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Geochemical maps provide invaluable evidence to guide decisions on issues of mineral exploration, agriculture,
and environmental health. However, the high cost of chemical analysis means that the ground sampling density
will always be limited. Traditionally, geochemical maps have been produced through the interpolation of mea-
sured element concentrations between sample sites using models based on the spatial autocorrelation of data
(e.g. semivariogrammodels for ordinary kriging). In their simplest form such models fail to consider potentially
useful auxiliary information about the region and the accuracy of themapsmay suffer as a result. In contrast, this
study uses quantile regression forests (an elaboration of random forest) to investigate the potential of high res-
olution auxiliary information alone to support the generation of accurate and interpretable geochemical maps.
This paper presents a summary of the performance of quantile regression forests in predicting element concen-
trations, loss on ignition and pH in the soils of southwest England using high resolution remote sensing and geo-
physical survey data.
Through stratified 10-fold cross validation we find the accuracy of quantile regression forests in predicting soil
geochemistry in southwest England to be a general improvement over that offered by ordinary kriging. Concen-
trations of immobile elements whose distributions aremost tightly controlled by bedrock lithology are predicted
with the greatest accuracy (e.g. Al with a cross-validated R2 of 0.79), while concentrations of more mobile ele-
ments prove harder to predict. In addition to providing a high level of prediction accuracy, models built on
high resolution auxiliary variables allow for informative, process based, interpretations to bemade. In conclusion,
this study has highlighted the ability tomap and understand the surface environment with greater accuracy and
detail than previously possible by combining information frommultiple datasets. As the quality and coverage of
remote sensing and geophysical surveys continue to improve,machine learningmethodswill provide ameans to
interpret the otherwise-uninterpretable.

© 2016 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The value of geochemical maps to mineral exploration (e.g. Hawkes
and Webb, 1962; Levinson, 1974; Beus and Grigorian, 1977; Xuejing
and Xueqiu, 1991; Xu and Cheng, 2001; Johnson et al., 2005), agricul-
ture (e.g. Webb et al., 1971; Jordan et al., 1975; Reid and Horvath,
1980; Lewis et al., 1986; White and Zasoski, 1999; Reimann et al.,
2003), and studies of environmental and human health (e.g. Thornton
and Plant, 1980; Bowie and Thornton, 1985; Alloway, 1990; Appleton
and Ridgway, 1993; Thornton, 1993; Fordyce, 2013) is well established.
Surficial geochemistry should be considered an essential component of
any comprehensive description of the natural environment (Darnley,
1990). In these times of increasing environmental concern, there is a
need for increasingly effective geochemical mapping techniques to sup-
port the making of good evidence-based decisions about our interac-
tions with the natural environment.
il. Published by Elsevier B.V. All rights
Geochemical maps are produced by the regional interpolation of el-
ement concentration data obtained from samples of surfacemedia such
as stream sediments, soil or water (e.g. Salminen et al., 1998). The sam-
pling density is often limited by the relatively high cost of sample collec-
tion and chemical analysis, resulting in large expanses between sample
sites in which there is much uncertainty about concentrations of ele-
ments. Traditionally, the interpolation of element concentrations has
been based on the spatial autocorrelation of the data, as in ordinary
kriging (Cressie, 1988) which uses semivariogram models. While
these spatial models are considered optimal for univariate interpolation
in regions where no other information is present, their ignorance of
auxiliary information makes them suboptimal for use in regions for
which auxiliary variables have been measured. For geochemical map-
ping auxiliary variables might include anything that provides insight
into surface-subsurface conditions, for example airborne gamma spec-
trometry and magnetic survey data.

Spatial autocorrelation basedmodels such as ordinary kriging can be
adapted to make use of auxiliary information, either by combination
with regression models, as in regression-kriging or kriging with exter-
nal drift approaches (e.g. Hengl et al., 2003), or by co-kriging (e.g.
reserved.
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Knotters et al., 1995). However, the importance of considering spatial
autocorrelation in predictive models decreases as the explanatory
power of the auxiliary variables increases: eventually the spatial auto-
correlation of the target variable is entirely captured within the auxil-
iary variables. Models which do not rely on spatial autocorrelation
information are desirable as they greatly improve the interpretability
of the resultant maps. The predicted element concentrations are no lon-
ger the product of a crude distance-weighted blend of geographically
neighbouring measurements, but instead can be explained by the con-
text of the prediction point within the more informative, process re-
lated, feature space of the auxiliary variables. The residuals of such
models are useful as they indicate the degree to which samples have
been subject to atypical processes.

Thanks in part to the Tellus SouthWest airborne geophysical survey
(Beamish et al., 2014), south west England is now one of themost thor-
oughly surveyed areas of Great Britain, and possesses a wealth of quan-
titative high resolution geoscientific data. It is therefore an ideal study
area in which to investigate the ability of the available high resolution
data to explain the variations of measured element concentrations in
soils. There are many possible regression techniques with which to
model soil element concentrations from auxiliary geoscientific data,
however, to account for the lack of independence and normality in
both predictor and target variables, nonparametric ‘machine learning’
techniques are advantageous. Interpretability is also a priority; in
order to have impact, the resultant models and maps must be explain-
able to policy makers. Random forest (Breiman, 2001) is a machine
learning technique which has been demonstrated to be highly accurate,
adaptable and interpretable. The technique uses an ensemble of deci-
sion trees, and is capable of both classification and regression. It is
gaining popularity for use in predictive mapping in various fields; for
example species distribution mapping (e.g. Lawrence et al., 2006;
Cutler et al., 2007; Evans et al., 2011), land-cover classification (e.g.
Gislason et al., 2006; Rodriguez-Galiano et al., 2012), geological map-
ping (Cracknell and Reading, 2014), digital soil mapping (e.g.
Henderson et al., 2005; Wiesmeier et al., 2011) and mineral
Fig. 1. Locations of 2012 field seasonG-BASE soil sampleswithin the study area in southwest En
Britain. The granites of the Cornubian Batholith are shown as they form prominent geological
prospectivity mapping (e.g. Carranza and Laborte, 2015; Harris et al.,
2015; Rodriguez-Galiano et al., 2015).

In this study quantile regression forests (Meinshausen, 2006) – an
uncertainty-conscious elaboration of random forest (Breiman, 2001) –
are utilised to model the concentrations of elements in the soils of
south west England using high resolution geophysical and remote
sensed data. The ability of quantile regression forests to use these auxil-
iary variables to produce high resolution, interpretable geochemical
maps with quantified prediction intervals is demonstrated. This ap-
proach has important implications for future geochemical survey plan-
ning procedure. Additionally, interrogation of the underlying models
facilitates improved understanding of the geochemical environment of
south west England and has implications for decisions about our inter-
action with the natural environment.
2. Materials

2.1. Study area

The study area, south west England, is located at the southwestern
tip of the British Isles (Fig. 1). A wealth of high resolution geoscientific
data has been collected across south west England owing to complex
and economically significant geology. In brief summary, the geology of
the region consists of a suite of metasedimentary facies originally de-
posited in a series of Devonian-Carboniferous east-west trending basins
(Shail and Leveridge, 2009). The granites of the Cornubian Batholith
were then emplaced following basin inversion during the late Carbonif-
erous to early Permian Variscan Orogeny (Charoy, 1986; Floyd et al.,
1993), and have provided a heat source for extensive hydrothermal ac-
tivity. The result of this hydrothermal activity is that the region is both
rich in polymetallic mineralisation (Dines, 1956; Willis-Richards and
Jackson, 1989) and complex in terms of mapping and understanding el-
ement distributions (e.g. Colbourn et al., 1975; Alderton et al., 1980;
Smedley, 1991; Kirkwood et al., 2016).
gland. The insetmap shows the study area (cross-hatched) in reference to the rest of Great
and geochemical landmarks within the region.



Table 1
Explanations of the geophysical and remote sensed variables used in the modelling.

Variable name Explanation

Elevation NEXTMap Britain Digital Terrain Model
Slope Terrain slope angle
Wetness_index Terrain wetness index
Topographic_position_index Terrain topographic position index
Plan_curvature Terrain plan curvature
Profile_curvature Terrain profile curvature
Landsat_B1 Landsat 8 band 1 – Coastal Aerosol (0.43–0.45 μm)
Landsat_B2 Landsat 8 band 2 – Blue (0.45–0.51 μm)
Landsat_B3 Landsat 8 band 3 – Green (0.53–0.59 μm)
Landsat_B4 Landsat 8 band 4 – Red (0.64–0.67 μm)
Landsat_B5 Landsat 8 band 5 – Near Infrared (0.85–0.88 μm)
Landsat_B6 Landsat 8 band 6 – Short Wave Infrared 1

(1.57–1.65 μm)
Landsat_B7 Landsat 8 band 7 – Short Wave Infrared 2

(2.11–2.29 μm)
Landsat_B8 Landsat 8 band 8 – Panchromatic (0.50–0.68 μm)
Landsat_B10 Landsat 8 band 10 – Thermal Infrared 1

(10.60–11.19 μm)
Landsat_B11 Landsat 8 band 11 – Thermal Infrared 2

(11.50–12.51 μm)
Regional_bouguer_anomaly Gravity survey bouguer anomaly
Residual_bouguer_anomaly Gravity survey high pass filtered bouguer anomaly
TMI_IGRF International Geomagnetic Reference Field

corrected TMI
TMI_IGRF_1VD 1st vertical derivative of TMI_IGRF
TMI_IGRF_AS Analytical signal of TMI_IGRF
TMI_IGRF_REDP Reduction to the pole of TMI
Radiometrics_uranium Uranium counts from gamma ray spectrometry
Radiometrics_thorium Thorium counts from gamma ray spectrometry
Radiometrics_potassium Potassium counts from gamma ray spectrometry
Radiometrics_total_count Total count of unmixed gamma ray signal
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2.2. Target variables - soil geochemical data

The soil geochemical data used in this study is derived from samples
collected across south west England during the summer field campaign
of 2012 by the British Geological Survey following standard Geochemi-
cal Baseline Survey of the Environment (G-BASE) methods (Johnson
et al., 2005). A total of 568 samples were collected within the study
area at an average sampling density of one sample per 12.2 km2

(Fig. 1). Samples were collected at random, but exclude coverage of
the Tamar Valley area which was sampled in 2004. The Tamar Valley
data is not used in this study due to inferior lower limits of detection
Fig. 2. Cross-validated R2 values for comparison of quantile regression forest (QRF)model qualit
achieved by ordinary kriging (OK) are overlain to provide some context to the overall quality o
as a result of advancements in analytical procedure between the years
of 2004 and 2012. The soil samples were collected from a depth of 5–
20 cm and sieved to b2 mm grain size before being dried, ground and
pelletised prior to analysis by XRF for 48 major and trace elements ac-
cording to standard G-BASE procedures (Johnson et al., 2005). The 5–
20 cm sampling depth is intended to target the A horizon of typical
soils, withmaterial from theOhorizon being excludedwith the topmost
5 cm. However, soil horizon representation within each sample varies
according to local soil profiles. The pH and loss on ignition (LOI) of
each sample was also measured. Data quality was assured by the inclu-
sion of duplicate samples, replicate samples, and certified referencema-
terials within the analytical runs.

Total concentrations of the following elements were determined
along with pH and LOI: Ag, Al, As, Ba, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu,
Fe, Ga, Ge, Hf, I, K, La, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Rb, Sb, Sc, Se,
Si, Sm, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. The major elements
(Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti, Zr) were assumed to exist as their
common oxides, and were each appended with the appropriate addi-
tional mass of oxygen so that the sum of all element concentrations
for each sample approached 100%, or in the units of the study, 1 million
milligrams per kilogram. For most samples though, the chemical analy-
ses do not sum to 100%. This ‘remainder’ (referred to as ‘R’) is included
in the study, to see if it too could be modelled and explained.

2.3. Auxiliary variables – high resolution geophysics and remote sensed
data

In order to provide the quantile regression forest models with as
much information as possible fromwhich tomake predictions, all avail-
able regional geophysics and remote sensed data sets were utilised. The
available data sets comprise airbornemagnetic and radiometric surveys
from the Tellus South West project (Beamish et al., 2014), aerial eleva-
tion survey fromNEXTMap (Intermap Technologies, 2007), land gravity
survey from the British Geological Survey et al. (1968), and Landsat 8
satellite imagery (Roy et al., 2014). All these auxiliary variables and
their derivatives (Table 1) were resampled from their original data
grids to a regular 100 m grid covering the study area using bilinear
interpolation.

The 61,000 line-km of airborne geophysical data collected for the
Tellus South West project, and the processing undertaken to produce
the original magnetics and radiometrics data grids, is described by
Beamish et al. (2014). The survey used a N-S line separation of 200 m
y between each element (and R, LOI and pH). The corresponding cross-validated R2 values
f predictions.



Table 2
Cross-validated measures of quantile regression forest model quality.

Target variable Cross-validated R2 RMSE (mg/kg) Range-normalised RMSE Moran's I of residuals Samples in 95% prediction interval (%)

Ag 0.00 0.24 0.27 0.000 96.3
Al2O3 0.79 21,552 0.10 −0.002 98.2
As 0.12 87.12 0.25 −0.006 97.7
Ba 0.76 52.57 0.13 0.001 96.1
Bi 0.01 4.46 0.11 −0.001 96.8
Br 0.62 26.58 0.10 0.001 96.7
CaO 0.01 14,932 0.08 −0.003 97.5
Cd 0.20 0.28 0.24 −0.005 98.4
Ce 0.73 8.85 0.12 0.000 96
Co 0.50 7.15 0.14 −0.006 96.5
Cr 0.41 86.93 0.15 0.001 97.2
Cs 0.17 15.87 0.23 −0.008 96.7
Cu 0.24 34.54 0.22 −0.007 97.7
Fe2O3 0.70 12,962 0.14 −0.001 96.7
Ga 0.67 3.57 0.12 −0.003 97.9
Ge 0.19 0.49 0.21 0.011 98.1
Hf 0.27 1.46 0.17 −0.008 97.7
I 0.13 7.93 0.18 −0.002 97.4
K2O 0.70 3771 0.11 −0.004 96
La 0.70 5.38 0.12 −0.004 96.5
LOI 0.72 71,562 0.08 −0.006 97
MgO 0.53 3610 0.13 −0.006 97.9
MnO 0.25 1233 0.19 0.000 96.3
Mo 0.14 0.92 0.19 −0.004 97
Na2O 0.39 2082 0.17 0.001 98.6
Nb 0.28 4.22 0.17 −0.004 97.9
Nd 0.56 6.60 0.17 −0.005 96.1
Ni 0.46 32.67 0.13 −0.001 97.5
P2O5 0.28 1091 0.21 0.011 98.2
Pb 0.14 41.74 0.24 0.003 98.1
pH 0.48 0.65 0.18 −0.011 97.4
R 0.76 79,204 0.09 −0.005 96
Rb 0.67 42.57 0.12 −0.002 96
Sb 0.10 4.86 0.13 0.003 96.3
Sc 0.69 2.85 0.15 −0.002 97.4
Se 0.34 0.49 0.16 0.001 96.8
SiO2 0.61 71,748 0.10 −0.005 97.5
Sm 0.12 1.82 0.23 −0.005 98.8
Sn 0.38 77.97 0.26 −0.007 97.2
Sr 0.05 73.40 0.09 −0.002 98.1
Ta 0.23 1.19 0.16 −0.001 97
Te 0.00 0.07 0.32 0.001 98.2
Th 0.65 1.69 0.09 0.002 96.7
TiO2 0.49 2153 0.14 −0.005 95.4
Tl 0.44 0.37 0.17 0.002 95.6
U 0.22 2.49 0.13 0.000 96
V 0.68 27.58 0.15 −0.005 97
W 0.05 19.25 0.23 0.001 96.7
Y 0.47 5.26 0.18 −0.001 97.2
Zn 0.32 63.29 0.24 −0.001 97.9
ZrO2 0.37 68.71 0.14 −0.010 98.1
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and a magnetic data sampling of 20 Hz providing a mean along-line
sampling of 3.6m. Radiometric datawere sampled at 1 Hz intervals pro-
viding a sampling of 71 m. Data grids were generated using bicubic
spline interpolation (magnetic) and minimum curvature (radiometric).
The land gravity survey data were gridded using minimum curvature.
3. Methods

3.1. Quantile regression forests

Quantile regression forests (Meinshausen, 2006) are an elaboration
of random forest (Breiman, 2001); an ensemble model based on the av-
eraged outputs of multiple decision trees (Breiman et al., 1984). Where
random forest takes themean of the outputs of the ensemble of decision
trees as the final prediction, quantile regression forests also take speci-
fied quantiles from the outputs of the ensemble of decision trees, pro-
viding a quantification of the uncertainty associated with each
prediction.
The decision trees themselves are constructed through recursive
partitioning starting with a root node which contains all the data pro-
vided to the tree. The root node is split by defining an optimal threshold
inwhichever auxiliary variableworks best to provide two resulting data
partitions eachwith the greatest purity (the least variation in the target
variable). This process is then repeated successively on child partitions
until the terminal nodes (‘leaves’) are reached, at which point each par-
tition contains just a single sample (or specified small number of sam-
ples) whose target variable value (or mean value) is explained by a
series of increasingly precise “if-then” conditional statements referring
to the context of the sample in the auxiliary variable feature space.

If all of the decision trees were grown from the same training data
there would be no point in using an ensemble – the trees would all
grow identically and the resultant model would be highly liable to
overfit the data. Breiman's (2001) random forest overcomes the prob-
lem of overfitting decision trees by using bootstrap aggregation, or bag-
ging (Breiman, 1996), to grow each tree from a separate subsample
(roughly two thirds) of the full training dataset, thus reducing the
chance of fitting to noise when the outputs of the multiple trees are



Fig. 3.Quantile regression forest predicted concentration vsmeasured concentration scatter plots for La and Sn. For each quantile regression forest prediction the 2.5th percentile is shown
in blue and the 97.5th percentile shown in red; these are percentiles of the distribution of the outputs of the individual decision trees in the forest. The range between the 2.5th and 97.5th
percentiles forms the 95% prediction interval; a measure of the uncertainty associated with each prediction.
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averaged. In addition to bagging, random forest also provides only a ran-
dom subset of the auxiliary variables on which to make each split in
each tree, which reduces the chance of the same very strong predictors
being chosen at every split, and therefore prevents trees from becoming
overly correlated. The resulting algorithm is recognised as a highly com-
petitive machine learning technique (e.g. Liu et al., 2013;
Rodriguez-Galiano et al., 2015).

Onedrawback of the random forestmethod is that, as a consequence
of each prediction being equivalent to a weighted average of the target
variable values in the training data set (Lin and Jeon, 2006), predictions
towards the limits of the training data values are increasingly biased to-
wards the mean. This results in a tendency for low value predictions to
exhibit positive bias, and high value predictions to exhibit negative bias
(Zhang and Lu, 2012). To correct for this all random forest models were
appendedwith a linear transformation defined by a robust linear model
(iterative reweighted least squares; Venables and Ripley, 2013) of ob-
servations against random forest predictions during their training
phase. This process effectively stretches the predictive range of the ran-
dom forest in order to correct for central tendency bias.

All modellingwas conducted in R (R Core Team, 2014)with a frame-
work developed around the randomForest package (Liaw and Wiener,
2002). The models each used 1001 decision trees - a sufficient number
to allow convergence of error to a stable minimum. The odd number
of trees prevents possible ties in variable importance. Each tree was
grown until the terminal nodes contained 8 samples in order to reduce
overfitting to outliers. The default number of variables to try at each
split – one third of the number of features – was used. The mean of
the outputs of the ensemble of decision trees was used as the predicted
value, and for each prediction the 2.5th and 97.5th percentiles of the en-
semble were used as the lower and upper limits of a 95% prediction
interval.

3.2. Model validation

The training dataset was constructed by joining the auxiliary vari-
able data at each soil sample site to the geochemical data for each soil
sample, using bilinear interpolation, in order to form a single table of
both geochemical and auxiliary variable values for each sample site. A
stratified 10-fold cross validation process was then used, in which the
training data was randomly split into 10 equal folds of approximately
equal mean (Kohavi, 1995). Then, for each element, a quantile regres-
sion forestmodelwas constructed using the data in 9 of the folds before
being tested by predicting the measured element concentrations in the
remaining fold. The folds were cycled through and the modelling pro-
cess repeated so that, in the course of the full 10-fold cross validation,
every sample was used as test data. This process allows the accuracy
of the model's predictions and prediction intervals (uncertainty esti-
mates) to be assessed for each element, which is visualised in this
study using scatter plots of the predicted against observed values. The
prediction interval accuracies are assessed for each model on the basis
of how closely the percentage of samples that are observed to fall within
the prediction intervalmatch the expected percentage (according to the
specified prediction interval). In the case of this studywe use a 95% pre-
diction interval and therefore expect that 95% of sampleswill fall within
it during cross-validation.

To allow the quality of each element's model to be compared, cross-
validated R2 values, root-mean-square error (RMSE) and range-
normalised RMSE values were derived according to the relationship be-
tween each model's predictions and the actual measurements. In addi-
tion, Moran's I (Moran, 1950) was also calculated on each element's
residuals to provide a measure of residual spatial autocorrelation. The
Moran's I scale runs from−1 (perfect dispersion) to 1 (perfect correla-
tion), with values close to zero indicating spatially random phenomena
and suggesting that model performance would not be increased by di-
rectly taking spatial autocorrelation into account.

In order to provide some context to the prediction accuracy of the
quantile regression forestmodels, ordinary kriging (using the R package
‘automap’; Hiemstra et al., 2009) was run in parallel to the quantile re-
gression forest modelling during the 10-fold cross validation, from
which cross-validated R2 values were derived.

3.3. Regional geochemical map production

The geochemical maps for each element were produced using a
quantile regression forest model constructed on the full 568 sample
training dataset. For each element, both concentration and uncertainty
mapswere produced. The value assigned to each grid cell in the concen-
tration map is a prediction based on the measured values of the



Fig. 4. Quantile regression forest predicted concentration maps for La and Sn in shallow soils.
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auxiliary variables. The value assigned to each grid cell in the uncer-
tainty map is the width of the 95% prediction interval associated with
each concentration prediction. No further measurements of soil geo-
chemistry are used to test the map, but the results of the 10-fold cross
validation form an acceptable approximation of the performance of
each element's model (and therefore the quality of each element's
map) (Kohavi, 1995; Vanwinckelen and Blockeel, 2012). For further as-
sessment of model quality, the residuals of the quantile regression for-
ests were mapped using inverse distance weighted interpolation.
This allows for any spatial patterns within the residuals to be
assessed (a more involved alternative to the Moran's I metric). Con-
centration maps were also produced by ordinary kriging to allow vi-
sual comparison with the quantile regression forest maps. However,
caution is advised against making critical comparisons between
methods based on the appearance of the maps alone – the image for-
mat encourages far more subjective (and potentially misleading) in-
terpretations than objective model quality measures such as cross-
validated R2. All maps were symbolised using a CubeHelix continu-
ous colour scale to prevent loss of information when viewing in
greyscale (Green, 2011).
3.4. Model interpretation

With the help of the R package forestFloor (Welling, 2015) partial
dependence scatter plots were produced to visualise the contribution
of a given variable to the predicted element concentration
(Palczewska et al., 2013). Additionally, each quantile regression forest
model provides a measure of the average ability of each auxiliary vari-
able to increase node purity in child partitions; thus providing a mea-
sure of the importance of each auxiliary variable to the predictions of
each element. The combination of these outputs provides insight into
the controls behind each element's distribution.
4. Results and discussion

4.1. Model performance

Comparison of cross-validated R2 values between quantile regres-
sion forests and ordinary kriging reveals that quantile regression forests
provide overall improved prediction accuracy for 37 of the 51 target



Fig. 5. Quantile regression forest prediction interval maps for La and Sn in shallow soils.
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variables modelled (Fig. 2). Aside from Ni and Cr, which are unique in
the strength of their association with the Lizard Ophiolite Complex
(the region's southernmost peninsula; Kirby, 1979; Kirkwood et al.,
2016), the majority of the 14 elements for which ordinary kriging pro-
vided better predictions were minor or trace elements, and poorly pre-
dicted by either method. This is an encouraging result for the validity of
geochemical maps produced by quantile regression forests using this
data in south west England.

Cross-validated R2 values for the quantile regression forest models
vary greatly across the range of elements from 0.79 (Al) to 0 (Te).
There appears to be a general inverse relationship between prediction
accuracy and element mobility: elements which are known to be rela-
tively immobile (and thus reflect the underlying lithology), such as Al,
La and Ce are predicted with little error, while hydrothermally mobile
elements such as W, Bi, Te, Ag and As are predicted with higher error.
This discrepancy suggests a relative lack of explanation of hydrothermal
processes within the suite of auxiliary variables. However, theMoran's I
values for the residuals of all quantile regression forestmodels (Table 2)
only deviate from zero by 0.011 in the worst case (Ge). This suggests
that the auxiliary variables used have successfully captured the spatial
dependence of all target variables at the scale of the predictor grid.
Any residual variation in element concentrations which has not been
captured by the models can therefore be attributed to processes which
essentially appear to be spatially random at the scale of the geochemical
survey, but which additional high resolution auxiliary variables may be
capable of explaining. This is supported by inspection of variograms of
the residuals of each element (not shown), which appeared to exhibit
pure nugget effect.

The limited ability of the auxiliary variables used here to explain the
distributions of the more mobile elements could perhaps be improved
by the inclusion of additional variableswhich providemore information
on spatial context. For example, a measure such as ‘distance to nearest
fault’ could provide valuable context in relation to fluid flow pathways.
However, a strength of themodelling approach in its current state is the
consistency, transparency, and fully quantitative nature of the auxiliary
variable datasets; each collected by sensing equipment, thus avoiding
the potential inconsistencies of observations made by multiple geolo-
gists in the field. Currently any ‘distance to nearest fault’ or similar var-
iables would need to be derived from traditional geological maps and
consistency would suffer. However, with sufficient spatial resolution



Fig. 6. Ordinary kriging predicted concentration maps for La and Sn in shallow soils, for comparison.
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there is no reason why structural features such as faults would not be
recognisable within the data. Tomake the best use of such structural in-
formation it would become beneficial to use an approachwhich is capa-
ble of learning higher order context (learning textures and spatial
patterns, rather than just point properties), perhaps based on artificial
neural networks. Such models could potentially learn processes of soil
erosion and accumulation (and hydrothermal mobilisation) from spa-
tial context without explicitly being provided with contextual deriva-
tives as input variables. However, such deep learning would increase
the effective degrees of freedomwithin each model, and would require
more training data (perhaps more than would ever be financially via-
ble) in order to produce reliable results. The combination of quantile re-
gression forests and the auxiliary variables used in this study therefore
represent a promising first step forward given the currently available
data and the requirement for transparent and interpretable models.

Plots of predicted concentrations against measured concentrations
from the 10-fold cross validation of the quantile regression forests
allow for more detailed visualisation of model quality. The examples
of La and Sn (Fig. 3), chosen as they provide insight into the models of
both immobile (La) andmobile (Sn) elements, showhow theprediction
interval (2.5th to 97.5th forest quantiles) is unique for each prediction.
The cross validation has shown these prediction intervals to be a re-
markably accurate (if slightly conservative) probabilistic estimate for
all elements (see Table. 2). This is very useful; even for elements with
relatively low prediction accuracies the prediction intervals still provide
reasonable upper and lower limits on predictions, which could be used
to drive further geochemical sampling of areas that are of interest as a
result of their probable geochemical properties.

A comparison of the fit of the predicted values between La and Sn re-
veals how the fit is deteriorated for themoremobile, highly-skewed, el-
ements; prediction accuracy (and certainty) decreases in the long tail of
the data. This is not explicitly due to the data having a skewed distribu-
tion, as random forest techniques are scale and transformation invari-
ant. Rather, it is the inevitable result of having fewer data points on
which to base the learning of the most ‘extreme’ situations within the
context of the auxiliary variables. In this case, these situations are likely
to represent relatively rare spikes of localised mineralisation. A geo-
chemical sampling strategy designed around the auxiliary variable
feature-space rather than the geographic space would take more sam-
ples from the locations of these ‘extreme’ situations and should improve



Fig. 7. Quantile regression forest residuals for La and Sn in shallow soils, interpolated using inverse distance weighting.
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the learning of the distributions of mobile elements (or any highly
skewed target variable).

4.2. Geochemical maps

The geochemicalmaps produced using the quantile regression forest
method have a spatial resolution governed by that of the auxiliary var-
iables. Accordingly, with a resolution of 100 m, these maps are capable
of resolving the spatial distribution of the elements inmuchmore detail
than traditional inverse distance weighted or ordinary kriged interpo-
lated geochemical maps, which are limited by the spatial density of
the geochemical sampling. The increased detail is evident when com-
paring concentration maps produced by quantile regression forests
(Fig. 4) and ordinary kriging (Fig. 6). In addition, all quantile regression
forest concentration maps are accompanied by uncertainty maps
(Fig. 5) in the form of mapped prediction intervals – 95% in the case of
this study, but it is possible to map any chosen quantile or interval for
each of the quantile regression forest predictions. The quantile regres-
sion forest model residual maps (Fig. 7) display the lack of spatial auto-
correlation within the residuals in agreement with theMoran's I results
(Table 2). Inverse distance weighted interpolation, rather than kriging,
was used to visualise the residuals as their variograms exhibited pure
nugget, and kriging would therefore have produced maps of flat zero
values. This reinforces the assertion that the quantile regression forest
models are accounting for the spatial autocorrelation of the element
concentrations at the scale of the auxiliary variable grid. The quantile re-
gression forestmaps for both example elements – La and Sn (Fig. 4) pro-
vide insight into the geochemistry of the region at a level of detail never
before seen.

A traditional geochemical map interpretation would involve
qualitative comparison of trends seen in the map with trends seen
in other datasets. For example, geochemical maps might be com-
pared with geological maps to try to understand the relationships
between bedrock geology and surface geochemistry. The details of
south west England's geology are beyond the scope of this paper,
but it is well summarised by Shail and Leveridge (2009). A traditional
interpretation of the quantile regression forest La map (Fig. 4) might
conclude that the concentration of La in soil is strongly constrained
by the underlying lithology, a relationship which the high resolution
quantile regression forest map reveals in detail. Similarly, a



Fig. 8. Variable importance plot and top eight most important partial dependence plots for La, with points coloured according to elevation (the most important predictor).
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traditional interpretation of the quantile regression forest Sn map
(Fig. 6) might conclude that the concentration of Sn in soil is strongly
controlled by hydrothermal mineralisation and as a result has be-
come concentrated in close proximity to the granite intrusions,
though the relationship is not consistent for all intrusions. However,
interpretation of the quantile regression forest models themselves,
rather than just the geochemical maps, allows the quality of inter-
pretations of the controls on element distributions to be improved
over traditional methods.
Fig. 9.Variable importance plot and top eightmost important partial dependence plots for Sn,w
4.3. Controls on element distributions

Considering the relative importance of each auxiliary variable to the
prediction of each element is a simple means by which to gain insight
into the controls on the distributions of each element. In addition to
this, partial dependence plots provide insight into the nature of the re-
lationship between each predictor and the target variable. The end
user can use this information to devise better informed interpretations
and hypotheses of the controls on an element's distribution.
ith points coloured according to regional bouguer anomaly (themost important predictor).



Fig. 10. Sum of predicted element concentrations + R.
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For example, the quantile regression forest model for La concentra-
tion finds elevation to be the most important predictor, followed by re-
gional bouguer anomaly, residual bouguer anomaly and radiometric
thorium concentration (Fig. 8). The negative correlation between La
and elevation at elevations above 200 m indicates a close associated
with the granites – which are found outcropping as elevated plateaus
at ≤200 m. Furthermore, the association between La and the presence
of granites is also evident in the regional bouguer anomaly –whose sig-
nal is dominated by the granites – as a sharp transition at around
−11 mGal, which represents the granite-country rock contact. As can
Fig. 11. Relationship between LOI and R in training data. The equation describes a
quadratic curve (red line) which fits the data with an R2 of 0.98.
be expected, the same granite contact is less imposing in the residual
bouguer anomaly, which captures fine scale (shallow depth) gravita-
tional variations that are more influenced by other less deep-rooted li-
thologies in the region. More subtle lithological information in the La
map appear to be revealed by the radiometrics data, in particular the re-
lationship between La and Th. The multimodal appearance of this and
other partial relationships is an effect of interaction between predictor
variables. For example the La–Th relationship appears to fork into two
probable trends upwards of 10 ppm of Th. Colouring the points accord-
ing to elevation reveals that it is an interaction of Thwith elevation (and
the inversely correlated regional bouguer anomaly)which separates the
upper trend from the lower trend. The lower trend, formed of samples
of high elevation and low bouguer anomaly, represents the distinct re-
lationship between La and Th over granites compared to the steeper
and more linear relationship between La and Th on the surrounding
rocks of lower elevation.

In contrast, the quantile regression forestmodel for Sn concentration
finds regional bouguer anomaly, total magnetic intensity (TMI), radio-
metrics uranium and elevation to be the most important predictors
(Fig. 9). The negative correlation between Sn and regional bouguer
anomaly can be taken as proxy for the relationship between Sn and
granite; generally, Sn values are elevated on and around granite bodies.
The gradual transition to the Sn plateau upwards of 10mGal gives some
indication of the mobility of Sn, whose concentrations at the regional
scale form gradational rather than sharp boundaries. The relationship
between Sn and TMI is complex, but there is a strong negative relation-
ship between Sn concentration and TMI values between−50 and 0 nT,
particularly over granite (low regional bouguer anomaly), although
it does not extend beyond this range. Similarly, there is a strong
positive relationship between Sn and radiometric U between 1.9
and 2.1 ppm U which presumably represents the transition onto
granite. The broadly negative relationship between Sn and eleva-
tion is heavily influenced by interactions. With the help of a re-
gional bouguer anomaly based colour scheme it is apparent that
this relationship is relatively weak over the granites, but indicates
increased Sn concentrations at lower granite elevations. This may
represent the fact that, on average, the interiors of the granites
have lower Sn concentrations than the perimeters due to differen-
tiation between granite phases, and the influence of hydrothermal
processes. The off-granite relationship is stronger, and shows an al-
most exponential increase in Sn concentrations descending to-
wards sea level from an elevation of about 100 m, above which
the influence of elevation on Sn is fairly negligible. This may relate
to Sn enrichment of floodplains as a result of sediment transport
from mineralised areas.
4.4. A note on compositions, LOI and the unmeasured ‘remainder’, R

Despite not implementing compositional data analysis methods
(Aitchison, 1986; Egozcue et al., 2003; Pawlowsky-Glahn and
Buccianti, 2011) to intrinsically ensure that modelled element concen-
trations sum to 100% at every prediction point (at the cost of compu-
tational expense and additional complexity to interpretations), we
find that the sum of predicted concentrations of measured elements,
and the unmeasured ‘remainder’ (R), fall very close to 100% in the
vast majority of situations (Fig. 10). The 95% interval of summed pre-
dictions (predicted element concentrations plus predicted remainder
concentration) spans from 96.0% to 105.4%. In addition, we find that
R has a very close relationship with loss on ignition (LOI): their qua-
dratic relationship could be explained by a discrepancy in calibration
between the two measurement methods, but it appears that they are
essentially two separate measures of the same thing (Fig. 11). The
models of LOI and R achieved some of the highest prediction accura-
cies in the study according to the cross-validated R2 and normalised
RMSE metrics (Table 2).
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5. Conclusions

The implementation of quantile regression forests to map regional
soil geochemistry at high resolution (100 m) using only information
from auxiliary variables has produced very encouraging results. The
major, immobile, elements aremodelledwith sufficient accuracy topro-
mote the development of fully quantitative geological mapping using
remotely sensed data such as those used in this study. Immobile ele-
ments are modelled with a lesser degree of accuracy due to a combina-
tion of the relative under-sampling of their ‘extreme’ events (which
could be improved with a change in sampling design to target anoma-
lous locations in the context of the available auxiliary variables) and
perhaps a lack of relevant information in existing auxiliary variables.
Further developments to sampling design strategies, sensing technolo-
gies, and auxiliary variable derivatives (or the use of more advanced
learners) should be capable of improving the modelling of mobile ele-
ments in the future.

For now, these models are capable of making an interpretable and
uncertainty-aware prediction of the geochemical properties of the soil
at any point on the basis of magnetic, gravity, radiometric, spectral
and topographic information. The prediction process is similar to the
decision making process which might be made by a human, but with
the objectivity and accuracy of an optimally self-training algorithm.
Allowing the model to consider the spatial dependence of the target
variables might gain improvements in some situations, but theMoran's
I results of the residuals suggest that the processes controlling the resid-
uals appear to be operating randomly at the scale of the geochemical
survey, and so it is the case that we currently do not have sufficient in-
formation to explain them.

The maps produced by the quantile regression forests are more use-
ful than their spatially interpolated equivalents, providing increased de-
tail, accuracy, interpretability and uncertainty awareness. Accordingly,
the use of machine learning methods in conjunction with geophysical,
radiometric, spectral and topographic information seems very capable
of bringing significant improvements to geological mapping, agricul-
ture, environmental survey and mineral exploration practices, and all
the policies that surround them.
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