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a b s t r a c t

This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock
mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory,
which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in
four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and
(4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for
the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm
and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle
threshold in the trace segment connection step is between 50° and 70°, and the distance threshold
should be at least 15 times the mean triangular mesh element size. The method is applied to the ex-
cavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity
trace mapping method is fast and effective and could be used as a supplement to traditional direct
measurement of discontinuity traces.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Discontinuity trace mapping is one of the fundamental tasks for
rock mass characterization. Fracture size information (e.g., fracture
trace length distribution and discontinuity diameter distribution)
is often estimated from trace length measurements (Kulatilake and
Wu, 1984; Mauldon, 1998; Zhang and Einstein, 1998, 2000; Li et al.,
2014; Zhu et al., 2014). Information on discontinuities has tradi-
tionally been difficult, slow, and often dangerous to obtain by di-
rect measurement using a tape and geological compass (Barton
et al., 1974; Franklin et al., 1988). Currently, non-contact measuring
techniques, such as photogrammetry and Light Detection and
Ranging (LIDAR), provide alternative approaches to in situ mea-
surement and allow discontinuities to be measured from photo-
graphs and 3D point clouds of rock mass exposures. These non-
contact measuring techniques tremendously improve conven-
tional geologic mapping due to the ability to take measurements
without direct access to the rock mass and time restrictions, as
well as to provide objective records of rock masses.

The two-dimensional image processing method has been used to
extract discontinuity traces according to changes of pixel intensities
(Crosta, 1997; Reid and Harrison, 2000; Hadjigeorgiou et al., 2003;
Lemy and Hadjigeorgiou, 2003). However, the image processing
.

method shows strong dependence on rock textures, illumination
conditions, and threshold settings, often resulting in meaningless
segments or excessive fragmentation (Ferrero et al., 2009). In addi-
tion, the use of the general-purpose image processing method has
tended to show two other shortcomings: simultaneous highlighting
of shadows and surface markings on the intact rock, and images
acquired through uncalibrated cameras suffer from projective dis-
tortion and lens distortion that are difficult to rectify.

In recent years, many researchers have been working on the
extraction of discontinuity traces from 3D surface models (Ron-
cella et al., 2005; Gigli and Casagli, 2011), i.e., high-resolution 3D
point clouds of rock mass surfaces. The photogrammetry techni-
que is capable of obtaining 3D point clouds from pairs of 2D
images. LiDAR technology is another solution to obtaining 3D
point clouds. The pros and cons of both techniques have been
discussed by many authors (Roncella et al., 2005; Potsch et al.,
2005). Two main methods can be used to detect traces using a 3D
surface model. First, discontinuity traces can be obtained as in-
tersection lines between the fitting planes of rock mass surfaces
(Slob et al., 2007; Otoo et al., 2011; Gigli and Casagli, 2011).
However, the result is highly dependent on the accuracy of the
fitting planes, which is further dependent on the segmentation
accuracy of the rock mass surface. Second, traces can be detected
based on the principal curvatures of the vertices on the digital
surface model (DSM) of the rock mass (Umili et al., 2013).

Automated discontinuity trace mapping is an emerging method
because discontinuity surfaces are irregular in shape, occur at any
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orientation, and contain variable amounts of small-scale rough-
ness and large scale undulation (Vöge et al., 2013). This study is
motivated by the following difficulties in automated discontinuity
trace mapping: (1) feature point detection from 3D point clouds is
noise sensitive (feature points are the vertices at the intersections
of rock mass surfaces); (2) automated trace detection is prone
interruption by uneven rock mass surfaces, resulting in frag-
mented discontinuity traces; (3) an automated identification pro-
cess is difficult to achieve because of speculative selection of
threshold values (Umili et al., 2013). This paper develops a robust
and automated trace mapping method to extract discontinuity
traces from the 3D surface model of natural outcrops or tunnel
excavation faces. First, the Normal Tensor Voting Theory (Page
et al., 2002) is utilized to reduce the interference of noisy data in
trace feature point detection. Second, post-processing techniques
are proposed to overcome the segmentation of extracted traces
and to achieve smooth and continuous traces. Finally, the trace
mapping process is streamlined without human intervention and
is insensitive to the chosen thresholds.

This paper is organized as follows: an automated discontinuity
trace mapping method is introduced in Section 2, sensitivity of the
method is analyzed in Section 3, the method is then applied to
trace mapping of a tunnel face under construction in Section 4, the
application of the method is discussed in Section 5 and some
conclusions are drawn in Section 6.
Fig. 2. Image of a road cut slope from the Rockbench repository.
2. Methodology

The method for discontinuity trace mapping is divided into five
steps: (1) trace feature point detection: vertices of the traces are
identified and labeled as feature points; (2) trace feature point
grouping: adjacent feature points are grouped for further proces-
sing; (3) trace segment growth: trace segments composed of a
continuous chain of feature points are generated using a growth
algorithm; (4) trace segment connection: segments that belong to
a trace are connected; (5) redundant trace segment removal:
feature points that do not lie in the main direction of the traces are
removed to improve the quality of trace lines. The flow chart of the
method is illustrated in Fig. 1.

2.1. Description of the datasets

Two 3D point cloud datasets are used in our study: the publicly
available LiDAR data of a rock cut and the DSM of a rock tunnel
excavation face. The first is used to make a comparison with pre-
vious studies and the second is for field application.

2.1.1. Case study A
Case study A uses LiDAR data at the Rockbench open repository

(Vöge et al., 2013). The complete 3D RAW data is available from
www.3d-landslide.com/projects/discontinuity/ (Riquelme et al.,
2014). The case is a rock cut located in Ouray, Colorado, USA
(Fig. 2). This point cloud has 1,515,722 points and the resolution of
the point is approximately 2 cm. The scanning took about 15 min
using an Optech Ilris3D scanner.

2.1.2. Case study B
Case study B is a highway rock tunnel situated in Yuexi County,

Anhui Province, China. The tunnel was excavated using the drill
Fig. 1. Flow chart of the proposed disc
and blast method. The total length of the tunnel is 7.548 km, and
the lithology along the tunnel is primarily granite and gneiss. The
3D point cloud data were obtained using overlapping photographs
(Roncella et al., 2005; Haneberg, 2008; Sturzenegger and Stead,
2009) to create 3D surfaces. Examples of commercial photo-
grammetry software for geological mapping include Sirovision,
ShapeMetrix3D, 3DM Analyst, and Agisoft Photoscan. Fig. 3
(a) shows a picture of the tunnel excavation face and Fig. 3
(b) shows the reconstructed 3D point cloud with color after bi-
nocular 3D reconstruction.

2.2. Automated trace mapping method

2.2.1. Preprocessing of the dataset
The raw data that contain vegetation, unnecessary and sparse

points will affect the precision of trace detection and also increase
processing time. The first step is to remove these points to focus
on the region of interest. As shown in Fig. 4, some holes (marked
using red circles) are caused by the presence of vegetation and
occlusions. In addition, the point cloud is noisy because of in-
strument errors, dust and dynamic disturbances in the open field
(Slob, 2008). Therefore, the preprocessing of the point cloud is
performed in the following steps: vegetation removal, point cloud
resampling, noise reduction and triangulation.

First, the point cloud is resampled with a minimum distance
of 3 cm to preserve rock mass geometry features and improve
ontinuity trace mapping method.

http://www.3d-landslide.com/projects/discontinuity/


Fig. 3. Picture of the tunnel excavation face in the ZK21þ697.9 mileage and its 3D point clouds with color within the red square. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Triangulation of a portion of the rock cut. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this article.) Fig. 5. Initial feature points: red represents sharp edge type points and green re-

presents corner type points. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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processing speed. Then, the Moving Least Squares method (Alexa
et al., 2003) is used to reduce the noise. Finally, a Delaunay tri-
angulation algorithm is performed on the point cloud to obtain a
3D surface model of the rock mass slope using Halcon software
(MVTec Software GmbH, 2012).

2.2.2. Trace feature point detection
2.2.2.1. Normal tensor voting (NTV) method. The traces on a trian-
gulated mesh refer to the vertices on the edges and corners. An edge
can be approximated based on the surface normal variation within a
neighborhood because the surface normal has an abrupt change
across edges (Sun et al., 2002). A robust detection can be achieved by
a scheme called normal voting, which was extended from tensor
voting. The voting scheme can be simply considered as the eigenvalue
analysis of a set of surface normals (Medioni et al., 2000). The NTV
method can handle sharp features and show robustness to noisy data.

A digital surface model (subsequently called DSM) is a trian-
gulated point cloud that approximates the true surface. Gi-
ven a triangular mesh composed of triangles = ( )M V E F, , ,

= { ⋯ }V v v v, , , n1 2 denotes a set of vertices, E denotes a set of edges
connecting two points belonging to the same triangle, and
= { ⋯ }F f f f, , , m1 2 denotes a set of faces, which are described by
indices of the vertices. Each vertex ∈v Vi is represented using
Cartesian coordinates, denoted by = ( )v v v v, ,i ix iy iz .

The initial feature vertices can be extracted and classified based
on the NTV. The NTV of a vertex is defined by
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In the above equation, ( )A fi is the area of triangle fi, Amax is the
maximum area of ( )A fi , c fi is the barycenter of triangle fi, and σ is the
edge length of a cube that defines the neighboring space of each vertex.

Tv can be represented as:
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Fig. 6. Feature point grouping result. Each group is represented by one color in (a). In (b), points of multiple traces are grouped in the same point set and need to be
subdivided.
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where λ λ λ≥ ≥ ≥ 01 2 3 are its eigenvalues and e1, e2, and e3 are the
corresponding unit eigenvectors.

According to the eigenvalues (Kim et al., 2009), vertices can be
classified into face type, sharp edge type, and corner type by the
following rules:

� Face type: λ1 is dominant, and λ2, λ3 are close to 0.
� Sharp edge type: λ1, λ2 are dominant, and λ3 is close to 0.
� Corner type: λ1, λ2 and λ3 are approximately equal.

Both sharp edge type and corner type vertices are called feature
vertices.

2.2.2.2. Detecting the initial feature vertices. Two thresholds, α and
β , are defined to control the detection accuracy of corner type
points and edge type points, respectively. Both thresholds α and β
can be determined by visual evaluation of the number of detected
edge type and corner type vertices. Threshold α should be suffi-
ciently large to avoid extracting many false corners. Threshold β is
a fine-tuning parameter around a value for finding a tradeoff be-
tween detecting weak features and an extra number of noisy
vertices (Wang et al., 2012). The pseudo-code of detecting initial
feature vertices is listed in Algorithm 1. Fig. 5 shows the result of
the initial feature point detection.

Algorithm 1. Detect the initial feature vertices.
Input: n is the number of vertex, α and β are user-defined
thresholds.

Output: {FaceV}, {EdgeV}, and {CornerV} are the indices of face,
edge and corner type vertices, respectively.

1. Arrange the eigenvalues in descending order: λ λ λ≥ ≥1 2 3

2. for i’1 to n do
3. if λ α≤3 then

4. if λ β≤2
5. {FaceV}’FaceVi

6. else
7. {EdgeV}’EdgeVi

8. end if
9. else

10. {CornerV}’CornerVi

11. end if
12. end for
2.2.3. Trace feature point grouping
Through the above analysis, all feature points constituting

traces are obtained. However, the feature points representing
different traces are stored in one point set. Adjacent feature points
are grouped in this step for subsequent analysis.

The feature points can be assigned to the same group if the
following two conditions are met: (1) the feature points share the
same edge; (2) the angle between the normal vectors of the feature
points is less than a threshold θ1. The threshold θ1 can be simply set
to approximately 60° according to our data testing. The pseudo-
code of the trace feature points grouping is listed in Algorithm 2.

Algorithm 2. Trace feature point grouping.
Input: {EdgeV} and {CornerV} are the indices of edge and corner
type vertices, respectively, and θ1 is the angle threshold.

Output: {Gp} is the set storing grouped feature points.
1. {VFea}’{EdgeV}∪{CornerV}
2. j’1 // j is the searched group number
3. Randomly choose a feature point V in the set {VFea}
4. Find the immediate neighboring point of V, represented as VN

(N¼1,2,3…)
5. Compute the angle θVVN of V and the normal vector of VN

(N¼1,2,3…)
6. Find the feature point in VN which meets the condition θVVN

oθ1, represented as {Vcur} //{Vcur} is the set storing the new
growing feature points

7. Merge the feature points in {Vcur} into {Gp(j)}
8. For each feature point Vc in {Vcur}, V’Vc, repeat line 4 to line

7 until no feature point in {Vcur} meets the condition θVVN oθ1

9. Exclude all of the feature points {Gp(j)} from {VFea}: {VFea}’{VFea}

-{Gp(j)}
10. Start to find next group, j’jþ1
11. Repeat line 3 to line 10 until all feature points are processed

Through the above procedures, the feature points are divided
into different groups and each group is composed of adjacent
feature points. Fig. 6(a) shows the grouping result. It can be seen
from Fig. 6(b) that feature points of multiple traces are grouped in
the same point set. These feature points need to be subdivided. In
addition, one trace may also be separated to several groups that



Fig. 8. The growing process of feature points. The seed point is plotted in yellow. The growth point is plotted in green. The principal direction is represented with a purple
arrow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Trace segment connection: in (a), the start segment is plotted in green, the growth segment is plotted in blue, and the principal direction of the current segment is
represented with a purple arrow. The trace segment connection result is shown in (b) and each trace is represented using a color. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The principal direction of the group. The seed point is plotted in yellow, and the randomly selected point is plotted in green. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Redundant trace segment removal.

Fig. 11. Final trace mapping results of the entire area.
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need to be connected. In the following steps, trace segments
composed of a continuous chain of feature points are first gener-
ated using the growth algorithm in Section 2.2.4, and then con-
nected to form continuous traces, as in Section 2.2.5.

2.2.4. Trace segment growth
The growth algorithm is based on the simple idea that a trace

can be stretched along a linear trend defined by its feature points.
It requires an iterative procedure to search for segments of a trace
because discontinuity surfaces are irregular and uneven in shape,
and is unable to accomplish a complete growth only once.

2.2.4.1. Principal direction computation. The method we used to
compute the average orientation of a point set is called principal
component analysis (PCA) (Person, 1901). PCA is performed by first
calculating the covariance matrix:

∑= ( − )( − )
( )=

M
n

v c v c
1

4
p

i

n

i i
T

1
0 0

where vi is the ith vertex, n is the number of points and c0 is the
centroid of the point cloud calculated as the arithmetic mean of
the coordinates. Because Mp is a symmetric and positive matrix, it
can be decomposed by means of eigenvalue decomposition.

The covariance matrix can be composed as follows:

∑′ =
( )=

M k e e
5

p
i

i i i
T

1

3

where ≥ ≥k k k1 2 3 are its eigenvalues. The principal direction
→
P is

the first eigenvector e1 of covariance matrix Mp (Dimitrov, 2009).
To ensure a continuous growth, the calculation of the computa-

tional direction
→
Pc should reflect the overall trend of the point set. In

addition, the computational direction
→
Pc should also take the local

bending of traces into account. Our strategy is that when the number
of the points in {TV} is less than 10 at the beginning of the segment
growth, taking the principal direction

→
P as the computational di-

rection to overcome the local bending of traces. When the number of
the points in {TV} exceeds 10, the direction

→
Pc of the nearest five

points in the {TV} is computed by PCA to reflect the direction varia-
tion near the growing points and extend the trace as long as possible.

2.2.4.2. Seed point selection. The selection of the seed point should
avoid the growing direction beginning from a branch that generates
traces that are too short. The strategy here is projecting all points
orthogonally to the principal direction

→
P and selecting the farthest

point away from the randomly chosen point as the seed point. As
shown in Fig. 7, the seed point (plotted in yellow) is the farthest point
in the principal direction

→
P of the randomly selected point (plotted in

green). This strategy ensures the seed point is selected from the end
of the longest trace of current analyzing feature points.



Fig. 12. Trace mapping results using triangular mesh sizes of 3 cm, 4 cm, 5 cm, 6 cm, 7 cm, and 8 cm.
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Fig. 13. Example of six circular windows in different locations.

Fig. 14. Mean trace length with different triangular mesh sizes.
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2.2.4.3. Growing criteria. The feature point can grow if it satisfies
one of the following two conditions:

⎜ ⎟⎛
⎝

⎞
⎠( )θ θ

→ →
≤

( )
P Xmin ,

6c VV 2N

( ) = ( )num V 1 7N

where θ (
→ →

)P X,c VVN is the angle between the computational direction
→
Pc , in which the vector

→
XVVN started from the current feature point

V and ended at the neighboring feature point VN, θ2 is a user-
defined threshold angle, and num(VN) is the number of neigh-
boring feature points VN.

Eq. (7) is used to prevent odd shapes of triangular facets at the
corner that will cause the interruption of growth.

As shown in Fig. 8(a), the seed point is plotted in yellow and
the current growth point is plotted in green. For its three
neighboring feature points (plotted in red), the points that satisfy
Eq. (6) are merged. These steps are repeated until no neighboring
feature points can be found (Fig. 8(b)). Finally, grow will occur in
the opposite direction to include all of the trace feature points.
The pseudo-code for the trace segment growth is listed as
follows:



Fig. 15. Mean trace length with different angle threshold θ2 values.
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Algorithm 3. Trace segment growth
Input: {Gp} is the set storing grouped feature points obtained in
Section 2.2.3, and θ2 is an angle threshold.

Output: {Seg} is the set storing trace segments.
1. Calculate the number of groups m in {Gp}
2. index’0 // index is the number of current detected trace

segments
3. for j’1 to m do
4. Select a seed point Vs as described in Section 2.2.4.2
5. {TV}’Vs // {TV} is the set storing the growing feature points.
6. Choose the last point in {TV} as current feature point V
7. Find the neighboring features points VN of V

8. Compute the angles θ (
→ →

)P X,c VVN between the principal di-

rection
→
Pc and the vectors

→
XVVN
9. Add the new growing point to the end of {TV} if it satisfies
Eq. (6) or Eq. (7)

10. Repeat Line 6 to Line 9 until no more points are added to
{TV}

11. Grown in the opposite direction.
12. index’indexþ1
13. Save the current segment: {Seg(index)}’{TV}
14. end for

2.2.5. Trace segment connection
The above procedure generates segments that actually belong

to one trace. It is necessary to connect them together to produce a
continuous trace. The strategy in connecting trace segments is
similar to the trace growing method, except that the gro-
wing objects are segments instead of feature vertices. Each
trace segment is a list of vertices and can be described
using ( )X Y Z X Y Z l m n, , , , , , , ,st st st end end end , where ( )X Y Z, ,st st st ,
( )X Y Z, ,end end end , and ( )l m n, , are the starting point of the segment,
end point of the segment and principal directions of the segment,
respectively. The connection criteria are characterized by the angle
threshold θ3 and the distance threshold d between two edge
segments.
Fig. 9(a) shows the connection of segments and Fig. 9(b) shows
the connected traces. Each trace is represented using a different
color. It can be seen from Fig. 9(b) that trace fragmentation has
been reduced.

2.2.6. Redundant trace segment removal
Discontinuity surfaces are irregular in shape and contain vari-

able amounts of small-scale roughness and large-scale undula-
tions. As a result, the directions at the end of trace segments vary
dramatically with regards to the principal direction, as shown in
regions ① and ② in Fig. 10(a). These two breaks cannot be con-
nected because they do not meet the trace segment connection
criteria. However, redundant trace segments may be generated by
the segment growth and connection procedure, as shown in re-
gions ③, ④, and ⑤ in Fig. 10(a). Trace smoothing means that trace
segments are connected as a continuous and linear curve. Complex
polygons will be produced if a trace smoothing or fitting method
(e.g., Garcia, 2010, 2011) is immediately applied, as shown in re-
gions ③, ④, and ⑤ in Fig. 10(b). The redundant trace segments are
approximately parallel to each other with a small distance.
Therefore, they can be removed by setting up an angle threshold
θ4. According to testing experience, the angle threshold θ4 can be
simply set to 60°. If the angle between the trace segment and the
principal direction is greater than θ4, the trace segment can be
removed to eliminate fitting disturbance caused by redundant
traces. Fig. 10(c) shows that redundant traces are eliminated.
Fig. 10(d) shows the trace smoothing after redundant trace seg-
ments have been removed. The traces are smoothly connected in
the concave and convex regions of the discontinuities. Fig. 11
shows the final trace mapping result of the entire area.
3. Results for case study A: sensitivity analysis and calibration

The effects of triangular mesh element size, the angle threshold
θ2 in the trace segment growth step (described in Section 2.2.4),
the angle threshold θ3 and distance threshold d (described in
Section 2.2.5) in the trace segment connection step are important
parameters of the automated trace mapping method. The sensi-
tivity of the four parameters is investigated in this section.
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3.1. Effect of triangular mesh element size

The raw point cloud is resampled using triangular mesh sizes
3 cm, 4 cm, 5 cm, 6 cm, 7 cm, and 8 cm. Traces of the six DSMs are
identified through the above five steps and results are shown in
Fig. 12. It can be observed that the amount of small discontinuity
traces reflecting uneven discontinuity surfaces decreases with in-
creasing triangular element mesh size.

The mean trace length is used as a metric to evaluate the in-
fluence of triangular mesh size. The mean trace length is calcu-
lated using the circular window sampling method (Zhang and
Einstein, 1998). An automated trace sampling procedure (Umili
et al., 2013) is employed. Traces are projected on the sample plane
(x–y plane) orthogonally. Then, the centers of six circular windows
with different radii are placed in locations with dense traces
(Fig. 13). The radii are 10%, 20%, 25%, 30%, 35%, and 40% of the
sampling area. The mean trace length is estimated using the
Fig. 17. Mean trace length wit

Fig. 16. Mean trace length calculated with
following equation (Zhang and Einstein, 1998):

μ π^ = ( ^ + − )

( ^ − + ) ( )

N N N

N N N
c

2 8

0 2

0 2

where N0 is the number of traces with both ends censored, N1 is
the number of traces with one end censored and one end ob-
servable, N2 is the number of traces with both ends observable,
and c is the radius of the window.

The mean trace length is shown in Fig. 14. The overall trend is
that the mean trace length initially increases, then stabilizes and
finally increases again as the triangular mesh element size in-
creases. When the triangular mesh size is 3 cm, many small dis-
continuity traces in the concavo–convex regions are generated.
Some of these small traces are part of continuous traces that could
not be connected due to obvious directional variation in the un-
even regions. With increasing triangular element mesh size, the
h the angle threshold θ3.

different distance threshold d values.



Fig. 18. Initial feature points obtained using normal tensor voting: red represents
sharp edge type points and green represents corner type points. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 19. Discontinuity traces produce
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DSM becomes smoother and the ridge-valley lines reflecting the
uneven surfaces of the discontinuity are diminished gradually. A
portion of these small traces is connected to continuous traces.
Therefore, when the triangular mesh size is between 3 cm and
5 cm, the mean trace length grows rapidly. When the triangular
mesh size is between 5 cm and 7 cm, the mean trace length tends
to be stable as no more small traces are detected and connected.
However, when the triangular mesh size exceeds 7 cm, some tra-
ces are wrongly connected, resulting in larger mean trace lengths.
Therefore, the optimal triangular mesh element size for this case is
between 5 cm and 6 cm.

3.2. Effect of the angle and distance thresholds
(1) The angle threshold θ2 in the trace segment growth step
The angle threshold θ2 uses seven values (50°, 60°, 70°, 80°, 90°,
100°, and 110°), while the triangular mesh element size remains
at 5 cm, the angle threshold θ3 is 50° and the distance threshold
d is maintained at 15 times the mean triangular mesh element
size. As shown in Fig. 15, the general trend is that the mean trace
lengths increase slightly initially, then decrease with increasing
θ2. In regions where discontinuity surfaces are irregular and
uneven, the triangulation mesh is often distorted. When θ2 is
between 50° and 70°, the growth algorithm tends to be
d by each post-processing step.



Fig. 20. Traces projected on the sampling plane.

Fig. 21. Traces sampled using circular windows of seven radii at 9 locations.
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interrupted prematurely. When θ2 is between 90° and 110°, trace
segments that deviate from the straight line will be generated,
and cannot be connected in the trace segment connection step.
When θ2 is in between 70° and 90°, the mean trace length is
relatively larger. Therefore, the optimal angle threshold θ2 in the
trace segment growth step is between 70° and 90°.
(2) The angle threshold θ3 and the distance threshold d in the
trace segment connection step.

In this section, the triangular mesh element size is held con-
stant 5 cm, θ2 is 80°, and θ3 is 50°. The distance threshold d
changes with six values (5 L, 10 L, 15 L, 20 L, 25 L, and 30 L, where L



Fig. 22. Mean trace length with different sampling window radii.

Fig. 23. Traces detected as intersection lines between the fitting planes of dis-
continuities and rock mass surfaces.
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is the triangular mesh element size). As shown in Fig. 16, with
increasing distance threshold d, the mean trace length increases
continuously until it reaches a stable level. Therefore, the optimal
distance threshold d in the connecting algorithm should be spe-
cified at least 15 times that of the mean triangular mesh element
size.

The angle threshold θ3 uses 9 values (10°, 20°, 30°, 40°, 50°, 60°,
70°, 80°, and 90°) while the triangular mesh element size is 5 cm,
θ2 is 80° and the distance threshold d is 15 times that of the mean
triangular mesh element size. As shown in Fig. 17, the mean trace
length increases sharply when θ3 increases from 10° to 50°. Then it
stabilizes when θ3 ranges between 50° and 70°. However, it grows
again when θ3 is in the interval between 70° and 90°. This is be-
cause segments near the main direction of the trace are connected
constantly with the increasing of θ3, resulting in the increase in
mean trace length. However, when θ3 is greater than 70°, seg-
ments can be wrongly connected. Therefore, the optimal angle
threshold θ3 in the trace segment connection step could be set
between 50° and 70°.
4. Results for case study B: a drill-and-blast highway tunnel

Initial feature vertices obtained using the NTV theory are
shown in Fig. 18, and the results produced by each post-processing
step are shown in Fig. 19. As shown in Fig. 19, small trace segments
are connected and discontinuity traces become more continuous
from step 2 to step 5.

Traces are projected to the sampling plane orthogonally
(Fig. 20) and then sampled using seven concentric windows of
different radii. The radii of the windows are 10%, 15%, 20%, 25%,
30%, 35%, and 40% of the sampling area, and the centers of the
window are uniformly placed at nine locations, as shown in
Fig. 21. Mean trace length is plotted in Fig. 22. The overall trend
observed in the figure shows that the mean trace length decreases
with the increasing of sampling window radius and stabilizes
gradually.
5. Discussion

Riquelme et al. (2014) proposed a discontinuity identification
method, but the traces were not extracted on the same DSM. In
order to make a comparison, we extracted the traces from the
intersection lines between the fitting planes of discontinuities and
the rock mass surfaces based on the discontinuity detection results
(e.g., Otoo et al. (2011) and Gigli and Casagli (2011)). Traces ob-
tained by the discontinuity intersection method are shown in
Fig. 23. It can be seen that the traces in Fig. 23 contain more
fragmented information compared with the traces in Fig. 11. The
shortcomings of the discontinuity intersection method can be
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summarized as follows: (1) traces cannot fully be detected because
of the absence of points at the intersection of discontinuity planes
and rock mass surfaces, (2) traces are broken into fragmented
segments, and (3) redundant trace segments are generated by
uneven discontinuity surfaces.

As noted by Umili et al. (2013), the validity of the automated
discontinuity trace mapping method could significantly decrease
due to the presence of artificial edges (e.g., induced by blasting in
tunnel excavation) mixed with natural edges. In our work, the
influence of artificial edges could be mitigated by adjusting the
parameters in the trace detection algorithm. For example, if the
trace segments that belong to one trace are interrupted by the
stripping rocks due to blasting, we can increase θ3 and d in the
trace segment connection step to connect trace segments in si-
milar directions. Similarly, we can increase θ4 in the redundant
trace segment removal step to reduce blasting-induced small tra-
ces. As shown in Fig. 20, small trace segments are connected and
discontinuity traces become more continuous.
6. Conclusions

This paper described a new method for automated dis-
continuity trace mapping from a digital surface model (DSM). The
proposed method has three advantages: (1) trace feature points
are detected using the Normal Tensor Voting Theory, which is
robust to noisy point cloud data; (2) four post-processing steps
(i.e., trace feature point grouping, trace segment growth, trace
segment connection, and redundant trace segment removal) are
proposed to overcome segmentation of extracted traces and to
achieve more linear and continuous traces; and (3) the whole
process could be streamlined without human intervention, except
the triangular mesh element size should be tuned according to the
mesh resolution.

A sensitivity analysis is performed to identify the optimal
parameters in the proposed method. In our cases, the optimal
triangular mesh element size is between 5 cm and 6 cm; the op-
timal angle threshold in the growing algorithm is between 70° and
90°; the optimal angle threshold in the connecting algorithm is
between 50° and 70°; and the distance threshold should be at least
15 times that of the mean triangular mesh element size.

The case study presented in this paper shows that the proposed
method provides fast and effective measurements of discontinuity
geometric parameters. This method could be used as a supplement
to traditional direct fracture mapping and scanline surveying.
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