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The Bafq mining district hosts some Kiruna-type iron oxide-apatite (IOA) deposits which are commonly formed
as a result of themultistage interaction of hydrothermal-magmatic processeswithin the Early Cambrian volcano-
sedimentary sequence. Rare earth elements (REEs) are potentially concentrated under different physicochemical
conditions in IOA deposits. Choghart orebody is one of themainmagnetite-apatite deposits in the region. A wide
range of primary and secondary geological events have affected the Choghart deposit, causing the behavior of
REEs to vary in different zones. This study proposes a suitable exploration technique using various classification
methods to identify the different concentrations of REE and their hidden patterns. To provide the required data, a
systematic lithogeochemical samplingwas performed in the north andNE of the Choghart orebody. The REE con-
tents of samples were transformed into discrete values as distinct classes based on the results of clustering anal-
ysis. All possible combinations of features, being the geographical location and the major oxide composition of
samples, were selected as subsets of predictors in every classification method. For each REE, 455 prediction models
were constructed using these predictors. The performances of the classification methods were evaluated by error
criteria with regard to all cases. Having the least amount of errors, the decision tree method was selected as the
most suitable method. Based on decision tree results, the best subsets of predictors were chosen for each element.
The existence of a significant relationship between the distribution patterns of each REE and the related predictors
was assessedby its prediction errors. The assessment illustrated that someREEare reasonably predictable, andothers
are too irregular to bemodeled. The extracted classification rules describe the geochemical relationships among the
most important factors influencing the different concentrations of REE in the Choghart orebody. These results can be
extended to other similar deposits to predetermine some REE-enriched zones based on major elements analysis.
Merely by employing such techniques in REE exploration projects, a great savings in time and cost will be affected.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Rare earth elements (REEs) are a famous group of chemically similar
elements commonly associated to each other in the Earth's crust. These
elements have been usually split into the Light-Rare-Earth elements
(LREE contain La, Ce, Pr, Nd, Pm, Sm, and Eu) and Heavy-Rare-Earth
elements (HREE contain Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc)
(Emsbo et al., 2015; Jha, 2014; Long et al., 2012; Simandl, 2014). The ex-
ceptional properties of REEsmake them essential for hi-techmanufactur-
ing in today's society (Massari and Ruberti, 2013; Stegen, 2015).

Although there are several valuable deposits in a few countries in the
world, the major production of REE minerals, concentrates, and metals
are monopolized by China (Jaireth et al., 2014; Jha, 2014).
.com (S. Zaremotlagh),
The REE behavior is principally defined based on their mineral/melt
partition coefficients, temperature, pressure, oxygen fugacity, ionic ra-
dius and charge of the element. Despite the similarity in behavior, the
REE can be partially fractionated from each other by several petrological
and mineralogical processes (Henderson, 1984, 1996; Jaireth et al.,
2014; Rollinson, 1993). Mobilization and redistribution of REE may
occur during the weathering and alteration processes and adjusts the
REE distribution patterns in these systems. (Baioumy et al., 2014; Cole
et al., 2014; Ehya, 2012; Foley and Ayuso, 2013; Küpeli, 2010; Schacht
et al., 2010; Shikazono et al., 2008). So different geological processes
and thermodynamic conditions specify the distribution of REEs in vari-
ous environments, eachwith its unique pattern. Therefore, the REEs are
known as important geochemical tracers for a wide range of geological
processes and their abundances, ratios, isotope compositions, and nor-
malized patterns are the important criteria for geochemical exploration
studies (Berger et al., 2014; Cole et al., 2014; Tsay et al., 2014).

The REEs are mainly concentrated in specific types of rocks and
deposits. In addition, they are potentially known as an important by-
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product of Iron oxide-apatite (IOA) deposits (Simandl, 2014). The
massive IOA deposits occurwith various shapes, sizes, andmineral grades
all over theworld (e.g. Kiruna of Sweden and Bafqmining district of Iran).
Althoughmany researchers, e.g., (Borrok et al., 1998; Daliran, 1990, 2002;
Daliran et al., 2010; Foerster and Jafarzadeh, 1994; Groves et al., 2010;
Hildebrand, 1986; Nystroem and Henriquez, 1994; Rajabi et al., 2015;
Stosch et al., 2011), have studied in these districts and proposed sundry
descriptive or genetic models for them, there are many unsolved prob-
lems about the origin and metallogenesis of IOA deposits yet.

REE distribution patterns are commonly varied and complicated in
the IOA deposits. Therefore, the main objective of this paper is to pres-
ent an innovative technique for studying different concentrations of
REE in the Choghart orebody, an important IOA deposit in Central Iran,
in order to identify their patterns and separate zones. For this purpose,
several parametric and nonparametric classification methods including
discriminant analysis, Naïve Bayes, and decision treewere applied to re-
liably model the influence of various rock compositions on the spatial
distribution patterns of REE. The performances of these methods were
evaluated by illustrating the best prediction models. In addition, some
classification rules are introduced as the geochemical factors effectively
influencing different concentrations of REE. These rules can be used to
map various zones. The results of this study can be extended to other
similar deposits to predetermine enriched zones of some REEs which
are critical for detailed geochemical exploration.

2. Bafq mining district

The The Bafq mining district, also known as the Zarigan-Chahmir
basin, is located in Central Iranian microcontinent. This district hosts
many mineral deposits, chiefly the Kiruna-type iron oxide-apatite (IOA)
and thus is one of the main metallogenic provinces in Iran. The most
important IOA deposits (e.g., Choghart, Chahgaz, Esfordi, Sechahun,
Mishdovan and North Anumaly) are located in the western and NW por-
tions of the Zarigan-Chahmir basin as shown in Fig. 1. (Bonyadi et al.,
2011; Daliran et al., 2009; Ghanbari et al., 2014; Sabet-Mobarhan-Talab
et al., 2015; Stosch et al., 2011).

2.1. Regional geological and tectonic setting

The intruding of granitic plutons into the Precambrian sequence and
formation of felsic to intermediate volcanic and volcano-sedimentary
rocks happened at the period of the Early Cambrian. This sequence is
composed of an unmetamorphosed series which includes interlayered
micro-conglomerates, sandstones, black siltstones and shales, dolomites
and dolomitic limestones, mafic to felsic volcanic rocks, volcanoclastic
beds and tuffaceous shales (Foerster and Jafarzadeh, 1994; Ramezani
and Tucker, 2003; Samani, 1988).

Central Iranianmicrocontinent includes threemain structural zones
which are Lut, Tabas, and Yazd blocks as depicted in Fig. 1. The Bafq
mining district locates in the central of Posht-e-Badam Block. This
block separates the Tabas and Yazd blocks with regional-scale faults
(Alavi, 1991). The subduction of Proto-Tethys oceanic crust under
Central Iranian microcontinent and the consequences of continental
arc and back-arc control the evolution of the Bafqmining district. Sever-
al tectonicmodels have been considered in relation to this region (Alavi,
1991; Bagheri and Stampfli, 2008; Rajabi et al., 2012, 2015; Ramezani
and Tucker, 2003; Samani, 1988).

2.2. Mineralization, alteration, and geochemistry

It have been claimed thatmineralization and felsicmagmatismwere
simultaneous. The closely temporal and spatial relations among the iron
oxide-apatite (IOA) deposits in addition to the Early Cambrian felsic
volcanic rocks confirm these opinion (Daliran, 1990; Daliran et al.,
2009, 2010). Some synsedimentary attributes also illustrate that the
mineralization might be partially simultaneous with the sedimentation
in the basin (Aftabi et al., 2009; Daliran, 2002; Daliran et al., 2009;
Stosch et al., 2011).

According to some researchers (Jami et al., 2007; Moore and
Modabberi, 2003), the most of the Iron oxide-apatite and apatite-rich
deposits are epigenetic. Interaction of multistage hydrothermal-
magmatic processes within the Early Cambrian volcano-sedimentary
sequence caused various mineralization styles. So most likely, hydro-
thermal fluids are a significant factor in the evolution of some of these
deposits (Daliran, 2002; Jami et al., 2007, 2009; Torab and Lehmann,
2007). These fluids may be connected to the arc calk-alkaline
magmatism (Daliran et al., 2009; Jami et al., 2007; Stosch et al., 2011).
These deposits are sometimes found within alkali alteration zones
with secondary Na- and K-feldspars at the regional scale. It would
point toward a genetic relation between mineralization processes and
alkali metasomatism (Stosch et al., 2011).

The Choghart and some REE-bearing IOA deposits occur within
unmetamorphosed welded rhyolitic to rhyodacitic tuffs and volcano-
sedimentary rocks (Daliran, 2002; Stosch et al., 2011). The intrusive
rocks being predominantly syenite and secondarily pyroxenite, gabbro
and granite are enclosed by alkali rhyolites. The orebody and its country
rocks are cut by several diabasic dikes. The entire complex is surrounded
by the plain comprised of Quaternary formations and recent alluvium.
The shape of main orebody at Choghart deposit is approximately vertical,
discordant and pipe-shaped body plunging 73°NNW (Moore and
Modabberi, 2003).

The main primary ore mineral located at the bottom of the
Choghart orebody is massive magnetite. Hematite is the second
abundant mineral mostly created from a secondary source. Hydrous
iron oxide and goethite vanish with distance from surface quickly so
depth of the oxidation zone is about 150 m. The minor minerals such
as apatite, pyrite, tremolite, actinolite, calcite, talc, quartz, monazite,
davidite and allanite have been identified throughout the orebody
(Moore and Modabberi, 2003).

Themagnetite-apatite is themost important ore type in this orebody
(Foerster and Jafarzadeh, 1994). The primary magnetite crystals vary in
size from fine-grained to coarse-grained which have occasionally thin
exsolved ilmenite. Despite the crystals usually display particular inner
intergrowths for crystallization of melt, some of which reveal indication
of recrystallization. Apatite is the most plentiful gangue that occurs in
the form of two distinct generations. The older of which is simultaneous
with that the creation of iron oxide and shows euhedral crystals closely
intergrown with magnetite whereas the newer ones appears as
subhedral to anhedral crystals in lenses, dikes, and veinlets cutting the
magnetite-apatite ore (Moore and Modabberi, 2003).

The Early Cambrian igneous rocks of the Bafqmining district have a bi-
modal nature. The chondrite-normalized REE patterns display significant
variation from LREE toHREEwith no considerable Eu anomalies for basal-
tic rocks and also show obvious enrichment in the LREE with important
negative Eu anomalies for the rhyolitic domes (Rajabi et al., 2015).

The REE enrichment is intensely associated with the formation of
phosphateminerals inmany IOA deposits. However bastnaesite, parasite,
and allanite are so significant in some locations (Oreskes and Einaudi,
1990). Edfelt (2007) explained there are few complications in the
phosphate-REE relationship in some Kiruna district. Hence the relation-
ship between REE and phosphate minerals in such deposits should be
more understood. In these deposits, appetites characteristically comprise
2000–6000 ppmREE (Frietsch, 1982; Frietsch and Perdahl, 1995). Daliran
(2002) claimed Bafq district apatites contain up to 1.75 wt.% REE.

Some researches present that post-depositional REE leaching
could be happened in apatite in which the inclusions of monazite
and xenotime may be seen (Bonyadi et al., 2011; Stosch et al.,
2011; Torab and Lehmann, 2007). The U–Pb dating of monazite
inclusions in apatite demonstrates that the REE redistribution in
apatite might be happen frequently throughout hydrothermal pro-
cess several million years after the formation of the IOA deposits
(Stosch et al., 2011).



Fig. 1.Geologicalmap of the Zarigan-Chahmir basin, showing the location of basin's deposits. CF: Chapedony Fault, KbF: Kuhbanan Fault, KF: Kalmard Fault, NF: Naeini Fault, PF: Posht-e-Badam
Fault (Rajabi et al., 2015). a) Structural map of Iran (modified after Aghanabati, 1998) and location of the Zarigan-Chahmir basin in the Posht-e-BadamBlock (Rajabi et al., 2015).
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3. Methodology and materials

Geoscientists are faced with a huge amount of data repeatedly col-
lected in various projects. Examining such data is significant to discover
its hidden knowledge. Datamining techniques such as classification and
clustering are applied to obtain a clearer comprehension of the data and
solve some geological problems. A large number of classification and
clustering techniques have been proposed to solve several geological
problems. Classification is the process of finding a model describing
and distinguishing data classes. Clustering analyzes data objects
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without using class labels and clusters them based on the principle
of maximizing the intra-group similarity and minimizing the inter-
group similarity. A large number of classification and clustering
techniques have been proposed to solve several geological problems,
e.g., (Abbaszadeh et al., 2013; Astel et al., 2014; Eggenkamp and
Marques, 2013; Li et al., 2012; Li and Anderson-Sprecher, 2006; Lourenço
et al., 2010; Nazarpour et al., 2015; Peh and Halamić, 2010; Sadeghi et al.,
2013, 2015; Tahmasebi and Hezarkhani, 2012a, 2012b).

3.1. Clustering methods

Clustering related to unsupervised learning methods can discover
previously unknown groups within the data. It groups a set of objects
into various clusters so that the objects within a cluster have high sim-
ilarity, but are very dissimilar to objects in other clusters. The dissimilar-
ity measure is computed by the feature values describing the object.
Several clusteringmethods can be used to understand data distribution
or as a preprocessing step for other data mining algorithms. In this
study, the k-means algorithm was employed to prepare the geochemi-
cal dataset for use in classification models.

The k-means algorithm known as one of the most common cluster-
ing methods operates in the following manner (Han, Kamber et al.
2012). The k-means is a centroid-based technique that distributes the
n objects of a dataset D into k clusters, C1 ,… ,Ck, that is, Ci⊂D and
Ci⋂Cj=∅; for 1≤ i , j≤k. It uses the centroid of a cluster, ci, defined by
the mean or medoid of the objects allocated to this cluster. The differ-
ence between an object p∈Ci and ci is measured by their Euclidean dis-
tance that is denoted by dist(p,ci). The quality of cluster Ci can be
calculated by the sum of squared error between all objects in Ci and
the centroid ci as Eq. (1)

E ¼ ∑k
i¼1∑p∈Ci

dist p; cið Þ2 ð1Þ

3.2. Classification methods

The supervised learning method is commonly characterized by a
two-step process. Firstly, a classification model is built based on previ-
ous data; secondly, the model's accuracy is determined. If it is accept-
able, the model can be used to classify new data (Dougherty, 2013;
Han et al., 2012). Supervised learning consists of parametric and non-
parametric methods in statistical classification. Parametric methods
such asNaïve Bayes and discriminant analysis need probability distribu-
tions to estimate a representation of the classes. On the other side, non-
parametric methods must be used when the probability distributions
are not known. In these situations, the density functions are estimated
or the probabilities are bypassed and directly build decision boundaries
on the basis of training data (Dougherty, 2013). The decision treemeth-
odology is a nonparametric inductive learning technique.

3.2.1. Discriminant analysis
Discriminant analysis (DA) can be a generally robust and powerful

method, if fundamental statistical assumptions are confirmed. These
assumptions aremultivariate normal distributions for independent var-
iables in each class and homogeneity of variance–covariance structures
for the different classes (Li and Anderson-Sprecher, 2006). Neverthe-
less, sufficient instances in each class in addition to fairly few predictors
(five or fewer) makes it a proper classification technique in sundry ap-
plications (Tabachnick and Fidell, 1996).

Since the numbers of predictors considered in our problemaremuch
less than the numbers of observations, this classifier can be robust. Here,
the linear and quadratic functions were taken in discriminant analysis
according to the statistical characteristics of the analyzed dataset.
In the linear discriminant analysis (LDA) instances have similar covari-
ance structures with different means for each class while quadratic
discriminant analysis (QDA) provides conditions allowing different co-
variance matrices.

The LDA known as a generalization of Fisher's linear discriminant
(Fisher, 1936) is vastly applied in artificial intelligent and data mining
problems, e.g. (Cox and Wang, 2014; Duda et al., 2012; Huang and
Guan, 2015; Imani and Ghassemian, 2015). Here is a review of Fisher
discriminant analysis (Bishop, 2006) applied to the classification prob-
lem is briefly explained as follow. The LDA divides a D-dimensional
input region into decision regions by the best (D-1)-dimensional
hyper-planes being linear functions of input vector x. A discriminate
function takes an input vector x (an instance) and assigns it to one of
K Classes symbolized CK. A simple linear discriminant function for
two-class problem offered by:

y xð Þ ¼ wTxþw0 ð2Þ

where w is a weight vector and w0 is a bias that sometimes named
threshold. The input vector x is allocated to class C1 if y(x)N0, and to
C2 else. The related decision boundary is specified by y(x)=0.

Consider there are N1 points of class C1 and N2 points of class C2, so
that the mean vectors of the two classes can be given by:

M1 ¼ 1
N1

∑n∈C1
Xn; M2 ¼ 1

N2
∑n∈C2

Xn ð3Þ

The mean of projected data for class C1 and C2 are calculated
by m1=WTM1 and m2=WTM2. Although a line joining means of
two classes to each other properly separates them, they have somewhat
overlapped for the instances projected onto the line. Fisher suggested a
criterion which not only reduce the overlap but also maximize the sep-
aration simultaneously. This criterion, known as the objective function
in Fisher discriminant analysis, is computed by Eq. (4).

J Wð Þ ¼ WTSBW

WTSWW
ð4Þ

where SB is the between-class scatter matrix and SW is the within-class
matrix.

In order to improve separated classes, this objective function should
be maximized. The optimal W weight vector which classifies the in-
stances with the maximum between-class variance and minimum
within-class variance will be given by solving Eq. (5).

S�1
W SBW � J Wð ÞW ¼ 0 ð5Þ

The extension of LDA for over two classes is discussed in a similar
manner (Fukunaga, 1990).

QDA is suggested as an alternative to avoid the tendency of cases for
assigning to classes with higher variance due to greater posterior prob-
ability that happens because of the disruption of homogeneity assump-
tion (Tabachnick and Fidell, 1996). If the assumption of a shared
covariance matrix is relaxed, each class-conditional density p(X|CK)
will have its own covariance matrix. Accordingly quadratic functions
of X are obtained.

3.2.2. Naïve Bayes
Naïve Bayes (NB) is widely used for classification of high-

dimensional data. In this simple form of Bayesian network, the
values of the features are assumed to be conditionally independent
of one another (Hernández-González et al., 2013; Wu et al., 2015).
The class-conditional independence between features is generally
optimistic assumption in various classification tasks (Webb et al.,
2012). As long as this assumption is satisfied, the NB classifier esti-
mates better parameters for classification and applies less training
data than many other classifiers. However, this classifier may usual-
ly act well practically even if independence assumption is invalid.



Table 1
Description of the symbols generally used in decision tree algorithm.

Symbols Description

D A training dataset of class-labeled instances
Dj A subset of a training dataset
X A set of instances with n-dimensional attribute
A An attribute
k The number of distinct classes
Ci A class label for i=1,… ,k
Ci ,D The set of instances of class Ci in D
|D | The number of instances in D
|Ci ,D | The number of instances in Ci ,D
Pi The probability that a instances in D belongs to class Ci
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With regard to the characteristics of data used in this study, two
Gaussian and kernel distributions were considered separately to deter-
mine their effectiveness. The former is suitable when features have nor-
mal distributions in each class, and the latter is suitable when the
distribution of features is skewed or has multiple modes.

In short, the Naïve Bayes classifier works as follows (Han et al.,
2012):

Given an instance,X, the NB classifier predicts that X belongs to class
Ci for which P(Ci |X) is maximized. The class Ci is called the maximum
posteriori hypothesis according to Bayes' theorem as Eq. (6)

P CijXð Þ ¼ P XjCið ÞP Cið Þ
P Xð Þ ð6Þ

To reduce the volume of calculations in estimating P(X |Ci) for high-
dimensional datasets, the Naïve assumption of class-conditional indepen-
dence is considered. Thus,

P XjCið Þ ¼ ∏n
k¼1P xkjCið Þ ¼ P x1jCið Þ � P x2jCið Þ �…� P xnjCið Þ ð7Þ

where xk refers to the value of attribute Ak for instance X. Above sim-
ple probabilities in Eq. (7) can be easily estimated from the training
dataset. It is usually assumed that the continuous variable have a
Gaussian distribution with a mean μ and standard deviation σ, de-
fined by Eqs. (8) and (9).

g x; μ;σð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ

p e�
x�μð Þ2
2σ2 ð8Þ

P xkjCið Þ ¼ g xk; μCi
;σCi

� �
ð9Þ

where μCi
andσCi

indicatesmean and standard deviation of the values of
attribute Ak for training instances of class Ci. To predict the class label
of X, P(X |Ci)P(Ci) is calculated for each class Ci. The classifier predicts
that the class label of instance X is the class Ci if and only if Eq. (10) is
satisfied.

P XjCið ÞP Cið ÞNP XjC j
� �

P C j
� �

for 1≤ j≤m; j≠i ð10Þ

3.2.3. Decision tree
Decision tree (DT) is employed to predict the response variables as a

function of the predictors. It uses training data and creates a model that
predicts a goal class based on input attributes for an unobserved test in-
stance (Dougherty, 2013; Quinlan, 1993). The researchers of this study
wanted to use the decision tree to extract rules defining the relationship
between predictors and to illustrate how a sample belongs to a specific
class.

The decision tree includes advantages such as robustness, being sim-
ple to understand, and easy to implement. Moreover, it requires little
prior knowledge and is applicable on large and noisy datasets (Farid
et al., 2014). This method has been applied progressively by geoscien-
tists in several classification tasks (Akkaş et al., 2015; Chasmer et al.,
2014; Li et al., 2013; Pradhan, 2013; Shi, 2014; Xue et al., 2015).

Decision tree algorithms (e.g., ID3, C4.5, and CART) are considered
for classification. These algorithms adopt a greedy approach in which
decision trees are built in a top-down recursive manner. To create a de-
cision tree, all data first are collected in a root node and then divided
into relatively more homogenous branch nodes until achieving leaf
nodes as following steps. (1) Check all possible splits on each attribute
in all input data, (2) choice the best attribute separating the instances
into distinct classes based on attribute selection measures and enforce
it, (3) repeat mentioned steps for the two child nodes recursively, and
(4) stop splitting in a node when it contains just instances of one class
or satisfy some predefined conditions. Finally, labels of the leaf nodes
are specified by their allocated statistical information (Pal and Mather,
2003).

Attribute selection measures commonly comprise information gain,
gain ratio, and Gini index which are used in different algorithms. A
review of Gini index giving reasonably good results in our study is
explained as follows (Han et al., 2012). The notation used in this fact
is summarized in Table 1.

The Gini index evaluates the impurity of D as Eq. (11) and it
considers a binary split for every attribute.

Gini Dð Þ ¼ 1�∑k
i¼1p

2
i ð11Þ

where pi is estimated by |Ci , ,D |/|D |. If a binary split on A partitions D
into D1 and D2, the Gini index of D is defined by Eq. (12)

GiniA Dð Þ ¼ D1j j
Dj j Gini D1ð Þ þ D2j j

Dj j Gini D2ð Þ ð12Þ

Each of the possible binary splits is considered for every attribute.
The reduction in impurity incurring by a binary split on an attribute A
is explained by Eq. (13).

ΔGini Að Þ ¼ Gini Dð Þ � GiniA Dð Þ ð13Þ

The attribute with minimum Gini index maximizes the reduction in
impurity and is chosen as the best splitting variable at each node.

Many branches in a decision tree commonly indicate noise or out-
liers in the training data. The decision tree can be improved by control-
ling the leafiness. Since a leafy tree tends to overtrain, it has high
predictive power on the training set, but not on the test set.

Pruning is an alternative method that optimizes the tree leafiness. It
is the process of reducing a tree by turning some branch nodes into leaf
nodes and removing the leaf nodes under the original branches. Such
method usually uses statistical measures to eliminate the least reliable
branches. Although giving a higher resubstitution error, the optimal
pruned tree tends to be less complex and acts usually faster and better
at correctly classifying independent test data. Hence it's generally faster
andmore efficient to classify test data than unpruned trees (Dougherty,
2013; Han et al., 2012).

A simple classification tree which predicts classes based on a set of
rules by two predictors, P1 and P2, is shown in Fig. 2. Predicting is started
at the top node. The first decision is whether P1 is smaller than 0.5. If so,
then follow the left branch. Here the tree asks if P2 is smaller than 0.5. If
so, then follow the left branch, else follow the right branch to show that
the tree classifies the instance into class C1 or C2 respectively. Otherwise,
if P1 exceeds 0.5, then follow the right branch and the instance is classi-
fied to class C1.



Fig. 2. A set of rules for estimating the different classes by a simplified decision tree.
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4. Discussion and results

4.1. Sampling and data preparation

In the current study, an exploration programwas followed to recog-
nize geochemical patterns related to REE occurrences based on whole
rock compositions. Detection and interpretation of geochemical anom-
alies in this study were converted to a comprehensible classification
procedure where background and anomalous samples belonged to dis-
tinct classes.

For this propose, a systematic sampling program was designed to
detect the geochemical variability of the Choghart orebody with an ad-
equate level of confidence. The sampling pattern covers the bottom
parts of ore preserved from the effects of weathering to its surrounding
host rocks frequently affected by hydrothermal processes as shown in
Fig. 3. A sufficient number of representative rock samples (N = 113)
Fig. 3. Simplified geological map (modified after Zahed and Seidy
were taken from the surface of the pit. The collected samples were
cleaned in deionized water, dried at room temperature, crushed, and
powdered using standard procedures. The prepared samples were ana-
lyzed for major element oxides consisting of TiO2 ,Fe2O3 ,Al2O3 ,
SiO2 ,CaO,MgO,SO3 ,P2O5 ,K2O,MnO,Na2O,and L .O. I. using the X-ray
fluorescence method (XRF) and for REE using inductively coupled plas-
ma mass spectrometry (ICP-MS).

Because they originated from heterogeneous sources, the geochem-
ical datasets contain noisy, missing, and inconsistent data. Such low-
quality data will lead to undesirable effects in data processing results.
Therefore, preprocessing methods should be used on the data to
increase its quality and improve the performance of classification
methods. Some data preprocessing techniques such as data cleaning,
data outlier detection, and data transformationwere used on the chem-
ical analytical results in this study. The basic statistical parameters of the
prepared geochemical dataset are given in Table 2 and the histograms of
the LREE and the HREE are shown in Fig. 4.

Some classificationmodelswere employed to predict discrete values
of REE concentrations based on some continuous predictors. To do this,
the REE content values had to be transformed into discrete values prop-
erly using the k-means clustering algorithm. The clustering results were
fairly modified using the mean and standard deviation of continuous
values to identify distinct classes of REE concentrations as very low,
low, medium or high.

4.2. Geochemistry of REEs in the choghart orebody

The Choghart deposit exhibit a wide variation in mineralogy, rocks
texture, compositions, and hydrothermal alteration degrees. According
to the geological characteristics, at least four main types of formation
are recognized in the Choghart orebody: albitophire zone (host rock),
(2012)) showing sample locations in the Choghart orebody.



Table 2
The basic statistics of geochemical data (major element oxides and REE contents) in Choghart orebody.

Compositions No. Minimum Maximum Mean Std. Deviation Median Skewness Kurtosis

(wt.%)
TiO2 113 0.02 3.56 0.67 0.88 0.2 1.69 1.75
Fe2O3 113 0.38 93.56 21.47 29.71 5 1.29 0.02
Al2O3 113 0 18.49 6.88 6.18 7 0.07 −1.79
SiO2 113 0 81.2 43.58 28.4 46.48 −0.23 −1.66
CaO 113 0.14 51.15 10.53 15.11 3.19 1.52 0.76
MgO 113 0.23 13.7 3.89 3.22 3.41 0.95 0.48
SO3 113 0 2.92 0.08 0.3 0.01 8.05 74.47
P2O5 113 0.01 45.76 6.29 11.88 0.04 1.85 2.28
K2O 113 0 7 0.66 0.94 0.32 3.69 19.86
MnO 113 0 0.21 0.04 0.05 0.02 1.39 1.35
Na2O 113 0 9.53 3.49 3.61 1.05 0.33 −1.78
L .O . I 113 0 17.95 2.42 2.53 1.87 3.43 16.1

(ppm)
La 113 6.54 2728.4 454.44 730.28 100.89 1.91 2.43
Ce 113 30.43 5290.59 732.97 1310.31 165.79 2.33 4.28
Pr 113 0.01 476.65 59.89 98.78 18 2.61 6.66
Nd 113 0.01 1971.63 306.98 483.29 78.09 2.03 3.23
Sm 113 0.01 432.05 52.71 86.94 18.66 2.87 8.03
Eu 113 0.44 3050.23 151.92 534.77 13.45 4.15 17.19
Gd 113 3.24 483.54 117.72 85.63 89.65 1.79 3.97
Tb 113 0.27 573.76 34.83 105.63 6.46 4.23 17.09
Dy 113 0.01 270.49 26.36 47.31 11.28 3.31 11.9
Ho 113 0.16 140.78 6.81 14.61 3.27 7.28 64.05
Er 113 0.01 93.98 13.22 17.98 6.59 2.94 8.85
Tm 113 0.12 91.97 7.64 16.61 2.04 3.6 13.19
Yb 113 0.45 183.07 14.3 20.91 7.09 5.26 38.04
Lu 113 0.18 245 4.78 22.86 2.45 10.54 111.77
Y 113 3.91 6624.52 1355.16 1323.67 1002.08 2.18 5.4
Sc 108 12.04 66.2 32.47 11.61 31.17 0.4 −0.07
Nb 113 20.05 4975.41 2314.71 852.42 2323.54 0.35 0.92Σ LREE 113 91.81 11,844.61 1758.9 2904.11 477.91 2.15 3.48Σ HREE 113 22.83 776.9 225.66 168.94 148.58 1.33 1.19Σ REE 113 190.3 12,353.65 1984.56 2993.75 695.74 2.16 3.52Σ REE + Y 113 585.11 14,543.9 3339.72 3756.71 1638.45 1.85 2.09
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iron oxide zone (ore), metasomatic zone, and high phosphate zone.
Moreover, a subtype of high phosphate and iron oxide zone is recog-
nized. Magnetite is the major ore mineral, hematite is typically created
from a secondary source, and apatite is the most abundant gangue in
this orebody.

The fluid inclusion study illustrated that the formations of apatite in
Choghart occur in two mineralization episodes. The first is associated
with a magmatic origin in high-pressure conditions (up to 2 Kb) and a
temperature close to 600 °C. The second also follows the same mecha-
nism with the difference that it was composed at a temperature lower
than 500 to 300 °C. The inclusions of monazite and xenotime were
also observed within apatite types I and II in the Choghart orebody.
Fig. 4. Histograms of LREE and HREE conten
The average contents of LREE, HREE, and Y in various zones are stated
in Table 3. These values suggest the main carriers might be different for
each of these groups in each zone. Phosphatemineralization can be a crit-
ical factor controlling REEs concentration in rocks so that its total average
contentmay rise to 1.5wt%. In addition significant concentrations for REE
have been observed in transitional zone between ores and gangue in the
NE of orebody. The chondrite-normalized REE patterns generally demon-
strate significant variation from LREE toHREEwith negative Eu anomalies
in different zones. These patternsmight be due to localized crystallization
of LREEminerals. These diagrams also show that the concentration of REE
is much higher in the phosphate zone than in the metasomatic, iron
oxide, and albitophyre zones, respectively.
t of samples in the Choghart orebody.



Table 3
The average contents of REEs in various zones of the Choghart orebody.

Compositions (ppm) Iron oxide High phosphate Metasomatic Albitophire

LREE 731.1 3277.9 450.5 310.9
HREE 371.9 241.1 147.1 148.2
Y 562.7 1898.5 1173.1 1107.3

Fig. 5. A typical example of determining the optimal pruning level to avoid overfitting
effects in a decision tree (Dougherty, 2013).

Table 4
The best combinations of predictors based onminimum cross-validation (Only those REE
are shown which have at least one minimum error less than 20%. The minimum error for
each classification method is indicated in bold.).

REE 1st
Predictor

2nd
Predictor

3rd
Predictor

LDA⁎ QDA⁎ GNB⁎ KNB⁎ DT⁎

La Z TiO2 P2O5 17.70 15.04 15.93 15.04 8.85
Z P2O5 Na2O 21.24 10.62 17.70 14.16 9.73
Y Z P2O5 20.35 15.04 13.27 17.70 10.62
Y P2O5 Na2O 23.01 14.16 19.47 13.27 11.50
Z SiO2 P2O5 23.89 15.04 16.81 15.93 7.96

Ce CaO SO3 L .O .I 17.70 23.01 23.01 19.47 22.12
Z CaO P2O5 20.35 14.16 22.12 22.12 18.58
Y SiO2 P2O5 31.86 20.35 15.93 23.01 18.58
X CaO SO3 23.89 22.12 23.01 16.81 22.12
Y Z CaO 28.32 20.35 21.24 23.89 15.04

Nd CaO SO3 L .O .I 19.47 22.12 25.66 19.47 22.12
X P2O5 L .O .I 35.40 18.58 22.12 26.55 24.78
Fe2O3 P2O5 Na2O 30.97 29.20 17.70 29.20 19.47
CaO MgO L .O .I 29.20 23.01 23.89 16.81 26.55
Z TiO2 P2O5 27.43 23.89 24.78 33.63 15.04

Sm Fe2O3 Al2O3 CaO 31.86 69.03 32.74 36.28 37.17
X Fe2O3 MgO 67.26 29.20 28.32 30.09 44.25
TiO2 SiO2 MgO 36.28 50.44 21.24 30.97 30.09
Z SiO2 MgO 42.48 44.25 23.01 21.24 35.40
X TiO2 SiO2 38.05 35.40 27.43 29.20 18.58

Eu Z P2O5 MnO 20.35 13.27 19.47 28.32 8.85
Z CaO MnO 21.24 11.50 13.27 24.78 9.73
Z CaO MnO 21.24 11.50 13.27 24.78 9.73
Z Fe2O3 L .O .I 36.28 30.97 29.20 17.70 15.04
Z TiO2 Al2O3 34.51 29.20 27.43 20.35 6.19

Ho X Fe2O3 P2O5 30.97 40.71 19.47 24.78 17.70
X Al2O3 MgO 43.36 25.66 19.47 22.12 18.58
X Fe2O3 MgO 52.21 29.20 13.27 15.93 23.01
X TiO2 SiO2 36.28 27.43 25.66 9.73 20.35
Z SiO2 Na2O 46.02 47.79 36.28 26.55 9.73

⁎ LDA: LinearDiscriminantAnalysis, QDA:QuadraticDiscriminantAnalysis, GNB:Gaussian
Naïve Bayes, KNB: Kernel Naïve Bayes, and DT: Decision Tree.
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4.3. Quantifying the influence of rock compositions on the spatial distribution
patterns of REEs

Primary geochemical characteristics were influenced by secondary
processes, such as multi-stage mineralization, alteration, and weathering
in Choghart deposits. Thewide range of primary and secondary processes
might cause redistributions of REE in different zones. Hence, REE distribu-
tion patterns are supposed to be complicated.

The researchers in this study believe that the rocks could effectively
record geochemical information related to genesis and formation condi-
tions of depositswith variations in their chemical compositions. Accord-
ing to the statistical characteristics presented in Table 2, diverse
classification methods such as discriminant analysis (with linear and
quadratic functions), Naïve Bayes (normal and kernel distributions),
and decision tree were used separately to predict distinct classes of
REE concentrations based on their indicator predictors.

Classificationmethods are generally evaluated and compared by the
criteria ofmisclassification rates (Hastie et al., 2009). These criteriawere
calculated based on resubstitution and cross-validation methods in all
possible states of predictors in the current survey.

Resubstitution error is the difference between predicted values and
the corresponding real values through all training data. A high amount
of resubstitution error clearly states a bad classification model; howev-
er, a low amount of it is not a suitable guarantee to predict newdatasets.

If enough data exists, a validation set can be set aside to evaluate the
performance of a classifier model, but inadequate data makes this im-
possible in the present study. In order to solve this problem, the k-fold
cross-validation method was used. This method randomly divides the
instances into k separate parts with the same size. The k defines the
number of training and test sets in cross-validation. The classification
function uses the existing training subsets to fit a suitable model and
predicts class labels for the different test subset in every fold. The num-
ber of misclassifications was calculated between the predicted value
and corresponding real value in a test set, and the overall misclassifica-
tion rate was returned through all test sets.

The predictive performance of a decision tree was also measured by
a cost of tree. The cost of each node is the ratio of bad classified instances
in that node. The cost of the tree is equal to the overall sum of the cost of
each leaf node multiplied by occurred probability (Zadrozny et al.,
2003). The cost values were calculated for remaining subtrees after
each pruning step.

The suitable cost values obtained by k-fold cross-validationwere ap-
plied effectively to evaluate predictive performance of the decision tree
classifier in this paper. To achieve the optimal subtree, the cross-
validation costs were plotted versus the number of terminal nodes.
The smallest treewas specifiedwith one standard error of theminimum
cost of subtree as shown in Fig. 5.

The inputs of the classification methods, called indicator predictors,
are N-dimensional vectors of attributes including the geographical loca-
tion of samples (X,Y ,and Z) and their major element oxide contents.
According to some considerations and desired goals, three predictors
are optimally chosen for all classification models. Therefore, all possible
3-combinations of 15 predictors, denoted by ð153 Þ, are considered as sub-
sets of predictors to identify the behavior of each REE.

For each classification method, 455 prediction models were con-
structed using these subsets of predictors; then the best of them causing
the minimum misclassification rate based on cross-validation were
selected as the main indicators. Some REE having at least one mini-
mum error less than 20% and their related results are shown in
Table 4. For example, the first row of this table indicates the subset
of predictors {Z,TiO2, P2O5} causing the minimum cross-validation
error (17.70) to predict different classes of La concentrations by lin-
ear discriminant analysis (LDA). If the same predictors are similarly
used by other methods, their related cross-validation errors will be
QDA = 15.04, GNB = 15.93, KNB = 15.04, and DT = 8.85.

For each classifier, the minimum misclassification rate was intro-
duced as the best prediction errors as shown in Figs. 6 and 7. The final
model constructed by the best selected predictors could be reasonably
applied to the new data to predict their REE classes.



Fig. 6. The best prediction errors for predicting concentrations of REE by the cross-validation method.
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These line charts show that the least amount of prediction errors
occurred mostly in the decision tree. Other methods, such as kernel
Naïve Bayes classification, GaussianNaïve Bayes classification, quadratic
discriminant analysis, and linear discriminant analysis, are ordered by
taking the least amount of prediction errors, respectively. Therefore,
the decision tree classifier was selected as a more suitable method
than the others for predicting different distribution patterns of REEs in
the Choghart orebody.

It is desirable to have both training accuracy and good generalization
ability in the decision tree results. To do this, a new parameter was de-
fined as a combinationof the resubstitution error, cross-validation error,
and cost of the tree. This parameter was calculated for all possible sub-
sets of predictors and sorted in ascending order for each REE. The three
best subsets of predictors from the head of each list were selected as
shown in Fig. 8.

With regard to the least amount of prediction errors in the diagram,
some REE (La, Ce, Nd, Sm, Eu, andHo) are reasonably predictable, others
(Pr, Gd, Tb, Tm, and Yb) are partly predictable, and the others (Dy, Er, Lu,
and Y) are hardly predictable when their respective predictors are
changed in different parts of the orebody.

The prediction of some elements, especially in the first group, is
more meaningful than the others because either source of magma
would have a high content of them or secondary evolution process
might modify their distributions. Most of them, except the Ho, are
known as LREE which are generally more enriched in different zones
of Choghart orebody. Moreover, these elements have more ability to
form complexes rather than others in hydrothermal systems; thus,
they might be mobilized in the Choghart deposit and would extend
their distributions.

The other elements almost include the HREE and exhibit more
irregular behaviors in this region. Previous studies and analytical results
imply there is no evidence for extended enriched zones of these elements.
Fig. 7. The best prediction errors for predicting conc
However, some elementsmight be concentrated locally in accessorymin-
erals such as allanite, monazite, xenotime and apatite which would not
break down during metasomatism and alteration. Therefore, it is likely
that there is no meaningful relationship between distribution patterns
of these elements and using predictors in the Choghart orebody. The
irregular distribution of some REEs might be related to more complex
geological featureswhichmight not affect rock compositions at an accept-
able level.

Among the stated subsets in Fig. 8, a number of predictors were se-
lected based on the greater relative frequencies. These predictors are
presented in a stacked column chart as in Fig. 9. Each column of the
chart includes the participation rate of the most important influencing
factors to predict distinct classes of each REE.

These factors related to chemical composition of minerals that occur
in the same type of ore deposit. Most rock-forming minerals, with the
exception of plagioclase, have more enrichment in LREE than HREE in
different zones of Choghart orebody. The replacement of REE in partic-
ular minerals is restricted due to their different ionic radius. Allanite
hosts the larger LREE and zircon host the smaller HREE. Apatite and
sphene indicates any priority for the LRRE, HREE, or the MREE. Among
the major REE-bearing minerals phosphates, monazite incorporates
REE from La to Gd and xenotime incorporates them from Tb to Lu pref-
erentially (Ni et al., 1995; Rollinson, 1993). Hence the presence of each
of these minerals might cause different behavior patterns of each ele-
ment in the region.

The last columnof the chart exhibits the overall participation rates of
factors in the process of predicting the geochemical behavior of REEs.
The most important features as Z ,Fe2O3 ,SiO2 ,P2O5 ,and Na2O can be
considered related to depth factor in addition to iron oxide, metasomat-
ic, phosphate, and albitophire zones. They are so important that their
changes can effectively determine the different concentrations of most
of the REEs in the orebody. These results can be confirmed geologically
entrations of REE by the resubstitution method.



Fig. 8. The best subsets of each REE predictor according to the decision tree results.
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by the main geochemical zones in the Choghart orebody mentioned in
previous section.

The decision tree was pruned by replacing a whole subtree with a
leaf node until optimal level is reached in order to prevent the effects
of leafiness, overfitting, and complexity. This work caused the pruned
trees to exhibit a better performance than the unpruned ones to predict
REE distribution patterns. Some pruned trees related to La, Ce, Nd, and
Eu, for example, are shown in Fig. 10.

After training and pruning the decision trees, several classification
rules were extracted to describe the relationship among the most
Fig. 9. The most important influencing factors and their participation
important factors influencing the different concentrations of REE.
These rules are related to the geochemical conditions dominating in
the Choghart orebody. Because the aim of exploration projects is to
identify REE-rich zones, the geochemical rules associated to class
‘High’ are stated in Table 5.

The values of the cost and the estimated probability determine the
validity of these rules. The cost explains the ability of the best pruned
tree to predict different classes of REE concentrations, and the estimated
probability measures the purity of a leaf node in a pruned tree and de-
fined as the proportion of samples correctly placed in this node. Both
rate percentages for predicting the distribution patterns of REE.



Fig. 10. Pruned trees and related rules in order to predict the distribution patterns of La, Ce, Nd, and Eu.
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of these values are between zero and one. The lower amounts of cost
along with the higher amounts of estimated probability represent
more accurate geochemical rules.

To clarify, the entries related to Ce prediction in Table 5 are stat-
ed as follows: The best subsets of predictors are {Z, P2O5,Na2O},
{SiO2, CaO, P2O5}, and {Al2O3,CaO, P2O5}. The costs of the pruned
trees for these subsets are equal to 0.115, 0.150, and 0.168,
Table 5
Extracted geochemical rules to predict high concentrations of REE in the Choghart orebody (Th

REE Predictors⁎ Cost of pruned tree The rule related to REE predic

La
03 04 11 0.071 If Z b 992 & P2O5 N =11.81
03 11 14 0.080 If Z b 992 & P2O5 N =11.81
03 07 11 0.071 If Z b 992 & P2O5 N =11.81

Ce
03 11 14 0.115 If Z b 987 & Na2O b 0.46 & P2

07 08 11 0.150 If P2O5 N =11.81 & SiO2 N =6
06 08 11 0.168 If P2O5 N =11.81 & P2O5 b =

Pr
06 07 11 0.195 If P2O5 N =22.71 & SiO2 N =
06 07 14 0.212 If Al2O3 b 12.8565 & SiO2 N =
03 06 07 0.212 If Al2O3 b 12.8565 & SiO2 N =

Nd
07 11 14 0.150 If P2O5 N =11.81 & Na2O N =
08 11 14 0.133 If P2O5 N =11.81 & Na2O N =
03 11 13 0.177 If P2O5 N =11.81 & MnO N =

Sm
05 07 14 0.150 If SiO2 b 44.00 & Na2O N =0.
05 06 14 0.186 If Al2O3 b 6.75 & Na2O N =0.
03 05 07 0.177 If SiO2 b 44.00 & Z N =973.45

Eu
03 04 06 0.053 If Z N =966 & Z b 992 & TiO2

03 04 07 0.053 If Z N =966 & Z b 992 & TiO2

03 04 12 0.062 If Z N =966 & Z b 992 & TiO2

Gd
01 05 06 0.195 If Al2O3 b 9.8 & Fe2O3 b 3.84
01 05 13 0.177 If MnO N =0.006 & Fe2O3 b 3
01 05 12 0.212 If Fe2O3 b 3.84 & X N =5035 &

Tb
03 05 08 0.195 If Fe2O3 N =75.93 & Z b 976.1
03 05 07 0.186 If Fe2O3 N =75.93 & Z b 976.1
03 05 14 0.186 If Fe2O3 N =75.93 & Z b 976.1

Dy
04 08 13 0.283 If CaO N =37.5 & MnO N =0.
03 05 08 0.336 If CaO N =37.5 & Z b 987.05
03 08 13 0.345 If CaO N =37.5 & Z b 987.05

Er
03 05 13 0.319 If Z N =982.55 & Fe2O3 N =5
03 05 12 0.319 If Z N =982.55 & Fe2O3 N =5
03 05 09 0.319 If Z N =982.55 & Fe2O3 N =5

Y
02 11 13 0.257 If P2O5 N =22.71 & MnO b 0.0
02 11 14 0.265 If P2O5 N =22.71 & Na2O N =
02 08 14 0.248 If Y N =8234.5 & CaO N =26.

⁎ 01: X, 02: Y, 03: Z, 04: TiO2, 05: Fe2O3, 06: Al2O3, 07: SiO2, 08: CaO, 09: MgO, 10: SO3, 11: P2
⁎⁎ Major oxides are expressed in weight percentages and X, Y and Z are expressed in meters.
respectively. For each pruned tree, one rule leading to a high Ce
concentration is extracted. A new sample will be classified to class
‘High’ if it satisfies one of the following rules:
• Zb987.05 and Na2Ob0.46 and P2O5N=22.71
• P2O5N=11.81 and SiO2N=6.38 and CaON=36.64
e most accurate geochemical rules are indicated in bold.).

tion as class ‘High’⁎⁎ Estimated probability for class ‘High’

1
1
1

O5 N =22.71 1
.38 & CaO N =36.64 0.833
34.55 & CaO N =36.64 & Al2O3 N =0.12 0.833
19.06 1
19.06 & SiO2 b 26.21 & Na2O N =0.16 1
19.06 & SiO2 b 26.21 & Z N =966.4 1
0.09 & Na2O b 0.58 & SiO2 N =6.62 0.909
0.09 & Na2O b 0.58 0.839
0.03 0.833
15 & Fe2O3 N =1.77 & Fe2O3 b 6.02 1
15 & Fe2O3 N =1.77 & Fe2O3 b 6.02 1
& Z b 982.55 0.889
b 0.15 & Al2O3 b 3.82 1
b 0.15 & SiO2 b 43.19 1
b 0.15 & K2O b 0.15 1
& X b 5133.5 0.857
.84 0.667
X b 5125.5 0.667

0.625
0.625
0.625

025 1
1
1

8.66 1
8.66 1
8.66 1
34 0.875
0.54 1
39 & Na2O N =0.54 1

O5, 12: K2O, 13: MnO, 14: Na2O, 15: L.O.I.



Fig. 11. Intersection of several regions bounded by extracted rules to identify target area representing Ce-enriched zones.
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• P2O5N=11.81 and P2O5b=34.55 and CaON=36.64 and Al2O3N=
0.12

The estimated probabilities of these rules are 1, 0.833, and 0.833,
respectively. Therefore, the first rules having lower costs and higher
estimated probability rates are introduced as the best geochemical
rule for prediction of Ce-enriched zones in the Choghart orebody in
this paper. According to the results presented in Table 5, the significant
features P2O5 and CaO are representative of phosphate minerals. They
control REEs concentrations and modify their patterns in related
zones. The features Na2O and Al2O3, related to albitophire zones which
are depleted of REEs. The variations of depth factor (966 b Z b 992) illus-
trate that the high concentrations of REEs aremostly limited to a certain
depth of orebody. This range refers to transitional zone between ores
and gangue in the NE of orebody which also confirms the validity of
the model used. Moreover, it will be important to give more attention
to the concentration of REEs in those formations in which the men-
tioned geochemical rules are established.

Data visualization is an effective technique used to see patterns, rec-
ognize trends, and identify anomalies. Thus, a specific geochemical map
related to the rules above is shown in Fig. 11. In such a case, the target
area is considered to be the intersection of several regions, each of
which is bounded by one of the conditions. According to this figure,
thementioned area and Ce-enriched zones overlap significantly. As a re-
sult, it is possible to propose the geochemical maps representing varia-
tion of major oxides as target zones. These zones will be candidates for
more detailed exploration studies which require accurate and expen-
sive analyticalmethods todetermine the amount of rare earth elements.

The method employed in this paper can be similarly extended in
Bafq mining district to predetermine possible enriched zones of REEs.
In addition, it is even useful to discover spatial distribution patterns of
REEs in other deposits. By using the findings of this study in REE explo-
ration projects, a great savings in time and cost will be affected.

5. Conclusion

Multistage hydrothermal-magmatic processes played a significant
role in the evolution of Choghart IOA deposit which might give rise to
the REE redistribution. The concentrations of REE in the different
zones of orebody could be reflected by the whole-rock chemical
compositions. In this study, a systematic lithogeochemical sampling
was performed in the Choghart orebody and the sampleswere analyzed
for themajor-oxides and the rare earth elements. To identify the differ-
ent distribution patterns of REE, the extensive computational experi-
ments were conducted on the dataset with five different classification
methods. By comparing these methods in terms of the prediction
error, the decision tree was selected as the most suitable method in
order to achieve a better understanding of conceptual relationships be-
tween the data. The decision tree results showed that, the distribution
patterns of most LREE were reasonably predictable based on changes
in their respective predictors. The geochemical characteristics are due
to either high LREE content inmagma source or their modified distribu-
tions during alteration and metasomatism. In contrast, the HREE exhib-
ited the irregular distribution patterns and could not be reasonably
predicted by the predictors. This behavior may be related to other com-
plex events not affecting the major element composition of rocks consid-
erably. However, some HREE might be concentrated locally in accessory
minerals with no evidence of extended enriched zones. A number
of factors having the greatest impact on the REE prediction were
sorted as: Z (depth) , Fe2O3 , SiO2 , P2O5 ,Na2O ,MnO ,Al2O3 and CaO.
These factors are related to the main geochemical zones known in
the Choghart orebody. Moreover, the important geochemical rules
were proposed to identify the different concentrations of REE and il-
lustrate their behavior. The recent rise in global prices of REE makes
it feasible and profitable to explore giant IOA deposits. Hence, the
results of this study could be extended to similar REE geochemical
exploration projects and also could result in a considerable savings
in both time and cost.
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