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Real-timemeasurements of GEM and H2S discharged from natural and anthropogenic sources are a valuable tool
to investigate the dispersion dynamics of these contaminants in air. In this study, a new approach to measure
GEM and H2S concentrations in air, carried out by coupling a portable Zeeman atomic absorption spectrometer
with high frequency modulation of light polarization (Lumex RA-915M) and a pulsed fluorescence gas analyzer
(Thermo Scientific Model 450i), was applied to two distinct areas: (i) in the surroundings of Piancastagnaio
(Siena, Central Italy), located in the eastern flanks of Mt. Amiata (a 200,000 years old volcano), where three geo-
thermal plants are operating andwhose exhaust gases are dispersed in the atmosphere after passing through the
turbines and an abatement system to mitigate the environmental impact on air, and (ii) at Solfatara Crater
(Campi Flegrei, Southern Italy), a volcanic apparatus characterized by intense hydrothermal activity.
In 2014, seven GEMandH2S surveyswere carried out in the two areas along pre-defined pathways performed by
car at both the study sites. The lowest and highest recorded GEM and H2S concentrations at Piancastagnaio were
up to 194 and 77 ng/m3, respectively, whilst at Solfatara Crater were up to 690 and 3392 μg/m3, respectively. Al-
though the GEM concentrations at Piancastagnaio were lower than the limit value recommended by local regu-
lations for outdoor environment (300 ng/m3), they were almost one order of magnitude higher than the GEM
background both in Tuscany (~3.5 ng/m3) and Mt. Amiata (3–5 ng/m3), suggesting that the main source of
GEM was likely related to the geothermal plants. At Solfatara Crater, the highest GEM values were recognized
in proximity of the main fumarolic gas discharges. As far as the H2S concentrations are concerned, the guideline
value of 150 μg/m3, recommended by WHO (2000), was frequently overcome in the study areas.
Dot (in the surroundings of Piancastagnaio) and contour (at Solfatara Crater) maps for GEM and H2S concentra-
tions built for each survey highlighted the important effects played by the meteorological parameters, the latter
being measured by a Davis® Vantage Vue weather station. In particular, the GEM and H2S plumes were strongly
affected by thewind speed and direction thatwere able tomodify the dispersion of the two parameters in air in a
matter of hours, indicating that the proposed analytical approach is able to produce amore realistic picture of the
distribution of these air pollutants than that provided by using passive traps.
Finally, the H2S/GEM ratio, calculated by normalizing themeasured GEM and H2S concentrations to their highest
values (nH2S/GEM), was used as a good proxy for the chemical-physical processes that these two gas species can
suffer once emitted in the air. In particular, H2S resulted to be more affected by secondary processes than GEM,
possibly related to photochemical oxidation reactions.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Gaseous elemental mercury (hereafter GEM or Hg0) and H2S emit-
ted from a number of different anthropogenic and natural sources
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(e.g. Mason et al., 1994; WHO, 2000; D'Alessandro et al., 2013) have a
significant impact on air quality due to their negative effects on the en-
vironment and human health (WHO, 2007). The development of specif-
ic instrumentations and analytical techniques aimed to provide reliable
measurements of the concentrations of these gases in air is a necessary
prerequisite for establishing their spatial distribution and localizing
their emitting sources. GEM measurements in air are commonly ana-
lyzed by thermal desorption and quantification via cold vapor atomic
fluorescence spectrometry (CVAFS; EPA, 1999) after trapping Hg0

(and possibly GOM: gaseous oxidized mercury, e.g. Gustin and Jaffe,
2010) on an Au-coated substrate operating as a passive collector, i.e.
no pumping systems are applied (Ferrara et al., 1994; Ebinghaus et al.,
1999; Nakagawa, 1999; Bagnato et al., 2007). More recently, passive
samplers with better performances have been developed (e.g. Zhang
et al., 2012; Peterson et al., 2012; Pirrone et al., 2013 and references
therein). Lately, a number of studies (e.g. Higueras et al., 2013;
Higueras et al., 2014 and references therein) used GEM data measured
with Lumex® instruments to investigate the environmental impact of
this air pollutant in different anthropogenic and natural systems.

Hydrogen sulfide in air is collected by passive/diffusive traps, such as
the Radiello® samplers (FondazioneMaugeri, 2007; D'Alessandro et al.,
2009, 2013). Other sampling methods use (i) molecular diffusion pas-
sive samplers (Campos et al., 2010), (ii) treated black and white photo-
graphic paper (Horwell et al., 2005), and (iii) copper passive samplers
(Voltaggio and Spadoni, 2009). According to these methods, GEM and
H2S concentrations are calculated on the basis of empirical or theoretical
relationships between the amount of the trapped analyte and environ-
mental parameters, such as air temperature and humidity, wind direc-
tion and speed (Brown, 2000; Delgado-Saborit and Esteve-Cano,
2006). The concentrations of GEM andH2S determinedwith the passive
traps are thus time-averaged (e.g. days or weeks) integrated values,
since this methodological approach cannot provide an instantaneous
or continuous measurement of the air quality, preventing the recogni-
tion of the emitting source.

In this study, GEM and H2S concentrations in air were measured in
situ with portable instruments (Lumex® RA-915M and Thermo® 450i,
respectively) operating at high-frequency data acquisition. Measure-
ments were carried out in two areas that are known to be characterized
by anomalous GEM and H2S emissions: (i) Mt. Amiata (Siena, Central
Italy), an extinct volcanic system characterized by the occurrence of a
world-class, now decommissioned, Hg-mining area and five active geo-
thermal plants, and (ii) Solfatara Crater, a hydrothermally altered tuff-
cone located in the densely populated town of Pozzuoli (Southern Italy).

The main aims of this work were those to demonstrate that our ap-
proach i) is a valid and reliable alternative to the classical methods used
to estimate air quality in contaminated areas, and ii) allows to build the-
matic iso-concentration maps of the two different pollutants measured
contemporaneously in real-time, thus providing new insights into their
behavior once released in the air.

2. Background and guideline values of GEM and H2S in the
atmosphere

Mercury is present in air mainly in its elemental form (GEM
~98%; Slemr et al., 1985; Schroeder et al., 1991). The background
air concentration in unpolluted areas is ~2 ng/m3 (USEPA, 1997;
Ebinghaus et al., 2002), although locally higher values were recorded
worldwide, e.g. ~3.5 ng/m3 in Tuscany (Central Italy) (Bargagli,
1990). GEM residence time in air is estimated to be between 1 and
2 years (Lindqvist and Rodhe, 1985) and down to 0.6 years (Weiss-
Penzias et al., 2003) due to its relatively low solubility and chemical
inertness (Schroeder and Munthe, 1998). It is then likely oxidized to
Hg2+ by atomic bromine and bromine containing radicals, e.g. Obrist
et al. (2011).

Mercury is highly toxic to human health, since exposure to elevated
concentrations can affect nervous, digestive and immune systems, lungs
and kidneys, eventually leading to death (WHO, 2007). The guideline
value (1-year time-weighted average, TWA) for GEM in ambient air is
1000 ng/m3 (WHO, 2000), whereas EPA (2001) suggests three action
levels: 1) ≥10,000ng/m3 (real-timemeasurements), residentsmust im-
mediately be relocated; 2) from 1000 ng/m3 to 10,000 ng/m3 (real-time
measurements), relocation must be scheduled as soon as possible; and
3) ≤1000 ng/m3 (8-h TWA), no actions are necessary.

Hydrogen sulfide is an irritating and suffocating weakly acidic
gas, whose unpleasant smell can be detected at concentrations as
low as 7 μg/m3 (Thorsteinsson et al., 2013 and references therein).
H2S residence time in atmosphere is 1–5 days (Hobbs, 2000), al-
though it can be up to 42 days in wintertime (WHO, 2003). Back-
ground concentrations of H2S in ambient air range from 0.14 to
0.40 μg/m3 and its guideline value (24-h TWA) is 150 μg/m3 (WHO,
2000, 2003).

GEM released from volcanic and hydrothermal systems accounts for
~2% of the total amount discharged from natural sources (Varekamp
and Buseck, 1986; Pyle and Mather, 2003; Bagnato et al., 2007;
Pirrone et al., 2010). Hydrogen sulfide after H2O and CO2 is the most
abundant gas species released from hydro/geothermal gases
(D'Alessandro et al., 2013). Owing to the relatively high GEM and H2S
concentrations in geothermal fluids (e.g. Bayer et al., 2013; Peralta et
al., 2013), since 2002 most geothermal plants in Italy have adopted
the AMIS® abatement system to mitigate the environmental impact
on air of their exhausted vapors (Baldacci, 2004; Regione Toscana,
2010). This system, patented by ENEL (National Agency for Electricity),
allows the GEM removal by using either selenium or active carbon per-
meated by sulfur. Hydrogen sulfide is removed by catalytic oxidation to
form SO2, which is almost completely scrubbed by the geothermal con-
densate recovered after the steam has passed through the turbines to
produce electricity (Baldacci, 2004).
3. GEM and H2S sources in the studied areas

3.1. Mt. Amiata Volcano

Volcanic activity at Mt. Amiata, the most recent (≈0.3 Ma old;
Laurenzi et al., 2015) and largest volcanic apparatus (≈90 km2) of
the Tuscan Magmatic Province (Conticelli et al., 2004, 2015), is relat-
ed to the Pliocene emplacement of a magmatic body at 6–7 km depth
(Pasquarè et al., 1983; Gianelli et al., 1988; Marroni et al., 2015). This
system is part of the circum-Mediterranean Hg belt, it hosts the 4th
largest Hg-producing district in the world and is known since the
Etruscan times, although the industrial exploitation mostly occurred
in the last century (e.g. Rimondi et al., 2012; Vaselli et al., 2013). The
hydrothermal system, feeding CO2-rich cold and thermal emissions
mostly located in the eastern and southeastern sectors of the volca-
nic apparatus (e.g. Frondini et al., 2009; Tassi et al., 2009; Nisi et
al., 2014), consists of two bi-phase fluid reservoirs, located at 500–
1000 m and N3000 m depth, with a temperature of 200–230 °C and
up to 350 °C, respectively (Calamai et al., 1970; Bertini et al., 1995).
Close to Piancastagnaio (Fig. 1), three geothermal plants (PC3, PC4
and PC5) (Bacci et al., 2000) emit vapor plumes rich in CO2, H2S
and GEM (Bravi and Basosi, 2014); however, most GEM and H2S oc-
curring in the exploited geothermal fluids are scrubbed (up to 95 and
75%, respectively) by AMIS (Baldacci, 2004; Baldacci et al., 2005). Ac-
cording to Bacci et al. (2000), the total GEM emission rates from the
Mt. Amiata geothermal plants account for 3–4 g/h per MW electrical
installed capacity, whereas those of H2S are 7–8 kg/h. Preliminary
surveys of GEM concentrations in air nearby the former Hg-mining
area (Ferrara et al., 1998; Vaselli et al., 2013) reported values up to
1000 ng/m3, much higher than the limit imposed by the Tuscany Re-
gional Decree 1447 (1998) (300 ng/m3 at 20 °C and 100 cm above the
ground; Vaselli et al., 2013). To the best of our knowledge, no H2S
measurements in air were carried out in this area.



Fig. 1. Geographical location of Mt. Amiata and the PC3, PC4 and PC5 geothermal power plants near Piancastagnaio. The village of Abbadia San Salvatore is also reported.
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3.2. Solfatara crater

Solfatara Crater, a ~4 ky old crater in the Campi Flegrei Caldera, is
characterized by an intense fumarolic activity, which is mainly related
to two fumarolic vents (Bocca Grande, BG, and Bocca Nuova, BN;
Fig. 2), and an anomalously high diffuse soil CO2 degassing from the bot-
tom of the crater, especially in the NE and SE sectors (e.g. Chiodini et al.,
2001; Tassi et al., 2013, 2015). The discharged fluids originate at depth
from a hydrothermal reservoir receiving significant contributions of
magmatic fluids. Their composition is dominated by H2O and CO2,
followed by H2S, N2, H2, CH4, He, Ar and CO (Caliro et al., 2007,
2014). The hydrothermal emissions have a strong impact on air at a
local scale. For example, H2S concentrations in air at a close distance
from the fumarolic vents typically exceed 210,000 μg/m3 (Aiuppa et
al., 2013) and are significantly higher than the background values all
Fig. 2. Geographical location of Solfatara Crater in the Bay of Pozzuoli and of the
over the crater (Carapezza et al., 1984). GEM concentrations in the
vapors discharged from Bocca Grande, the main fumarole of the cra-
ter, are up to 295 ng/m3, whereas the background value outside the
fumarolic field is 18 ng/m3, ranging from 10 to 24 ng/m3 (Bagnato
et al., 2009).

4. Materials and methods

4.1. Instruments for GEM and H2S analysis

GEM and H2S measurements were carried out using a Lumex® RA-
915M and a Thermo® 450i, respectively. The Lumex® analyzer is a por-
table atomic absorption spectrometer with Zeeman effectwith high fre-
quencymodulation of light polarization (ZAAS-HFMLP). The separation
of the spectral lines (at λ = 254 nm) is operated by a permanent
two main fumarolic discharges: Bocca Grande (BG) and Bocca Nuova (BN).
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external magnetic field, into which a source of radiation (Hg lamp) is
placed (Sholupov and Ganeyev, 1995; Sholupov et al., 2004). The Zee-
man background correction and a multipath analytical cell provide
high selectivity and sensitivity (Sholupov et al., 2004; Vaselli et al.,
2013). The instrument operates at a flow rate of 10 L/min, whereas its
rechargeable battery allows up to 8 h of continuous measurements.
The detection limit is 2 ng/m3 while the accuracy of the method is 20%
from 2 to 50,000 ng/m3 (Sholupov and Ganeyev, 1995; Sholupov et al.,
2004).

The Thermo® analyzer measures SO2 and H2S, the latter being de-
tected after oxidation to SO2 (Thermo Scientific, 2007; Thorsteinsson
et al., 2013). The H2S-SO2 converter has an efficiency N80% (Thermo
Scientific, 2012). The detector (photomultiplier tube, PMT) receives
UV emission from SO2 excited by pulsating UV light generated by a fluo-
rescence chamber. During theH2S-SO2 conversion, the instrumentmea-
sures the combined sulfur (CS) concentrations (SO2 + H2S), whereas
bypassing the converter the analyzer measures SO2. The difference be-
tween the two measurements (converted and no-converted H2S) pro-
vides the H2S concentration (Thermo Scientific, 2012). The operative
fluxof the instrument is set at 1 L/min. The durationof a singlemeasure-
ment is 1 s, although the instrument provides average concentrations
calculated using data measured over a defined period (60 s). The detec-
tion limit is 1.4 μg/m3; the maximum measurable concentration is
14,000 μg/m3with a precision of±1% (Thermo Scientific, 2012). An ex-
ternal power supply (a high capacity battery) is connected to the instru-
ment through an AC/DC converter.

4.2. Field measurements

GEM and H2Smeasurements were carried out along pathwayswith-
in the study areas, following a strategy recently adopted to evaluate the
spatial distribution of air contaminants in areas where natural (Bagnato
et al., 2014; Rizzo et al., 2014) and/or anthropogenic (Vaselli et al., 2013;
Olafsdottir et al., 2014a; Zazzeri et al., 2015) sources occur. In the pres-
ent study, the pathwayswere selected by considering the location of the
potential contaminant sources. The instruments were fixed on a car
moving at an average speed ~6 km/h, avoiding any interferences with
the exhaust gases. Consequently, the distance between two consecutive
H2S measurements was ~100 m, since the frequency of the measure-
ment acquisition of Thermo®was of 1 min. GEM data measured during
this time intervals (~58 measurements) were averaged and simulta-
neously coupled with those of H2S. The pathways were digitalized
using a portable GPS (Garmin® GPSMAP 62), whilst the meteorological
parameters (air temperature and humidity, wind speed and direction)
were measured by a Davis® Vantage Vue weather station that was de-
ployed in a fixed position within the surveyed area.

4.3. Data processing

The spatial distribution of GEMandH2S in air of the two contaminat-
ed sites was visualized by using two graphical representations: 1) dot-
maps, where selected concentrations intervals were recognized and
Table 1
GEM (in ng/m3) and H2S (in μg/m3) measurements in air at Mt. Amiata in June 2014.
N = number of measurements; Std. dev. = standard deviation.

AMIATA Gas N Mean Median Std. dev. Max. Min.

24/06/2014 GEM (ng/m3) 127 50 45 20 194 24
H2S (μg/m3) 17 2.8 75 690 0.14

25/06/2014 GEM (ng/m3) 53 27 24 16 115 21
H2S (μg/m3) 11 1.7 34 185 0.32

26/06/2014 GEM (ng/m3) 126 40 40 5.1 51 22
H2S (μg/m3) 4.8 2.5 7.2 43 0.06

27/06/2014 GEM (ng/m3) 126 57 59 15 100 22
H2S (μg/m3) 26 25 19 101 0.61
plotted using circles filled with different colors; and 2) contour maps,
whichwere constructed according to a classical Graphical Statistical Ap-
proach (GSA). The interpolation on the contourmapswas carried out by
using the kriging estimationmethod (ESRI® ArcGis 9.3), which is based
on mandatory preliminary steps: (i) construction of an experimental
variogram and (ii) selection of the best fitting mathematical model. Fi-
nally, the fitted models were cross-validated with the experimental
data in order to check the performance of the kriging model.
5. Results

5.1. Mt. Amiata

In June 2014, 432measurements were carried out in four days along
a pathway running from the neighbourhoods of PC4 and PC5 geother-
mal plants to Abbadia San Salvatore (822 m a.s.l.), passing through
Piancastagnaio (772 m a.s.l.) and the proximity of PC3 geothermal
plant (Fig. 1). During the measurements, winds predominantly blew
from S with a speed up to 15m/s, whereas air temperature and humid-
ity ranged from 15 to 21 °C and from 48 to 77%, respectively. The max-
imum GEM concentrations measured in the four surveys (from 51 to
194 ng/m3) did not exceed the limit value recommended by local regu-
lations for outdoor environment (300 ng/m3) and were significantly
lower than those reported by Ferrara et al. (1998) for this area (up to
1000 ng/m3). The minimum GEM concentrations (from 21 to
24 ng/m3) were almost one order of magnitude higher than the GEM
background both in Tuscany (~3.5 ng/m3; Bargagli, 1990) and Mt.
Amiata (3–5 ng/m3; Ferrara et al., 1998), indicating awidespread anom-
aly (Table 1), as already highlighted by Vaselli et al. (2013). The maxi-
mum H2S concentrations (up to 690 μg/m3) exceeded the guideline
value recommended by WHO (2000), whereas the lowest ones (from
0.06 to 0.61 μg/m3) were consistent with clean air values (WHO,
2003), i.e. more than one order of magnitude lower than the limit of
odor nuisance (7 μg/m3). The GEM and H2S standard deviations during
Fig. 3.Histograms of GEM (in log ng/m3 and ng/m3, upper diagram) and H2S (in log μg/m3

and μg/m3, lower diagram) concentrations in air for the June 2014 survey at Mt. Amiata.
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the 4 days of measurements ranged from 5.1 to 20 ng/m3 and from 7.2
and 75 μg/m3, respectively (Table 1). The GEM and H2S average values
ranged from 27 to 57 ng/m3 and from 4.8 and 26 μg/m3, respectively,
whilst the medians ranged from 24 to 59 ng/m3 and from 1.7 and
25 μg/m3, respectively (Table 1). As shown in the histograms of Fig. 3,
the most frequent GEM and H2S values were between ~20 and
80 ng/m3 and between ~0.3 and 100 μg/m3, respectively.

The spatial distribution of GEM and H2S concentrations measured at
Mt. Amiata is only shown using dot-maps. No contour maps were built
since the presence of dense vegetation and the lack of roads prevented a
homogeneous distribution of themeasurements (Figs. 4 and 5). Howev-
er, this simple graphical representation allowed to clearly depict a GEM
and H2S dispersion plume that, considering the wind direction, was
originated from the two geothermal power plants. Noteworthy, on
June 24, 2014, when the wind speed from S ranged from 9 to 13 m/s,
a N-oriented plume fromPC3 reached the eastern part of Piancastagnaio
Fig. 4.Dot-maps of the GEM (in ng/m3) measurements in air performed near Piancastagnaio (M
10 classes for the a) 24, b) 25, c) 26 and d) June 27, 2014 surveys. Piancastagnaio and the geoth
intensity for each surveying day are also indicated.
town (GEM concentrations N60 ng/m3; Fig. 4a), placed at an altitude
significantly higher (772 m) than that of the power plants (446, 558
and 586 m for PC3, PC4 and PC5, respectively). At lower wind speed
(from 3 to 8 m/s) and E to W wind direction (on June 26 and 27,
2014), the two air pollutants showed a less regular spatial distribution.
For example, on June 27, 2014 the highest concentrations (up to
100 ng/m3 and 101 μg/m3 for GEM and H2S, respectively; Figs. 4d and
5d) were measured a few meters from the PC3 geothermal plant.

5.2. Solfatara Crater

On the 16th (morning and afternoon) and 17th (morning) of April
2014, 378 measurements were carried out along three pathways in an
area including both the vegetated zone, in thewestern sector of the cra-
ter, and the main fumarolic discharges (Fig. 2). The speed of the domi-
nant wind (from NE) was up to 11 m/s, whereas air temperature and
t. Amiata) by car along pre-defined pathways. The GEM concentrations were divided into
ermal power plants (PC3, PC4 and PC5) are evidenced. The prevailing wind direction and



Fig. 5.Dot-maps of the ofH2S (in μg/m3)measurement in air performednear Piancastagnaio (Mt. Amiata) by car along pre-defined pathways. TheH2S concentrationswere divided into 10
classes for the a) 24, b) 25, c) 26 and d) June 27, 2014 surveys. Piancastagnaio and the geothermal power plants (PC3, PC4 and PC5) are evidenced. The prevailing wind direction and
intensity for each surveying day are also indicated.
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humidity ranged from 12 to 15 °C and from 36 to 52%, respectively. The
highest GEM concentrations were from 51 to 77 ng/m3, whereas the
lowest ones ranged from 12 to 19 ng/m3, the latter being recorded in
the vegetated areas of the crater, where a camping area, frequented by
many tourists, is located. In this peripheral zone, the H2S concentrations
Table 2
GEM (in ng/m3) and H2S (in μg/m3) measurements in air at Solfatara Crater in April 2014. N =

SOLFATARA Gas N Mea

16/04/2014 (morning) GEM (ng/m3) 124 27
H2S (μg/m3) 442

16/04/2014 (afternoon) GEM (ng/m3) 124 28
H2S (μg/m3) 420

17/04/2014 GEM (ng/m3) 130 25
H2S (μg/m3) 497
(down to 0.33 μg/m3) weremostly below the nuisance odor concentra-
tion limit of 7 μg/m3 (Table 2). The central and SE parts of the crater
showed H2S concentrations up to 3392 μg/m3, i.e. consistent with
those reported by Badalamenti et al. (2001) and largely exceeding the
WHO (2000) guideline value (150 μg/m3). The GEM and H2S standard
number of measurements; Std. dev. = standard deviation.

n Median Std. dev. Max. Min.

25 5.8 51 19
312 467 2821 2.5
25 10 77 17
143 698 3392 0.78
22 9.5 70 12
216 599 2187 0.33



Fig. 6.Histograms of GEM (in log ng/m3 and ng/m3, upper diagram) and H2S (in log μg/m3

and μg/m3, lower diagram) concentrations in air for the April 2014 survey at Solfatara
Crater.
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deviations were up to 10 ng/m3 and 698 μg/m3, respectively (Table 2).
The average and median GEM values (Table 2) were similar, ranging
from 25 to 28 ng/m3 and from 22 to 25 ng/m3, respectively, whereas
those of H2S significantly differed since they were ranging from 420 to
497 μg/m3 and from 143 to 312 μg/m3, respectively.When summarizing
the whole GEM and H2S measurements in the histograms of Fig. 6, the
most recurrent concentrationswere between ~20 and 30 ng/m3 and be-
tween 100 and 1000 μg/m3, respectively.

Since the GEMandH2Smeasurements almost uniformly covered the
study area, contour maps for April 16 (morning and afternoon) and
April 17 (morning) 2014 and all the data for the Solfatara Crater are re-
ported in Figs. 7 and 8, respectively. When considering the whole GEM
and H2S concentrations, the highest valueswere recorded in correspon-
dence of the most intense emissions of gas discharges occur (Figs. 7d
and 8d), as follows: (i) the southeastern border of the crater bottom,
in correspondence of the BG and BN fumarolic vents; (ii) a relatively
Fig. 7. Contour maps of the GEM (in ng/m3) measurements in air performed inside Solfatara Cr
classes for the April 2014 surveys carried out on the: a) 16th in the morning, b) 16th in the afte
during the April 2014 survey is also reported. For comparison, the 16 April, morning dot-map
Grande (BG) and Bocca Nuova (BN), fumaroles is evidenced. The prevailing wind direction and
small zone in the northeastern crater sector, i.e. nearby two ancient
caves (namely, “Le Stufe”: the Stoves) that were used as sudatoria
(sweat rooms); and (iii) the central part of the crater, hosting bubbling
pools (namely, “La Fangaia”: themud pit) fed bymeteoricwater and hy-
drothermal gases. This spatial distribution is reflected when the single
periods of measurements are taken into account (Fig. 7 and Fig. 8), al-
though this is more clearly evidenced for the GEM thematic maps
since those of H2S show a more homogeneous distribution.

Noteworthy, the occurrence of wind from NE likely caused the rela-
tively high GEM concentrations in the SW part of the crater (e.g. up to
35 ng/m3 in the afternoon of April 16, 2014; Fig. 7b). At lower wind
speed (b7 m/s; e.g. Figs. 7a and 8a) a large variation in terms of GEM
and H2S concentrations was recorded.
6. Discussion

Surveys aimed to monitor the presence and determine the concen-
trations of air pollutants in contaminated areas aremostly based on con-
tinuous measurements carried out at a fixed station (e.g. Peralta et al.,
2013; Olafsdottir et al., 2014b). However, the selection a priori of a sin-
gle measurement site strongly affects the capability to discriminate the
effective role played by the different parameters (e.g. weather condi-
tions, air pollutant input rate) on air quality, especially in areas (e.g.,
urban and industrial settlements) characterized by multiple potential
sources of contaminants (Kolb et al., 2004; Herndon et al., 2005). The
spatial distribution of air pollutants can be investigated by using passive
traps that are placed at different sites within a selected study area (e.g.
Klánová et al., 2006; Pavilonis et al., 2013; Pirrone et al., 2013 and refer-
ences therein; Akdemir, 2014; Marć et al., 2015). Notwithstanding, the
exposure time (from a few hours to a few days) of these traps is affect-
ing these measurements since short-term or sudden contamination
events cannot be recorded, the retrieved concentrations being aweight-
ed average passively registered by such devices.

In this paper, a different approachwas applied that allowed to depict
both the spatial distributions of the air pollutants and their evolution in
time. At Piancastagnaio, the local geothermal plants were likely respon-
sible of the measured GEM and H2S concentrations, which were signif-
icantly changing in a fewhours or dailywith no apparent relationship to
the wind direction and speed (Figs. 4 and 5). Based on the morpholog-
ical features, which are characterized by relatively strong differences in
terms of altitude, it is likely that these results were related to vertical
movements of the air masses. During the field survey carried out on
June 24 and 27, 2014 (Figs 4a, d and 5a, d), the cloudy andhigh humidity
weather conditions likely favored air stratification. Hence, the disper-
sion in air of both GEM and H2S was strongly limited, as supported by
the anomalously high concentrations measured at relatively large
ater by car along pre-defined pathways. The recorded concentrations were divided into 10
rnoon and c) 17th in the morning, while in d) the contour map for all GEM data recorded
is also shown. The location of Stufe, Fangaia, the main fumarolic area, including the Bocca
intensity for each surveying day are also indicated.



Fig. 8. Contour maps of the H2S (in μg/m3) measurements in air performed inside Solfatara Crater by car along pre-defined pathways. The recorded concentrations were divided into 10
classes for the April 2014 surveys carried out on the: a) 16th in the morning, b) 16th in the afternoon and c) 17th in the morning, while in d) the contour map for all GEM data recorded
during the April 2014 survey is also reported. For comparison, the 16 April, morning dot-map is also shown. The location of Stufe, Fangaia and the main fumarolic area, including the
fumaroles Bocca Grande (BG) and Bocca Nuova (BN), is also evidenced. The prevailing wind direction and intensity for each surveying day are also indicated.
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distances from the contaminant sources and similar to what observed
by Esbrí et al. (2016) in the mining polluted site of Almadén town
(Spain). On June 25 and 26 (Figs. 4b, c and 5b, c), the GEM andH2Smea-
surements were carried out under a sunny weather that favored an ef-
ficient vertical air mixing and a consequent rapid dispersion of the
emitted pollutants.

At Solfatara Crater, which has a flat bottom contoured by relatively
steep flanks, the spatial distributions of both GEM and H2S concentra-
tions measured during the three distinct surveys (Figs. 7a–c and 8a–c,
respectively) seem to be mainly depending on the location of the emit-
ting sources (fumarolic areas, Stufe and Fangaia) andwinddirection. It is
worth noting that the H2S/GEM ratios, calculated by normalizing the
measured GEM and H2S concentrations to their highest values (nH2S/
GEM), decreased by 3 orders of magnitude in a short distance (up to
300m), moving away from themain emission sources towards the cen-
tral and SE portion of the crater and the vegetated area at NW (Fig. 9a–
c). A similar strong decrease of GEM concentrations at increasing dis-
tance from the contaminating source in the Almadén district (Spain)
was also described by Llanos et al. (2010).

The different spatial trends of the GEM and H2S concentrations,
which were measured under pretty similar weather conditions,
were likely depending on the chemical-physical processes regulat-
ing the different behavior of the two pollutants once they are re-
leased in the air. For instance, photochemical oxidation is able to
efficiently consume H2S to form SO2 (De Kok et al., 1988; Cihacek
Fig. 9.Dot-maps of the H2S/GEM ratios in air, calculated by normalizing themeasured GEM and
The values of the normalized ratios were divided into 5 classes for the April 2014 surveys carrie
The location of Stufe, Fangaia and the main fumarolic area, including the fumaroles Bocca Gran
and Bremner, 1993; Kristmannsdóttir et al., 2000; Bacci et al.,
2000; Chow Pineda, 2007; Vallero, 2014), whereas GEM is relatively
stable (Sommar et al., 2001; Fu et al., 2012), unless scavenged by dry
deposition on vegetation (Zhang et al., 2005; Fu et al., 2010). Accord-
ing to these considerations, in areas characterized by a relatively
simple spatial geometry, such as Solfatara Crater, the proposed ap-
proachmay provide useful indications for investigating the transport
mechanisms and degradation processes affecting air pollutants once
emitted in the air. This approach could be improved by including
other air pollutants (e.g. NOx, CO, CH4, C2H6, SO2, CO2, H2O, O3) si-
multaneously measured at high frequency using analytical instru-
ments deployed on mobile platforms (e.g. Bukowiecki et al., 2002;
Kolb et al., 2004; Herndon et al., 2005; Adams et al., 2012; Van
Poppel et al., 2013; Riley et al., 2014).

At Mt. Amiata, the spatial distribution of the nH2S/GEM ratios was
relatively homogeneous, even at distances N1 km from the geother-
mal power plants (Fig. 10a–d). In this case, the influence of the mor-
phological/weather parameters, invoked to explain the temporal
variations recorded for GEM and H2S (Figs. 4a–d and 5a–d), seems
able to mask the distinct behavior of the two pollutants in response
to chemical-physical processes occurring in air. In this case, a reliable
evaluation of the temporal and spatial evolution of the impact on air
quality of potential contaminating sources cannot overlook the ac-
quisition of a comprehensive meteorological and morphological
dataset.
H2S concentrations to their highest values (nH2S/GEM), performed inside Solfatara Crater.
d out on the: a) 16th in the morning, b) 16th in the afternoon and c) 17th in the morning.
de (BG) and Bocca Nuova (BN), is also evidenced.



Fig. 10. Dot-maps of the H2S/GEM ratios in air, calculated by normalizing themeasured GEM and H2S concentrations to their highest values (nH2S/GEM), performed near Piancastagnaio
(Mt. Amiata). The values of the normalized ratios were divided into 5 classes for the June 2014 surveys carried out on the a) 24th, b) 25th, c) 26th and d) 27th. The location of
Piancastagnaio and the geothermal power plants (PC3, PC4 and PC5) is also evidenced.
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7. Conclusions

The present study demonstrated that continuousGEM andH2Smea-
surements applied to different environmental situations allow to recog-
nize the air concentration variability that these two pollutantsmay have
over periods of hours or days, providing a more realistic picture than
that obtained by using passive traps. Furthermore, the simultaneous re-
cording of GEM and H2S concentrations is highly suitable for defining
both anthropogenic (geothermal power plants at Mt. Amiata area)
and natural (Solfatara Crater) pollution sources. This implies that once
the emitting source(s) were recognized, appropriate instrumentations
can be deployed alongwithmeteorological stations to ascertain the pol-
lutants air dispersion and verify whether the threshold concentrations
indicated by WHO and national or local authorities are exceeded. Such
measurements are necessary in order to undertake appropriate actions
to mitigate the risk for the local community or tourists as in the case of
Mt. Amiata and Solfatara, respectively.

Finally, the nH2S/GEM ratio is a good indicator of the chemical-
physical processes that these two gas species can suffer once emitted
in the air. In particular, H2S results to be more affected by secondary
processes than GEM, possibly related to photochemical oxidation
reactions.
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