume model (C-V; Afzal et al., 2011), ore deposit fractal clustering
(Carlson, 1991; Blenkinsop, 1994; Gumiel et al., 2010); and wavelet-
based multiscale decomposition model (WMD; Chen and Cheng,
2016), among which singularity analysis is one of the most important
models in the fractal/multifractal family that has been widely applied
for geochemical anomaly identification (Chen et al., 2007; Xiao et al.,
2012, 2016; Cheng, 2007, 2012; Liu et al., 2013, 2014b; Wang et al.,
2012, 2015; Zuo et al., 2009; Agterberg, 2012a; Zuo and Wang, 2016).
From a geochemical point of view, singularity analysis accentuates
crucial changes in geochemical element concentration and changes in
measureable physical properties of geochemical data.

Many, if not most, ore deposits are the products of multiple ore-
forming processes in complex geological settings, accompanying dif-
ferent geological processes, such as magma hydrothermalism, deposi-
tion process, tectonic cycles, metamorphism, mineralization, that
overlapped each other spatially and temporally (Robb, 2005). This
phenomenon of metal mineralization can be considered as a type of
singular geophysical and geochemical processes occurred in relatively
narrow space and/or time intervals, accompanied by anomalous mass
accumulation and/or energy release. As described by Cheng (2007),
singularity is a fundamental property of complex ore-forming processes
caused by intensive element enrichment, which can be measured by
fractal/multifractal distributions. Normal/lognormal and fractal/mul-
tifractal or Pareto distributions are commonly applied in the investiga-
tion of geochemical data, since these distribution patterns can describe
good approximations of geochemical concentration values of various
sampling media (e.g., rocks, soils, stream sediments, etc; Cheng, 2008;
Agterberg, 2007, 2017). However, geochemical anomalies and their
explanation are not always obvious on visual inspection or purpose
exploratory investigation. In the present study, the proposed S-Q
method based on singularity analysis and QQ-plot analysis was used
to separate hybrid distribution patterns of singularity indices and to
express the results graphically. The method considers the inherent
fractal/ multifractal properties, and its potential application was
demonstrated by a case study for chromitite exploration in the western
Junggar region, China.

2. Methods

2.1. Singularity analysis

The end products of mineralization processes can be modeled as
fractals or multifractals, because of the regularity of enrichment and
dispersion of geochemical element concentrations (Cheng, 2007,
2008). For 2-dimensional exploration geochemical data from surface
samples, singularity analysis uses so called singularity index (α) to
characterize geochemical complexity that is related to metal miner-
alization within a multifractal context (Cheng, 2007, 2012; Cheng and
Agterberg, 2009; Agterberg, 2012b). Suppose that μ(A) is the total
amount of element concentration within an area A, and ρ(A) is the
density of element concentration within an area A. From a multifractal
point of view, the μ(A) and ρ(A) follow power-law relationships
expressed by:

μ A A( ) ∝ α/2 (1)

ρ A A( ) ∝ α/2−1 (2)

A simple method for α estimation is the box-gliding algorithm
(Cheng, 1997). Define a set of square window sizes εi (εi=(2i−1)εmin,
εmin = < ε1 < ε2 … < εi=εmax, i = 1, 2, …, n) for any given sampling point
on the map. εmin is the smallest window size, and εmax is the largest
window size. The density of element concentration ρ with in an area A
of size εi can be acquired from the following power-law relationship:

ρ A ε μ A ε
ε

c ε[ ( )] = [ ( )] = ⋅i
i

i
i
α

2
−2

(3)

where c is a constant. On the log-log plot, the relationship between
ρ[A(εi)] and εi can be fitted by least squares method, so as to determine
the slop (α−2).

Most singularity indices with α≈2 satisfy normal or lognormal
distributions, whereas the rest of singularity indices with extremely
high and low values (α≠2) might follow fractal/multifractal distribu-
tions (Cheng, 2007; Cheng and Agterberg, 2009). For geochemical
anomaly identification, singularity indices can be divided into three
groups: (i) α-values < 2 indicate enrichment of geochemical concentra-
tion, being positive singularity; (ii) α-values > 2 indicate depletion of
geochemical concentration, being negative singularity; and (iii) α-
values closed to 2 indicate non-singular case. Therefore, estimation
of singularity indices from a geochemical map can reflect different
distribution patterns that might offer valuable information for mineral
exploration.

2.2. Singularity-Quantile method

The S-Q method used for geochemical anomaly separation includes
mutual transformations of the singularity indices between frequency
domain and space domain. The key point of the method is how to
appropriately process approximate values with α≈2.

In space domain, continuous singularity indices can be acquired by
singularity analysis using box-gliding algorithm and interpolations
such as inverse distance weighted (IDW) and multifractal IDW
methods (Cheng, 2008), and then converted into frequency domain
for statistical analysis. In frequency domain, the QQ-plot analysis is
employed to detect the distribution patterns of singularity indices. As
shown in Fig. 2, the x-axis is represented by the standard normal
quantiles and the y-axis is represented by the quantiles of singularity
indices. From a statistical point of view, the majority of values with α≈2
follow either normal or lognormal distributions (Cheng, 2007); we set
the α-values that range from the 15th percentile to 85th percentile to
determine the normal reference line. The normal distributed α-values
will fall along or close to the normal reference line, and fractal/
multifractal distributed α-values will deviate from the normal reference
line. Subsequently, the linear equation of normal reference line can be
fitted by least squares method, meanwhile the residuals of fitting data
can be obtained, locating on both sides of the normal reference line;
further two linear equations can be acquired by fitting residuals. We set
a 99% confidence interval of the singularity indices that pass through
the 15th percentile and 85th percentile to limit the rangeability of the α-
values. Another polynomial curve will be fitted by total α-values as
shown in Fig. 2 with green color. Using these three equations, two
intersection points or thresholds (x1, y1), (x2, y2) can be solved are
located above and below the normal reference line, respectively
(Fig. 2). Therefore, hybrid distribution patterns of singularity indices
can be separated into three segments; then frequency-distributed
singularity indices are converted back to spatial domain for visual
representation of different geochemical anomaly populations. From the
above demonstration on the method, we argue that the S-Q method
provides insight into the nature of the geochemical anomaly from the
fractal/multifractal and statistical points of view.

3. Case study

3.1. Geological setting

Geographically, the study area is located in the northwest of China
attached to the southern margin of the Tianshan orogen, and to the
north margin of the Xiemisitan belt; the east margin is Junggar basin
and the west is bounded by Kazakhstan (Fig. 1a). Geologically, the
study area belongs to the Central Asian Orogenic Belt (CAOB) that has
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experienced complicated collision and accretion processes during the
evolution of the Phanerozoic accretionary orogens (e.g., Sengör et al.,
1993; Chen and Arakawa, 2005; Xiao et al., 2008). The main rock
assemblages include Carboniferous, Silurian and Devonian sedimen-
tary formations, Carboniferous granitoid intrusions, and Paleozoic
ophiolitic mélanges (Fig. 1b). The Carboniferous sedimentary forma-
tions and ophiolitic mélanges are regionally intruded by Carboniferous
granitoid intrusions (Chen and Arakawa, 2005; Chen et al., 2014). The
Devonian sedimentary formations are composed of basalt lavas inter-
bedded with chert and some volcanic rocks. The most striking
geological feature is the outcrop of many ophiolitic rocks, principally
serpentinite, located along the Permian high-angle strike-slip fault
zone across the western Junggar region (Allen et al., 1995; Chen et al.,
2014). Structurally, a series of NE-trending faults were developed in

the western Junggar region. The western Junggar is one of the most
important chromitite metallogenic belts in China. Up to now, many
chromitite deposits have been discovered, of which Sartohay is the
largest chromitite deposit formed in the mantle peridotite of the
Sartohay ophiolitic mélange (Hao et al., 1990). Most of the chromitite
mineralization occurred in harzburgite, surrounded by dunites, con-
taining well-preserved mantle-derived peridotites, which are the end
products of larger-scale mantle processes (Shi et al., 2012; Tian et al.,
2015).

3.2. Data used

Total of 4814 stream sediment samples have been collected with a
density of around one sample per 4 km2. Details of sample collection
and chemical analytical methods of stream sediments can be found in
Xie et al. (1997) and Liu et al. (2016). Data used in the case study
include 18 geochemical elements (Mo, Ni, Ag, Co, Cr, Cu, Mn, Pb, As,
Au, Ti, Zn, K, Mg, Sb, Na, Si, and Al), of which K, Mg, Na, Si, and Al are
expressed by their oxides.

Fig. 2. Illustration of S-Q method in frequency domain.

Fig. 1. (a) The location of the study area, (b) simplified geological map of the western Junggar region, China.

Fig. 3. Biplot of F1 vs. F2 derived from the CoRFA method.
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Fig. 4. Spatial distribution of four geochemical elements mapped by IDW interpolation (a) Cr, (b) Ni, (c) Co, and (d) Mg.

Fig. 5. Singularity maps with continuous values of (a) Cr, (b) Ni, (c) Co, and (d) Mg.
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3.3. Determination of chromitite mineralization-related geochemical
elements

Geochemical data are commonly considered as compositions,
expressed in weight percent or parts per million/billion (e.g. 100%,

ppm, wt%) and subject to the influence of a constant sum (Aitchison,
1986; Pearson, 1897; Carranza, 2011; Egozcue et al., 2003). In order to
reduce the influences of data closure and outliers, a compositional
robust factor analysis (CoRFA) was performed to study potential
correlations associated with chromitite mineralization among 18

Fig. 6. C-A plots based on singularity indices of (a) Cr, (b) Ni, (c) Co, and (d) Mg.

Fig. 7. (a) Cr singularity index quantiles vs. standard normal quantiles, and (b) singularity map with categorical values based on S-Q analysis. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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geochemical elements in the western Junggar region (China). Major
steps of the CoRFA method include (Liu et al., 2016): (1) transforma-
tion of geochemical data by using of centered log ratio (clr) method; (2)
application of the minimum covariance determinant (MCD; Rousseeuw
and Driessen, 1999) to estimate the robust covariance matrix based on
isometric log ratio (ilr) transformed geochemical data; (3) back-
transformation of ilr coordinates to clr coefficients by means of an
orthonormal basis (Egozcue et al., 2003); (4) robust covariance matrix
for clr coordinates estimated from the relationship between clr and ilr,
and used to determine robust correlation matrix; (5) Initial factor
loading and common variance obtained by factor rotation and singular
value decomposition (SVD) of correlation matrix. Rotation factor
loadings can be operated by orthogonal (e.g., Varimax) and oblique
(e.g., Promax). In the present study, the Promax method is considered,
since it provides better interpretation of underlying relationships
among geochemical elements.

The first three factors account for 52.4% of the total variance, of
which the first factor (F1) accounts for 26.7%. The biplot of F1 vs. F2
(Fig. 3), indicates that three types of multi-elemental associations can

be recognized. The positive F1 contains an association mainly com-
posed of Si, Al, Na, K, and Ti; the negative F2 reflects an association of
Au, Mo, As, and Sb; and the positive F2 reflects an association of Cr, Ni,
Co, and Mg. It should be noted that F1 includes mixed information,
trying to explain as much information as possible, while subsequent
factors commonly reflect specific processes (Liu et al., 2016). Based on
the results of the CoRFA, favorable geochemical elements including Cr,
Ni, Co, and Mg that are closely associated with chromitite mineraliza-
tion can be determined objectively.

3.4. Singularity-Quantile method for separating geochemical
anomaly populations

For further comparison with the results obtained from the S-Q
method, the spatial distribution of Cr, Ni, Co, and Mg were mapped by
the IDW method with searched minimum number of samples equal to
12 (Fig. 4). Then, singularity analysis was employed to measure the
intensity of enrichment or depletion of each element at different
locations. Singularity indices of Cr, Ni, Co, and Mg were respectively

Fig. 8. (a) Ni singularity index quantiles vs. standard normal quantiles, and (b) singularity map with categorical values based on S-Q analysis. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. (a) Co singularity index quantiles vs. standard normal quantiles, and (b) singularity map with categorical values based on S-Q analysis. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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estimated by means of the box-gliding algorithm with thesquare
window sizes εi ranging from 3, 5, 7, …, to 15 (Fig. 5). The result
shows that local weak and concealed geochemical anomalies were
enhanced by singularity analysis compared with the original element
concentration maps (Figs. 4–5).

In order to distinguish different geochemical anomaly populations,
Liu et al., (2013, 2014b) combined singularity analysis and C-A method
to delineate three types of geochemical anomalies, corresponding to
high anomalous, moderate anomalous and low anomalous zones,

respectively. However, in the present case study, it seems hard to
detect two suitable thresholds on the curves with three types of
geochemical anomalies when the C-A method was performed on
singularity indices, because intensive changes of curve slope occurred
around the value of log2 (0.693), as indicated by Fig. 6.

As demonstrated in Section 2.1, singularity indices (α-values) can
characterize different geochemical distribution patterns such as normal
and multifractal distributions. For our case study, the distribution
patterns of singularity indices were clearly distinguished by the S-Q
method in frequency domain, as indicated by Figs. 7a–10a. Actually,
the α-values above and below the fitting lines satisfy fractal/multi-
fractal distributions, corresponding to element depletion and element
enrichment, respectively; while α-values close to 2 limited by the two
fitting lines satisfy normal distributions, corresponding to element
generality or geochemical background. Two intersection points (thresh-
olds) can be easily calculated by solving linear and polynomial
equations, and three geochemical anomaly populations were separated
graphically (Figs. 7a–10a).

Based on the thresholds, singularity indices of Cr, Ni, Co and Mg
were projected into space domain with three partitions shown in

Fig. 10. (a) Mg singularity index quantiles vs. standard normal quantiles, and (b) singularity map with categorical values based on S-Q analysis. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The area percentage of four elements’ singularity indices with α﹤2, α≈2, and α﹥2.

Elements Area percentage of singularity indices

α﹤2 α≈2 α﹥2

Cr 8.42% 74.30% 17.27%
Ni 7.48% 75.60% 16.92%
Co 16.08% 70.29% 13.63%
Mg 13.37% 71.98% 14.65%

Fig. 11. Chromitite prospectivity map produced by optimized geochemical anomalies using MaxEnt model.
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Figs. 7b-10b. Table 1 shows areas with non-singular geochemical data
of each element accounting for more than 70% of the study area; areas
with element enrichment or depletion of individual elements occupy
smaller percentage of the study area. As shown in Figs. 7b-10b, the red
color represents favorable zones for chromitite mineralization deli-
neated by α < 2, and the blue color represents unfavorable zones for
chromitite mineralization delineated by α > 2. Obviously, the scope for
discovering potential chromitite mineralization is reduced greatly by
means of the S-Q method. The results also indicate that geochemical
anomaly populations are of distinct zoning features in space domain
that can be observed in the southwest parts of the study area and along
the Darbut fault zone (Figs. 7b–10b), where areas with element
enrichment are located in the center, outside of which are element
generality zones, and the outmost parts are element depletion zones.

3.5. MaxEnt model for geochemical anomaly optimization

The MaxEnt model is a machine learning method with a very
flexible algorithm has been fully described by Phillips et al. (2006) and
Phillips and Dudík (2008). Although the model has been widely used
for predicting species distribution in the field of ecology (Elith et al.,
2006; Pearson et al., 2007), its applicability to mineral potential
mapping has been seldom reported. In order to optimize different
geochemical anomaly populations derived from the S-Q method for
chromitite prospectivity analysis from a geochemical data point of
view, the MaxEnt model was used to produce chromitite prospectivity
map aided by Maxent software (https://www.cs.princeton.edu/
~schapire/maxent/). Four categorical singularity maps with three
classes of Cr, Ni, Co and Mg were integrated in the model (Figs. 7b–
10b). The tough problem of the MaxEnt model is overfitting, which can
be constrained by the so called β-regulation (Elith et al., 2011).
However, the results of the case study were almost unaffected by
model overfitting by examination of β-regulation, since fewer input
variables were used, and that were categorical variables. Therefore, the
defaulted settings for feature type, raw output, and regularization in the
Maxent software was used for chromitite prediction. The model
successfully linked multiple geochemical anomaly populations
derived from S-Q method with known chromitite locations. The
chromitite prospectivity map shows that most of the chromitite
locations are spatially consistent with element enrichment zones
marked in red colors (Fig. 11). Therefore, the prospectivity map can
considered as an important guidance for predicting the locations of
concealed chromitite deposits from the multifractal point of view.

4. Conclusions

In the present study, the S-Q method based on integrating
singularity analysis and QQ-plot analysis is investigated to separate
multiple geochemical anomaly populations by determination of reason-
able thresholds. The method considers the frequency and space
distribution patterns of singularity indices. In frequency domain,
geochemical distribution patterns of singularity indices can be sepa-
rated into three populations based on plotting the singularity index
quantiles vs. standard normal quantiles, corresponding to element
enrichment, element generality and element depletion, respectively.
The S-Q method provides us reasonable explanation from the statistical
and multifractal points of view in terms of geochemical anomaly
identification and separation.

Statistically, the QQ-plot analysis is a graphical method for
comparing two probability distributions by plotting their quantiles
against each other. Commonly used normal QQ-plot analysis functions
such as the qqplot in MATLAB software and the qqnorm in R
environment (http://www.astrostatistics.psu.edu/su07/R/html/stats/
html/qqnorm.html), cannot be directly performed to separate
multiple populations of singularity indices at a 99% confidence
interval of the fitting residuals, because the normal reference line is

produced by joining the first quartile (25th percentile) and third
quartile (75th percentile) of each distribution. The QQ-plot analysis
as an exploratory data analysis (EDA) method, for our studies the
normal reference line produced by passing through the 15th percentile
and 85th percentile of the singularity indices was adopted, since an
excellent result can be captured by using of a 99% confidence interval
of the fitting residuals.

A case study for chromitite prospectivity analysis based on geo-
chemical data in western Junggar region(China), was employed to
examine the potential application of the proposed method. Preliminary
data analysis is important, in order to obtain more objective results. In
the case study, the CoRFA method was performed to determine which
geochemical elements are closely related to chromitite mineralization.
The results revealed that the S-Q method can efficiently recognize and
partition hybrid geochemical anomaly populations, because the meth-
od is very sensitive to the changes of singularity indices with three
segments when it was applied to characterize the geochemical element
enrichment processes. In order to optimize different geochemical
anomaly populations of individual variables, the MaxEnt model was
employed to generate chromitite prospectivity map, indicating that the
optimized geochemical anomalies can efficiently delineate chromitite-
related mineralization and largely reduce chromitite exploration areas.

Acknowledgements

The authors thank two anonymous reviewers for their valuable
comments that improved the quality of the manuscript. This work is
jointly funded by the project of China Postdoctoral Science Foundation
(2016M590992), the CAS “Light of West China” program (2015-
XBQN-B-23), and the China Scholarship Fund for Studying Abroad
(201604910025).

References

Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., Omran, N.R., 2011. Delineation
of mineralization zones in porphyry Cu deposits by fractal concentration–volume
modeling. J. Geochem. Explor. 108 (3), 220–232.

Afzal, P., Alghalandis, Y.F., Moarefvand, P., Omran, N.R., Haroni, H.A., 2012.
Application of power-spectrum–volume fractal method for detecting hypogene,
supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit,
Central Iran. J. Geochem. Explor. 112, 131–138.

Afzal, P., Harati, H., Alghalandis, Y.F., Yasrebi, A.B., 2013. Application of spectrum–area
fractal model to identify of geochemical anomalies based on soil data in Kahang
porphyry-type Cu deposit, Iran. Chem. der Erde-Geochem. 73 (4), 533–543.

Agterberg, F.P., 2007. Mixtures of multiplicative cascade models in geochemistry.
Nonlinear Process. Geophys. 14 (3), 201–209.

Agterberg, F.P., 2012a. Sampling and analysis of chemical element concentration
distribution in rock units and orebodies. Nonlinear Process. Geophys. 19 (1), 23–44.

Agterberg, F.P., 2012b. Multifractals and geostatistics. J. Geochem. Explor. 122,
113–122.

Agterberg, F., 2014. Geomathematics: theoretical foundations, applications and future
developments. Quantitative Geology and Geostatistics, vol. 18. Springer.

Agterberg, F., 2017. Pareto–lognormal modeling of known and unknown metal
resources. Nat. Resour. Res. 26 (1), 3–20.

Ahrens, L.H., 1954. The lognormal distribution of the elements (a fundamental law of
geochemistry and its subsidiary). Geochim. Et. Cosmochim. Acta 5 (2), 49–73.

Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Chapman and Hall,
London, p409.

Allen, M.B., Natal’in, B.A., 1995. Junggar, Turfan and Alakol basins as Late Permian to?
Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic
collage, Central Asia. J. Geol. Soc. 152 (2), 327–338.

Arias, M., Gumiel, P., Martín-Izard, A., 2012. Multifractal analysis of geochemical
anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena
Zone, Variscan Massif (Spain). J. Geochem. Explor. 122, 101–112.

Blenkinsop, T.G., 1994. The fractal distribution of gold deposits. In: Kruhl, J.H. (Ed.),
Fractals and Dynamic Systems in Geosciences.. Springer, Berlin, 247–258.

Carlson, C.A., 1991. Spatial distribution of ore deposits. Geology 19, 111–114.
Carranza, E.J.M., 2010. Catchment basin modelling of stream sediment anomalies

revisited: incorporation of EDA and fractal analysis. geochemistry: Exploration,
environment. Analysis 10 (4), 365–381.

Carranza, E.J.M., 2011. Analysis and mapping of geochemical anomalies using logratio-
transformed stream sediment data with censored values. J. Geochem. Explor. 110,
167–185.

Chen, B., Arakawa, Y., 2005. Elemental and Nd–Sr isotopic geochemistry of granitoids
from the West Junggar foldbelt (NW China), with implications for Phanerozoic

Y. Liu et al. Computers & Geosciences 105 (2017) 139–147

146

https://www.cs.princeton.edu/~schapire/maxent/
https://www.cs.princeton.edu/~schapire/maxent/
http://www.astrostatistics.psu.edu/su07/R/html/stats/html/qqnorm.html
http://www.astrostatistics.psu.edu/su07/R/html/stats/html/qqnorm.html
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref1
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref1
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref1
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref2
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref2
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref2
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref2
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref3
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref3
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref3
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref4
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref4
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref5
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref5
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref6
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref6
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref7
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref7
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref8
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref8
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref9
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref9
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref10
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref10
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref10
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref11
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref11
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref11
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref12
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref12
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref13
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref14
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref14
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref14
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref15
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref15
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref15
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref16
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref16


continental growth. Geochim. Et. Cosmochim. Acta 69, 1307–1320.
Chen, G., Cheng, Q., 2016. Singularity analysis based on wavelet transform of fractal

measures for identifying geochemical anomaly in mineral exploration. Comput.
Geosci. 87, 56–66.

Chen, S., Pe-Piper, G., Piper, D.J., Guo, Z., 2014. Ophiolitic mélanges in crustal-scale
fault zones: implications for the Late Palaeozoic tectonic evolution in West Junggar,
China. Tectonics 33 (12), 2419–2443.

Chen, Z., Cheng, Q., Chen, J., Xie, S., 2007. A novel iterative approach for mapping local
singularities from geochemical data. Nonlinear Process. Geophys. 14 (3), 317–324.

Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical
anomalies from background by fractal methods. J. Geochem. Explor. 51 (2),
109–130.

Cheng, Q., Agterberg, F.P., Bonham-Carter, G.F., 1996. A spatial analysis method for
geochemical anomaly separation. J. Geochem. Explor. 56 (3), 183–195.

Cheng, Q., 1997. Multifractal modeling and lacunarity analysis. Math. Geol. 29,
919–932.

Cheng, Q., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for
geochemical anomaly separation. Nat. Resour. Res. 9 (1), 43–52.

Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for
prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore
Geol. Rev. 32 (1), 314–324.

Cheng, Q., 2008. Modeling local scaling properties for multiscale mapping. Vadose Zone
J. 7 (2), 525–532.

Cheng, Q., Agterberg, F.P., 2009. Singularity analysis of ore-mineral and toxic trace
elements in stream sediments. Comput. Geosci. 35 (2), 234–244.

Cheng, Q., 2012. Singularity theory and methods for mapping geochemical anomalies
caused by buried sources and for predicting undiscovered mineral deposits in
covered areas. J. Geochem. Explor. 122, 55–70.

Cheng, Q., 2015. Multifractal interpolation method for spatial data with singularities. J.
South. Afr. Inst. Min. Metall. 115 (3), 235–240.

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J.,
Huettmann, F., Leathwick, J.R., Leahmann, A., Li, J., Lohmann, L.G., Loiselle, B.A.,
Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T.,
Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J.,
William, S., Wisz, M.S., Zimmermann, N.E., 2006. Novel methods improve
prediction of species' distributions from occurrence data. Ecography 29, 129–151.

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical
explanation of MaxEnt for ecologists. Divers. Distrib. 17 (1), 43–57.

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C., 2003.
Isometric logratio transformations for compositional data analysis. Math. Geol. 35,
279–300.

Geranian, H., Tabatabaei, Asadi, H.H., Carranza, E.J.M., 2015. Multivariate regression
analysis of lithogeochemical data to model subsurface mineralization: a case study
from the Sari Gunay epithermal gold deposit, NW Iran. J. Geochem. Explor. 148,
249–258.

Gonbadi, A.G., Tabatabaei, S.H., Carranza, E.J.M., 2015. Supervised geochemical
anomaly detection by pattern recognition. J. Geochem. Explor. 157, 81–91.

Goncalves, M.A., Mateus, A., Oliveira, V., 2001. Geochemical anomaly separation by
multifractal modelling. J. Geochem. Explor. 72 (2), 91–114.

Gumiel, P., Sanderson, D.J., Arias, M., Roberts, S., Martín-Izard, A., 2010. Analysis of the
fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geol. Rev. 38
(4), 307–318.

Hao, Z., 1990. Study on the genesis of the ophiolites and podiform chromitite deposits of
the western Junggar area. Bull. Chin. Acad. Geol. Sci. 23, 73–83.

Khalajmasoumi, M., Sadeghi, B., Carranza, E.J.M., Sadeghi, M., 2016. Geochemical
anomaly recognition of rare earth elements using multi-fractal modeling correlated
with geological features, Central Iran. J. Geochem. Explor.. http://dx.doi.org/
10.1016/j.gexplo.2016.12.011.

Li, C., Ma, T., Shi, J., 2003. Application of a fractal method relating concentrations and
distances for separation of geochemical anomalies from background. J. Geochem.
Explor. 77 (2), 167–175.

Liu, Y., Cheng, Q., Xia, Q., Wang, X., 2013. Application of singularity analysis for mineral
potential identification using geochemical data—A case study: nanling W–Sn–Mo
polymetallic metallogenic belt, South China. J. Geochem. Explor. 134, 61–72.

Liu, Y., Cheng, Q., Xia, Q., Wang, X., 2014a. Multivariate analysis of stream sediment
data from Nanling metallogenic belt, South China. Geochem.: Explor., Environ.,
Anal. 14 (4), 331–340.

Liu, Y., Cheng, Q., Xia, Q., Wang, X., 2014b. Identification of REE mineralization-related
geochemical anomalies using fractal/multifractal methods in the Nanling belt, South
China. Environ. Earth Sci. 72 (12), 5159–5169.

Liu, Y., Cheng, Q., Zhou, K., Xia, Q., Wang, X., 2016. Multivariate analysis for
geochemical process identification using stream sediment geochemical data: a
perspective from compositional data. Geochem. J. 50, 293–314.

Luz, F., Mateus, A., Matos, J.X., Gonçalves, M.A., 2014. Cu- and Zn-soil anomalies in the
NE border of the South Portuguese zone (Iberian Variscides, Portugal) identified by
multifractal and geostatistical analyses. Nat. Resour. Res. 23, 195–215.

Miller, R.L., Goldberg, E.D., 1955. The normal distribution in geochemistry. Geochim.
Et. Cosmochim. Acta 8 (1), 53–62.

Nazarpour, A., Paydar, G.R., Carranza, E.J.M., 2016. Stepwise regression for recognition

of geochemical anomalies: case study in Takab area, NW Iran. J. Geochem. Explor.
168, 150–162.

Parsa, M., Maghsoudi, A., Yousefi, M., Carranza, E.J.M., 2016. Multifractal interpolation
and spectrum–area fractal modeling of stream sediment geochemical data:
implications for mapping exploration targets. J. Afr. Earth Sci.. http://dx.doi.org/
10.1016/j.jafrearsci.2016.11.021.

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of
species geographic distributions. Ecol. Model. 190 (3), 231–259.

Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new
extensions and a comprehensive evaluation. Ecography 31 (2), 161–175.

Peterson, A.T., Papes, M., Eaton, M., 2007. Transferability and model evaluation in
ecological niche modeling: a comparison of GARP and Maxent. Ecography 30,
550–560.

Pearson, K., 1897. Mathematical contributions to the theory of evolution. On a form of
spurious correlation which may arise when indices are used in the measurement of
organs. In: Proceedings of the Royal Society of London LX, 489–502.

Reimann, C., Filzmoser, P., Garrett, R.G., 2002. Factor analysis applied to regional
geochemical data: problems and possibilities. Appl. Geochem. 17 (3), 185–206.

Robb, L., 2005. Introduction to Ore-forming Processes. Blackwell, Oxford, (373).
Rousseeuw, P.J., Driessen, K.V., 1999. A fast algorithm for the minimum covariance

determinant estimator. Technometrics 41, 212–223.
Stanley, C.R., Sinclair, A.J., 1987. Anomaly recognition for multi-element geochemical

data-a background characterization approach. J. Geochem. Explor. 29 (1–3),
333–353.

Sengör, A.M.C., Natal’in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic
collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299–307.

Shi, R., Griffin, W.L., O’Reilly, S.Y., Zhou, M., Zhao, G., Huang, Q., Ding, L., 2012.
Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay
ophiolite, Asiatic Orogenic Belt, northwestern China. Precambrian Res. 216, 87–94.

Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability
graphs. J. Geochem. Explor. 3 (2), 129–149.

Tian, Y., Yang, J., Robinson, P., Xiong, F., Li, Y., Zhang, Z., Liu, Z., Liu, F., Niu, X., 2015.
Diamond discovered in high-Al Chromitites of the Sartohay ophiolite, Xinjiang
Province, China. Acta Geol. Sin. (Engl. Ed.) 89 (2), 332–340.

Wang, W., Zhao, J., Cheng, Q., Carranza, E.J.M., 2015. GIS-based mineral potential
modeling by advanced spatial analytical methods in the southeastern Yunnan
mineral district, China. Ore Geol. Rev. 71, 735–748.

Wang, W., Zhao, J., Cheng, Q., Liu, J., 2012. Tectonic–geochemical exploration modeling
for characterizing geo-anomalies in southeastern Yunnan district, China. J.
Geochem. Explor. 122, 71–80.

Xiao, F., Chen, J., Zhang, Z., Wang, C., Wu, G., Agterberg, F.P., 2012. Singularity
mapping and spatially weighted principal component analysis to identify
geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in
Northwest Zhejiang, China. J. Geochem. Explor. 122, 90–100.

Xiao, F., Chen, Z., Chen, J., Zhou, Y., 2016. A batch sliding window method for local
singularity mapping and its application for geochemical anomaly identification.
Comput. Geosci. 90, 189–201.

Xiao, W., Han, C., Chao, Y., Min, S., Lin, S., Chen, H., Li, Z., Li, J., Sun, S., 2008. Middle
cambrian to permian subduction-related accretionary orogenesis of northern
Xinjiang, NW china: implications for the tectonic evolution of Central Asia. J. Asian
Earth Sci. 32 (2–4), 102–117.

Xie, X., Mu, X., Ren, T., 1997. Geochemical mapping in China. J. Geochem. Explor. 60
(1), 99–113.

Xie, S., Bao, Z., 2004. Fractal and multifractal properties of geochemical fields. Math.
Geol. 36 (7), 847–864.

Xie, S., Cheng, Q., Chen, G., Chen, Z., Bao, Z., 2007. Application of local singularity in
prospecting potential oil/gas targets. Nonlinear Process. Geophys. 14 (3), 285–292.

Yousefi, M., Kamkar-Rouhani, A., Carranza, E.J.M., 2012. Geochemical mineralization
probability index (GMPI): a new approach to generate enhanced stream sediment
geochemical evidential map for increasing probability of success in mineral potential
mapping. J. Geochem. Explor. 115, 24–35.

Yousefi, M., Carranza, E.J.M., Kamkar-Rouhani, A., 2013. Weighted drainage catchment
basin mapping of geochemical anomalies using stream sediment data for mineral
potential modeling. J. Geochem. Explor. 128, 88–96.

Yousefi, M., Kamkar-Rouhani, A., Carranza, E.J.M., 2014. Application of staged factor
analysis and logistic function to create a fuzzy stream sediment geochemical evidence
layer for mineral prospectivity mapping. Geochem.: Explor., Environ., Anal. 14 (1),
45–58.

Zhao, J., Wang, W., Dong, L., Yang, W., Cheng, Q., 2012. Application of geochemical
anomaly identification methods in mapping of intermediate and felsic igneous rocks
in eastern Tianshan, China. J. Geochem. Explor. 122, 81–89.

Zuo, R., Cheng, Q., Agterberg, F.P., Xia, Q., 2009. Application of singularity mapping
technique to identify local anomalies using stream sediment geochemical data, a case
study from Gangdese, Tibet, western China. J. Geochem. Explor. 101 (3), 225–235.

Zuo, R., Xia, Q., Zhang, D., 2013. A comparison study of the C–A and S–A models with
singularity analysis to identify geochemical anomalies in covered areas. Appl.
Geochem. 33, 165–172.

Zuo, R., Wang, J., 2016. Fractal/multifractal modeling of geochemical data: a review. J.
Geochem. Explor. 164, 33–41.

Y. Liu et al. Computers & Geosciences 105 (2017) 139–147

147

http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref16
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref17
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref17
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref17
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref18
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref18
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref18
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref19
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref19
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref20
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref20
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref20
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref21
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref21
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref22
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref22
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref23
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref23
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref24
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref24
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref24
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref25
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref25
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref26
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref26
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref27
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref27
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref27
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref28
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref28
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref29
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref29
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref29
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref29
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref29
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref29
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref30
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref30
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref31
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref31
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref31
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref32
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref32
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref32
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref32
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref33
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref33
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref34
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref34
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref35
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref35
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref35
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref36
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref36
http://dx.doi.org/10.1016/j.gexplo.2016.12.011
http://dx.doi.org/10.1016/j.gexplo.2016.12.011
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref38
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref38
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref38
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref39
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref39
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref39
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref40
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref40
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref40
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref41
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref41
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref41
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref42
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref42
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref42
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref43
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref43
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref43
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref44
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref44
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref45
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref45
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref45
http://dx.doi.org/10.1016/j.jafrearsci.2016.11.021
http://dx.doi.org/10.1016/j.jafrearsci.2016.11.021
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref47
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref47
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref48
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref48
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref49
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref49
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref49
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref50
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref50
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref51
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref52
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref52
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref53
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref53
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref53
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref54
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref54
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref55
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref55
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref55
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref56
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref56
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref57
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref57
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref57
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref58
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref58
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref58
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref59
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref59
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref59
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref60
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref60
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref60
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref60
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref61
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref61
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref61
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref62
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref62
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref62
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref62
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref63
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref63
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref64
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref64
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref65
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref65
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref66
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref66
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref66
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref66
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref67
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref67
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref67
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref68
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref68
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref68
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref68
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref69
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref69
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref69
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref70
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref70
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref70
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref71
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref71
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref71
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref72
http://refhub.elsevier.com/S0098-3004(17)30044-4/sbref72

	A new method for geochemical anomaly separation based on the distribution patterns of singularity indices
	Introduction
	Methods
	Singularity analysis
	Singularity-Quantile method

	Case study
	Geological setting
	Data used
	Determination of chromitite mineralization-related geochemical elements
	Singularity-Quantile method for separating geochemical anomaly populations
	MaxEnt model for geochemical anomaly optimization

	Conclusions
	Acknowledgements
	References




