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a b s t r a c t

The prediction of long-term groundwater level fluctuations is necessary to effectively manage ground-
water resources and to assess the effects of changes in rainfall patterns on groundwater resources. In the
present study, a weighted error function approach was utilised to improve the performance of artificial
neural network (ANN)- and support vector machine (SVM)-based recursive prediction models for the
long-term prediction of groundwater levels in response to rainfall. The developed time series models
were applied to groundwater level data from 5 groundwater-monitoring stations in South Korea. The
results demonstrated that the weighted error function approach can improve the stability and accuracy
of recursive prediction models, especially for ANN models. The comparison of the model performance
showed that the recursive prediction performance of the SVM was superior to the performance of the
ANN in this case study.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Groundwater is a valuable water resource for various human
activities. Therefore, groundwater should be systematically man-
aged for its sustainable use. Rainfall is the primary driver of
groundwater level (GWL) fluctuations, and recent climate change
studies predict changes in rainfall patterns (IPCC (International
Panel on Climate Change) (2007); NIMR, 2009). Predictions of
long-term groundwater level fluctuations are necessary to effec-
tively manage groundwater resources and to assess the effects of
rainfall pattern changes on groundwater resources.

Physics-based numerical models have generally been devel-
oped and applied to predict GWL fluctuations. These models es-
tablish mathematical governing equations based on physical con-
cepts, and the equations are solved using numerical techniques for
given domains (Rai and Singh, 1995; Knotters and Bierkens, 2000;
Park and Parker, 2008). Physics-based numerical models are ro-
bust and powerful tools for simulating spatial and temporal var-
iations in GWLs. However, this approach requires a wide variety
and quantity of information regarding the physical properties of
the domain and boundary conditions, a lack of which can cause
poor model performance or can increase the model uncertainty
through equifinality (Bardossy, 2007; Pollacco et al., 2008).
Recently, as the quantity and quality of automatic monitoring

system data have steadily increased and improved, studies de-
veloping time series models for hydrologic problems using data-
based learning algorithms, such as artificial neural networks
(ANNs) and support vector machines (SVMs), have increased. The
number of studies applying ANN-based time series models has
considerably increased since the 1990s, mainly to address surface
water problems, including modelling of rainfall (French et al.,
1992; Kuligowski and Barros, 1998; Hung et al., 2009), stream flow
(Karunanithi et al., 1994; Zealand et al., 1999; Campolo et al., 1999;
Hu et al., 2005; Akhtar et al., 2009), and water quality (Maier and
Dandy, 1996; Lek et al., 1999; Dogan et al., 2009). The application
of ANNs for predicting GWL fluctuations has been emerging since
the late 1990s (Coulibaly et al., 2001; Coppola et al., 2005; Dia-
liakopoulos et al., 2005; Giustolisi and Simeone, 2006; Krishna
et al., 2008; Mohanty et al., 2010). SVMs, which are relatively new
data-based learning algorithms and were introduced by Vapnik
(1995), have emerged as an alternative method in ANN-dominated
hydrologic research fields. Most SVM applications have been fo-
cused on surface water problems (Dibike et al., 2001; Liong and
Sivapragasam, 2002; Asefa et al., 2005, 2006; Yu et al., 2006; Khalil
et al., 2006; Khan and Coulibaly, 2006); however, the applicability
of SVMs has been recently extended to GWL predictions (Asefa
et al., 2004; Gill et al., 2007; Behzad et al., 2010). Yoon et al. (2011)
applied ANN and SVM to the prediction of GWL fluctuations with
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direct prediction strategy. They concluded that the SVM model
performance was better than ANN in their case studies; however,
the prediction error increased significantly with lead times, which
hinders a long term prediction of GWL fluctuations.

Long-term predictions have been a challenge in the field of
time series model development. Several different methodologies
have been developed to address this issue; the primary methods
are direct prediction and recursive prediction (Ji et al., 2005;
Herrera et al., 2007; Sorjamaa et al., 2007). The direct prediction
strategy always uses real past measurement data for a target
variable as inputs. Thus, there is no prediction error accumulation
as the time increases, which can improve model performance. The
limitation of the direct prediction strategy is that it uses different
models for each prediction horizon, which can considerably in-
crease the computational load. In contrast, the recursive prediction
strategy repeatedly uses the same model with previous prediction
values as inputs to estimate the next prediction. However, the
prediction error at each time step can be cumulative and can de-
teriorate the model performance as the time increases.

In this study, ANN- and SVM-based recursive prediction time
series models were developed for the long-term prediction of
GWLs in response to rainfall; a weighted error function approach
was utilised to improve the stability and accuracy of the time
series models. The developed models were applied to daily GWL
data from 5 groundwater stations in South Korea to evaluate the
effects of the weighted error function on the model performances.

The paper is organized as follows: Section 2 describes the de-
velopment of the time series model. Prediction strategies for the
long-term prediction of the GWL are discussed, the weighted error
function approach is proposed, and the structure of the developed
time series models is described. Section 3 describes study site and
time series data. Application results of the proposed method are
presented in Section 4, and conclusions are drawn in Section 5.
2. Time series model development

For the establishment of the time series models, ANN structure
trained by back-propagation algorithm (BPA) (Rumelhart, 1984)
and SVM by sequential minimal optimization (SMO) algorithm
(Platt, 1999) were employed. Theoretical backgrounds of ANN and
SVM are described in Appendix A and B, respectively. The model
building process of the ANN and the SVM consists of training and
calibration stages. In the training stage, weights and biases values
are updated through the learning algorithms for given model
parameter sets. The best model parameter sets for the ANN and
the SVM are selected in the calibration stage. The performances of
the selected ANN and SVM models are examined in the validation
stage. For this modelling procedure all the data are divided into
three parts corresponding to the training, calibration, and valida-
tion stages.

2.1. Prediction strategy

Three types of strategy can be taken into consideration for the
prediction of GWL fluctuations using time series models: predic-
tion strategy using only rainfall data as input components, direct
and recursive prediction strategies using rainfall and GWL data as
input components.

The prediction strategy using only rainfall data as input com-
ponents is expressed as

^ = ( ) = { } ( )+ − + − +g F p p px x, , , ..., , 1t h h
Pa

t a t a t1 2

where Fh
Pa is the time series estimator based on rainfall inputs for a

prediction horizon h, ĝ is a predicted GWL value, p is the rainfall
amount, and a is the lag time of rainfall inputs, which determines
the size of the input structure. This type of model does not con-
sider the autoregressive property embedded in the GWL time
series data. Thus, the model cannot properly estimate the
groundwater recession behaviour. Moreover, the number of input
components should be greater than the maximum number of days
without rain. Otherwise, the predicted values will be identical
after the number of continuously dry days exceeds h. This type of
prediction strategy, therefore, is not appropriate for the purpose of
the present study.

The direct prediction strategy can be expressed as
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where Fh
PaGb is the time series estimator based on rainfall and GWL

inputs for a prediction horizon h, g is a GWL value and a and b are
lag times for rainfall and GWL inputs, respectively. The direct
prediction strategy uses previously measured GWL data as inputs.
Therefore, the errors in the predicted values do not accumulate in
the next prediction, which can increase the model accuracy (Sor-
jamaa et al., 2007). However, in the direct prediction strategy,
different models are required for every prediction horizon, which
causes computational burden. Moreover, the model performances
tend to decrease with the prediction horizon, which inhibits long-
term predictions. The direct prediction strategy, therefore, is not
adequate for the long-term prediction of GWL.

The recursive prediction strategy, which uses a one-step ahead
direct prediction model, can be expressed as
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where F PaGb
1 is the time series estimator with a prediction horizon

of one time step. The recursive prediction strategy appears ade-
quate for the long-term prediction problem addressed in this
study because it repeatedly uses a given time series model.
However, the error from previous prediction horizons can be ac-
cumulated and transmitted to further horizons, which can cause
substantial deterioration in the model performance (Herrera et al.,
2007); namely, even if an excellent one-step ahead direct predic-
tion model is constructed, it is possible that the model is not
adequate for recursive prediction and will result in increasing er-
rors as the number of prediction horizons increases. Some pre-
liminary experiments with this method have shown that this
phenomenon is more frequent and substantial for the ANN mod-
elling approach. The ANN, based on the empirical risk minimiza-
tion (ERM), is more vulnerable to overfitting and susceptible to
considering noise and error in the data as a pattern in comparison
with the SVM based on the structural risk minimization (SRM)
(Cimen and Kisi, 2009; Deng et al., 2011; Malekmohamadi et al.,
2011). It is possible that this feature of the ANN intensifies the
deterioration of the recursive prediction model performance.

To cope with the problem in the recursive prediction strategy, it
is necessary and important to select an adequate one-step ahead
direct prediction model that is capable of understanding the
overall relationship between rainfall and GWL fluctuations.

2.2. A weighted error function approach

In this study, a simple method using a weighted error function
is suggested to improve the stability and accuracy of the recursive
prediction model. Few studies have utilised weighted error func-
tions for the recursive prediction using time series models based
on machine learning techniques such as ANN and SVM. Jung and
Kwon (2013) proposed ANN models trained by weighted error



Fig. 1. A schematic diagram of the model structure used in this study: (a) ANN and (b) SVM.
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functions of which weights are determined from the frequency of
wind speed and the power performance curve. Their method is
focused on the wind energy potential estimation. Thus it can be
hardly applied to the prediction of the GWL. To the best of our
knowledge, there has been no research on improving the stability
and accuracy of the recursive prediction model based on machine
learning algorithms for the long-term prediction of the GWL.

The conventional model parameter selection rule for the ANN
and the SVM is to locate a parameter set that minimizes the sum of
the squared errors (SSE) in the calibration stage:

( )∑= −
( )=

Eminimize Obs Est ,
4i

N

i i
DPCA

1

CA DPCA 2CA

where NCA is the number of data in the calibration stage, EDPCA is
the SSE between observed (ObsCA) and directly predicted (EstDPCA)
values in the calibration stage. In this study, for the construction of
the weighted error function, the recursive prediction as well as the
direct prediction is conducted at the calibration stage. And the
errors due to the direct and recursive predictions are combined
using a weighting factor to construct the weighted error function:
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where wCA is a weighting factor of the calibration stage and ERPCA

is the SSE between observed and recursively predicted ( EstRPCA)
values in the calibration stage. The proposed method using the
weighted error function (Eq. (5)) can reduce the possibility that a
poorly performing recursive prediction model is constructed,
though its corresponding direct prediction model is excellent. As
mentioned in Section 2.1, because the ANN based on the ERM can
be more susceptible to the deterioration of the model performance
for the recursive prediction, the error function of the ANN in the
training stage is modified as follows:
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where wTR is a weighting factor of the training stage, EDPTR and
ERPTR are the SSEs between observed (ObsTR), and directly (EstDPTR)
and recursively ( EstRPTR) predicted values, respectively, in the
training stage. The selection process of the weighting factors will
be described in Section 4.2.

2.3. Structure of the time series models

The time series model of this study consists of three parts: a
preprocessor (GENIN) for input data setting, model building



Fig. 2. Location of the selected NGMN stations.

Table 1
Selected NGMS stations and temporal extent of the data (year).

Station Total data Training Testing Validation

HC 2003–2008 2003–2004 2005–2006 2007–2008
MH 2003–2008 2003–2004 2005–2006 2007–2008
YH 2003–2008 2003–2004 2005–2006 2007–2008
PC 2005–2008 2005 2006 2007–2008
CS 2003–2008 2003–2004 2005–2006 2007–2008
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modules, and a post-processor (CALGL) for the estimation of the
GWL. GENIN generates input data set in accordance with the
structure of the input layers for model building modules and a
corresponding target data set from the time series data. The model
Fig. 3. Statistical analyses for input vector s
building modules include two independent model builders: ANN-
based model builder (ANNMB) and SVM-based model builder
(SVMMB). CALGL, using ANNMB and SVMMB with selected model
parameter sets, calculates three types of prediction results for the
validation of the model performances: one-step ahead direct
prediction, recursive prediction with and without weighted error
function. A flowchart of the overall modelling process is shown in
Fig. 1.

2.4. Model performance criteria

Four performance criteria were used to evaluate and compare
the results of the ANN and SVM models: the mean error (ME), the
mean absolute percentage error (MAPE), the root-mean-square
error (RMSE), and the correlation coefficient (CORR). The ME
election: (a) ACF, (b) PACF, and (c) CCF.



Table 2
Selected input structures and model parameters.

Station Input structure (Rain – GWL) ANN model parameters SVM model parameters

wTR–wCA HN LR MM wCA C ε r

HC 3–3 0.6–0.8 7 0.0015 0.1 0.4 7.5 0.0975 2.9
MH 2–5 0.0–0.3 8 0.005 0.2 0.4 7.0 0.08 2.0
YH 2–3 0.7–0.5 20 0.005 0.4 0.5 9.0 0.1 3.1
PC 3–5 0.0–0.4 18 0.002 0.1 0.8 13.0 0.095 3.0
CS 3–3 0.1–0.8 6 0.003 0.3 0.7 9.5 0.1 3.2

Table 3
The direct prediction results for the 5 NGMN stations.

Station Model ME (�10�3m) MAPE (%) RMSE (m) CORR

HC ANN �1.28 0.033 0.077 0.978
SVM 1.23 0.031 0.072 0.980

MH ANN 8.38 0.018 0.103 0.919
SVM �0.056 0.017 0.110 0.911

YH ANN �13.9 0.081 0.075 0.953
SVM �11.6 0.078 0.076 0.951

PC ANN �0.198 0.019 0.062 0.962
SVM �2.17 0.016 0.050 0.973

CS ANN �4.56 0.023 0.063 0.930
SVM �4.92 0.024 0.063 0.930

Fig. 4. Comparisons of the RP–TS ratio: (a) ANN without weighting factors, (b) ANN with weighting factors, (c) SVM without weighting factors, and (d) SVM with weighting
factors.
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Fig. 5. Comparisons of the RP–DP ratio: (a) ANN without weighting factors, (b) ANN with weighting factors, (c) SVM without weighting factors, and (d) SVM with weighting
factors.
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evaluates the bias in the total errors; the MAPE represents the
relative magnitude of the errors; the RMSE reflects the average
magnitude of the errors, assigning higher weights to large errors
using quadratic scoring; and the CORR represents the strength and
direction of a linear relationship between the target and output
values. The performance criteria are mathematically expressed as
follows:
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where NVA is the number of data points in the validation stage,
ObsVA is an observed value, EstVA is an estimated value from
ANNMB or SVMMB module, and ObsVA and EstVA are the mean
values of ObsVA and EstVA, respectively.
3. Study sites and data descriptions

In this study, the aforementioned time series models were
applied to forecast daily averaged GWL data from National
Groundwater Monitoring Network (NGMN) stations in South
Korea. Five NGMN stations were selected for the model validation.
For testing the applicability of the suggested methodology, the
primary condition for selecting stations was set to be a rapid and
accurate response in GWLs to rainfall events, ensuring that the
daily total rainfall data of weather stations near the NGMN sta-
tions can be assumed as the natural primary input variable.
Maximum correlation coefficients from cross-correlation analyses
between rainfall and GWLs ranged from 0.54 to 0.71. The temporal
extent, continuity, and quality of the data were also considered
when selecting stations. The selected NGMN stations were Hon-
gcheon (HC), Myeongho (MH), Yulhyeon (YH), Pacheon (PC), and
Cheongseong (CS) (Fig. 2).

The time series data from each station were divided into three
sets for the model training, testing, and validation stages. Table 1
describes the temporal extent of the data in the 3 stages for each
station. The data for each stage (X) were standardised using the
minimum (Xmin

TR ) and maximum (Xmax
TR ) values of the training data

as follows:

= −
− ( )

X
X X

X X
standardized

14
min
TR

max
TR

min
TR



Fig. 6. Comparisons of the RMSEs for the ANNs: (a) HC, (b) MH, (c) YH, (d) PC, and (e) CS. Here, DP and RP denote direct and recursive prediction, respectively; wANN
denotes the ANN model that uses weighting factors.
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Following the training stage, the calculated standardised GWLs
were retransformed using Eq. (14) to evaluate the model
performance.
4. Results and discussion

4.1. Input vector selection

Determining an appropriate set of model inputs is an important
step in applying learning algorithms to water resources. There
have been several studies related to the input structure design
using common trial-and-error methods, statistical approaches,
and other various optimisation techniques (Coulibaly et al., 2000;
Sudheer et al., 2002; Bowden et al., 2005; Nayak et al., 2006). The
present study employed a statistical method for determining
model input structures using autocorrelation functions (ACFs) and
partial autocorrelation functions (PACFs) of GWL data, and cross-
correlation functions (CCFs) between rainfall and GWL data. The
ACF, PACF, and CCF statistics of the rainfall and GWL data from the
5 NGMN stations are presented in Fig. 3. The gradual decaying
pattern of the ACF suggests the presence of a dominant auto-
regressive process (Fig. 3a); the partial autocorrelation values with
a lag time greater than 3 or 5 days were not significant (Fig. 3b).
The CCF shows that the highest correlation value occurred at a lag
time of 1 day, which implies a rapid response of rainfall and GWLs
(Fig. 3c). In this study, the lag time at which the cross-correlation
was greater than 0.4 was chosen as the number of rainfall input
components for all NGMN stations. The selected input structures
of the 5 NGMN stations are summarised at the second column of
Table 2. Input data sets for each NGMN stations were prepared
using GENIN module with the information of the selected input
structures.

4.2. Model selection

The model parameters in this study are the number of hidden
nodes (HN), the momentum (MM), and the learning rate ( α) for
the ANN (Appendix A). Moreover, the positive trade-off parameter
(C), the tolerance of the loss function (ε), and the kernel function
parameter (σ) are used for the SVM (Appendix B). The trial-and-
error method was employed for selecting the weighting factors
and model parameters, which were allowed to vary as follows:
wTR, wCA[0.0, 1.0], HN∈[2, 20], α ∈ [0.0005, 0.005], MM∈[0.0, 0.9],
C∈[6.0, 14.0], ε ∈ [0.07, 0.16], and σ ∈ [2.0, 4.0]. The parameter set
for each model was selected among 1000 combination sets of
parameters. The initial distribution of weights and biases is also an
important factor for the BPA-based ANN model building process
when considering the local minimum problem. In this study, 100
random sets were explored for each combination of model para-
meters to select the best initial distribution of weights and biases
for ANN models. Table 2 summarises the selected weighting fac-
tors and model parameter sets for the 5 NGMN stations.

4.3. Comparison of model performances

The one-step ahead direct prediction results and the recursive
prediction results were systematically compared with the station
observations. The model performance criteria using direct pre-
diction with the selected model parameters for the 5 NGMN sta-
tions are described in Table 3. The MEs ranged from
�1.39�10�2 m to 8.38�10�3 m, which implies that the



Fig. 7. Comparisons of the RMSEs for the SVMs: (a) HC, (b) MH, (c) YH, (d) PC, and (e) CS. Here, DP and RP denote direct and recursive prediction, respectively; wSVM
denotes the SVM model that uses weighting factors.

H. Yoon et al. / Computers & Geosciences 90 (2016) 144–155 151
modelling results were not substantially biased. The MAPEs and
RMSEs were all less than 0.081% and 0.11 m, respectively; the
CORRs were all greater than 0.90, which indicates that the models
were well designed for predicting GWLs at these study sites. Based
on the RMSEs, the performance of the ANN model was superior to
that of the SVM model for the MH and YH stations. On the con-
trary, SVM performed better than ANN for the HC and PC stations;
the models performed similarly for CS.

To evaluate the effects of the weighting factors on the model
performances, the RMSEs at calibration and validation stages were
calculated for each parameter set of both the non-weighted
(weighting factor values equal to 1.0) and weighted schemes. And
an RPVA-DPCA ratio and an RPVA-DPVA ratio were defined as
follows and calculated for every model parameter set:

−

=
( )

RPVA DPCA ratio
RMSE of recursive prediction in Validation stage

RMSE of direct prediction in Calibration stage
,

15

−

=
( )

RPVA DPVA ratio
RMSE of recursive prediction in Validation stage

RMSE of direct prediction in Validation stage
,

16

The model selection rule of this study is to minimize the error
of the calibration stage and the recursive prediction model utilizes
the selected one-step ahead direct prediction model, therefore, the
range of the RPVA-DPCA ratio values indicates the extent of the
possibility that inadequate models for the recursive prediction are
selected. Thus, as the RPVA-DPCA ratio value and its distribution
decrease, the probability that a recursive prediction model with
high model performance is selected increases. The RPVA-DPVA
ratio value indicates the extent of the consistency between the
direct prediction and recursive prediction. Thus, as the RPVA-
DPVA ratio value approaches one and its distribution decreases,
the probability that a recursive prediction model with high con-
sistency is selected increases. The results of the calculations show
that the RPVA-DPCA ratio and RPVA-DPVA ratio distributions for
the recursive prediction models without the weighting factor
varied substantially, especially for ANN models; however, the
ranges decreased when using weighting factors (Figs. 4 and 5),
indicating that the weighted error function approach can enhance
the stability of the recursive prediction models.

Figs. 6 and 7 describe the RMSE distributions for each station
and model; the statistics are provided in Table 4. The wANN and
wSVM denote the ANN and SVM model constructed using the
weighted error function, DP denotes direct prediction, and RP
denotes recursive prediction. For the one-step ahead direct pre-
diction, the median, mean, and standard deviation of the RMSEs
with the weighted error function were similar or slightly greater
than those without the weighted error function. However, for the
recursive prediction, the range and statistics of the RMSEs were
substantially smaller when using the weighted error function,
especially for the ANN model, indicating that the weighed error
function approach can improve the accuracy of recursive predic-
tion models.

Table 5 shows the model performance criteria for recursive
GWL predictions with the selected model parameters for the
5 NGMN stations. The poor model performance problem discussed
in Section 2.1 is not present; the models performed reasonably
well: the MEs ranged from �1.06�10�1 m to 5.36�10�2 m, the
MAPEs ranged from 0.037% to 0.273%, the RMSEs ranged from
0.072 m to 0.159 m, and the CORRs ranged from 0.866 to 0.939.



Table 4
RMSE statistics (m) for the model parameter sets. Stdev. denotes the standard
deviation.

Station Model Min Max Median Mean Stdev.

HC ANN-DP 0.065 0.274 0.093 0.101 0.028
wANN-DP 0.071 0.266 0.120 0.125 0.034
SVM-DP 0.069 0.178 0.083 0.085 0.009
wSVM-DP 0.071 0.183 0.085 0.089 0.015
ANN-RP 0.136 7.078 0.344 0.534 0.725
wANN-RP 0.127 2.851 0.299 0.303 0.119
SVM-RP 0.135 4.051 0.194 0.247 0.263
wSVM-RP 0.133 1.230 0.189 0.238 0.154

MH ANN-DP 0.103 0.222 0.121 0.125 0.015
wANN-DP 0.101 0.244 0.132 0.136 0.020
SVM-DP 0.103 0.377 0.118 0.124 0.030
wSVM-DP 0.108 0.377 0.120 0.127 0.036
ANN-RP 0.124 6.781 0.235 0.414 0.699
wANN-RP 0.115 0.307 0.171 0.174 0.030
SVM-RP 0.119 2.192 0.156 0.247 0.260
wSVM-RP 0.119 1.849 0.152 0.234 0.247

YH ANN-DP 0.074 0.107 0.079 0.079 0.004
wANN-DP 0.075 0.103 0.080 0.081 0.004
SVM-DP 0.075 0.259 0.087 0.088 0.014
wSVM-DP 0.074 0.258 0.088 0.090 0.016
ANN-RP 0.119 3.615 0.171 0.314 0.481
wANN-RP 0.136 2.305 0.164 0.187 0.164
SVM-RP 0.136 2.242 0.253 0.260 0.103
wSVM-RP 0.127 1.288 0.246 0.248 0.065

PC ANN-DP 0.051 0.124 0.071 0.074 0.012
wANN-DP 0.052 0.169 0.078 0.079 0.013
SVM-DP 0.048 0.199 0.057 0.058 0.009
wSVM-DP 0.047 0.199 0.058 0.058 0.009
ANN-RP 0.103 2.156 0.165 0.196 0.185
wANN-RP 0.104 0.210 0.149 0.150 0.016
SVM-RP 0.086 1.006 0.111 0.122 0.062
wSVM-RP 0.084 1.006 0.114 0.121 0.055

CS ANN-DP 0.062 0.109 0.065 0.068 0.006
wANN-DP 0.063 0.113 0.068 0.072 0.008
SVM-DP 0.062 0.074 0.065 0.065 0.001
wSVM-DP 0.062 0.075 0.065 0.065 0.001
ANN-RP 0.069 2.346 0.095 0.131 0.171
wANN-RP 0.069 0.191 0.095 0.104 0.027
SVM-RP 0.070 1.013 0.117 0.119 0.036
wSVM-RP 0.070 0.185 0.108 0.107 0.017

Table 5
The recursive prediction results for the 5 NGMN stations.

Station Model ME (�10�3m) MAPE (%) RMSE (m) CORR

HC ANN 14.9 0.086 0.140 0.928
SVM �1.35 0.078 0.132 0.939

MH ANN 53.6 0.042 0.133 0.885
SVM �7.40 0.037 0.124 0.883

YH ANN �106.0 0.273 0.159 0.872
SVM �90.8 0.251 0.149 0.873

PC ANN �0.498 0.061 0.131 0.866
SVM �2.31 0.043 0.095 0.911

CS ANN �0.027 0.038 0.072 0.916
SVM �0.043 0.047 0.083 0.907
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Among the recursive prediction results, the MEs, MAPEs and
RMSEs were largest at YH. The YH station is surrounded by many
paddy fields where groundwater extraction for rice planting is
high and is concentrated from May to June. Unnatural decreases in
GWL during this season (Fig. 8(c)) may cause overestimation in the
models and deterioration in the model performance. The GWL
prediction results from the selected models for the 5 NGMN sta-
tions are shown in Fig. 8. The results of one-step ahead direct
prediction and recursive prediction with the weighted error
function approach are similar, which indicates that the developed
recursive prediction models are suitable for the long-term pre-
diction of the GWL. The model performance tended to decrease at
peak values; however, the rainfall-GWL response patterns were
adequately simulated, including groundwater recession. Based on
the RMSEs, the performance of the ANN model was better than the
SVM model at CS, whereas SVM was better at HC, MH, YH, and PC.
In the present case study, contrary to the direct prediction, the
recursive prediction performance of the SVMs was superior to the
ANNs.

There have been several comparative studies of the ANN and
the SVM for the prediction of GWL fluctuations. Gill et al. (2007)
evaluated the effect of missing data on the prediction of the GWL,
Behzad et al. (2010) and Yoon et al. (2011) compared the model
performances under variable pumping and weather conditions
and in a coastal aquifer, respectively. They concluded that the SVM
model outperformed the ANN in accuracy and stability and the
reason of the outperformance comes from higher generalization
ability of the SVM based on the SRM principle, which corresponds
to the result of the present study. Most of the previous studies that
utilized the ANN or the SVM as time series models for the pre-
diction of the GWL employed the direct prediction strategy. Thus
the long-term prediction was limited. The main contribution of
this study lies in suggesting a simple and improved method for the
long-term prediction of the GWL. However, the current study has a
limitation in using the rainfall as a sole exogenous input, whereas
other previous researches considered various inputs such as
temperature, evapotranspiration, and pumping rates as well as the
rainfall.
5. Summary and conclusions

In the present study, a weighted error function approach was
utilised to improve the performance of ANN- and SVM-based re-
cursive prediction models for the long-term prediction of GWLs in
response to rainfall. The developed time series models were ap-
plied to the GWL data from 5 NGMN stations in South Korea. The
results demonstrated that the weighted error function approach
can improve the stability and accuracy of recursive prediction
models, particularly for ANNs. The weighted error function ap-
proach reduced the possibility that a poorly performing recursive
prediction model is selected because it considers direct and re-
cursive prediction errors simultaneously for the selection of the
best model parameter set at the model calibration stage.

There was no superiority between the ANN or SVM models for
the direct prediction of GWL fluctuations. However, the SVM
model outperformed the ANN for recursive predictions at 4 of the
5 stations according to the RMSEs. The SVM is based on the SRM
principle thus theoretically its generalization ability is higher than
the ANN based on the ERM principle. This inherent feature prob-
ably enables the SVM to capture the rainfall-GWL relationship
more effectively and to be superior to the ANN for recursive
predictions.

In the field of hydrology, there have been a number of re-
searches on predicting variables related to water resources using
time series models; however, the researches on improving the
performance of the long-term time series prediction are relatively
scarce. In the present research, we designed a simple method, the
weighting factor approach, to improve the performance of time
series models based on ANN and SVM, and successfully verify the
applicability to the long-term prediction of the GWL. The devel-
oped time series models with the weighted error function and the
overall application results could be useful for the evaluation of the
effects of rainfall pattern changes on groundwater resources and
for the effective management of groundwater resources. Further
study should include the consideration of meteorological and hy-
drological variables besides the rainfall as inputs and application
to various types of groundwater level data.



Fig. 8. Direct and recursive prediction results for the 5 stations: (a) HC, (b) MH, (c) YH, (d) PC, and (e) CS.
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Appendix A. Artificial neural network (ANN)

An ANN is a flexible mathematical framework with parallel-
distributed information processing that is patterned after the
learning process of neurons in the human brain. A multilayer
perceptron network (MLPN) (Rosenblatt (1962)), the most com-
mon ANN structure, was used for developing GWL time series
models in this study. The designed MLPN consists of a single input
and hidden and output layers; log-sigmoid and linear activation
functions are used for the hidden and output layers, respectively.
The mathematical expressions of the log-sigmoid activation
function and the feedforward process of the MLPN are, respec-
tively, described by
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where the subscripts i and j represent nodes in the previous and
present layers, respectively, x and y denote nodal values, f denotes
the activation function of the present layer, w and b denote
weights and bias values, respectively, and L is the number of nodes
in the previous layer.

The back-propagation algorithm (BPA) with momentum (Ru-
melhart and McClelland, 1986) was employed to train the ANN.
The weight and bias for the given dataset were updated using the
error function between the observed and estimated values. A
limitation of the BPA is that it searches for a local minimum in the
error surfaces. The momentum term helps the ANN to avoid being
captured in local minima by diminishing drastic weight changes
over the iterative training process (Rumelhart and McClelland,
1986). The error function and the weight-updating rule of the ANN
by the BPA can be expressed as follows:

( )∑= −
( )=

E Obs Est ,
A. 3

m

k

N

k
m

k
m

1

2

( )β β α− = − + ( − ) − ∂
∂ ( )

+ −
⎛
⎝⎜

⎞
⎠⎟w w w w

E
w

1 ,
A. 4

m m m m
m

m
1 1

where m denotes the mth feedforward process or iteration; N
denotes the number of data points in the training stage; Obs, Est,
and E are the observed, estimated, and error values, respectively;
and α and β denote the learning rate and momentum values,
respectively.
Appendix B. Support vector machine (SVM)

An SVM is based on structural risk minimisation (SRM) (Vap-
nik, 1995) rather than the empirical risk minimisation (ERM) of
ANNs, which enhances the generalisation of the SVM by simulta-
neously minimising both empirical error and model complexity.
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The SVM maps input vectors into high-dimensional feature space
through a nonlinear mapping function where the SVM constructs
an optimal hyperplane with maximum margins. Given a set of N
training samples { } ∈ ∈=y R y Rx x, , ,k k k

N m
1 , where x is an input

vector of m components and y is an output value, the mathema-
tical form of an SVM estimator (f) is as follows:

φ( ) = ⋅ ( ) + ( )f bx w x B. 1

where w denotes a weight vector, b is a bias value, and φ is the
nonlinear mapping function. Based on the SRM theorem (Vapnik,
1995), Eq. (B. 1) can be solved by the following convex optimisa-
tion problem:
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where C is a positive trade-off parameter that determines the
degree of error in the training stage and ξ and ξ* are slack vari-
ables that penalise training errors by Vapnik’s ε-insensitivity loss
function. In the optimisation equation, the term ‖ ‖w1

2
2 improves

the generalisation of the SVM by regulating the degree of model
complexity. Moreover, ξ ξ∑ ( + *)=C k

N
k k1 controls the degree of em-

pirical risk. Eq. (B. 2) is usually reformulated into a dual form using
Lagrangian multipliers (α, α*) by imposing an optimality condition
in which derivatives with respect to the primary variables (i.e.,

ξw b, , and ξ*) should vanish:
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where n is the number of support vectors and K is a kernel func-
tion defined by an inner product of the nonlinear transfer func-
tions. Here, a radial basis function with parameter s, which is most
commonly used, was employed for the kernel function:
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The architecture of a SVM is not designed a priori. The input
vectors that have nonzero Lagrangian multipliers under the Kar-
ush–Kuhn–Tucker condition support the structure of an SVM and
are called support vectors. Training an SVM involves selecting the
support vectors and optimising the weight and bias values. To
train the SVM, the sequential minimal optimisation (SMO) algo-
rithm (Platt, 1999) was employed in this study, which selects two
α values at a time and sequentially and analytically solves the
optimisation problem for the selected parameters (Platt, 1999;
Schölkopf and Smola, 2002).
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