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A B S T R A C T

Simulations and inversions of electromagnetic geophysical data are paramount for discerning meaningful
information about the subsurface from these data. Depending on the nature of the source electromagnetic
experiments may be classified as time-domain or frequency-domain. Multiple heterogeneous and sometimes
anisotropic physical properties, including electrical conductivity and magnetic permeability, may need be
considered in a simulation. Depending on what one wants to accomplish in an inversion, the parameters which
one inverts for may be a voxel-based description of the earth or some parametric representation that must be
mapped onto a simulation mesh. Each of these permutations of the electromagnetic problem has implications in
a numerical implementation of the forward simulation as well as in the computation of the sensitivities, which
are required when considering gradient-based inversions. This paper proposes a framework for organizing and
implementing electromagnetic simulations and gradient-based inversions in a modular, extensible fashion. We
take an object-oriented approach for defining and organizing each of the necessary elements in an
electromagnetic simulation, including: the physical properties, sources, formulation of the discrete problem
to be solved, the resulting fields and fluxes, and receivers used to sample to the electromagnetic responses. A
corresponding implementation is provided as part of the open source simulation and parameter estimation
project SIMPEG (http://simpeg.xyz). The application of the framework is demonstrated through two synthetic
examples and one field example. The first example shows the application of the common framework for 1D time
domain and frequency domain inversions. The second is a field example that demonstrates a 1D inversion of
electromagnetic data collected over the Bookpurnong Irrigation District in Australia. The final example is a 3D
example which shows how the modular implementation is used to compute the sensitivity for a parametric
model where a transmitter is positioned inside a steel cased well.

1. Introduction

The field of electromagnetic (EM) geophysics encompasses a
diverse suite of problems with applications across mineral and resource
exploration, environmental studies and geotechnical engineering. EM
problems can be formulated in the time or frequency domain. Sources
can be grounded electric sources or inductive loops driven by time-
harmonic or transient currents, or natural, plane wave sources, as in
the case of the magnetotelluric method. The physical properties of
relevance include electrical conductivity, magnetic permeability, and
electric permittivity. These may be isotropic, anisotropic, and also
frequency dependent. Working with electromagnetic data to discern
information about subsurface physical properties requires that we have
numerical tools for carrying out forward simulations and inversions
that are capable of handling each of these permutations.

The goal of the forward simulation is to solve a specific set of
Maxwell's equations and obtain a prediction of the EM responses.

Numerical simulations using a staggered grid discretization (Yee,
1966), have been extensively studied in their application for finite
difference, finite volume and finite element approaches (c.f. Newman
and Alumbaugh, 1999; Haber, 2014), with many such implementations
being optimized for efficient computations for the context in which they
are being applied (Haber and Ascher, 2001; Li and Key, 2007; Kelbert
et al., 2014; Yang et al., 2014).

Finding a model of the earth that is consistent with the observed
data and prior geologic knowledge is the ‘inverse problem’. It pre-
supposes that we have a means of solving the forward problem. The
inverse problem is generally solved by minimizing an objective function
that consists of a data misfit and regularization, with a trade-off
parameter controlling their relative contributions. (Tikhonov and
Arsenin, 1977; Parker, 1980; Constable et al., 1987). Deterministic,
gradient-based approaches to the inverse problem are commonplace in
EM inversions. Relevance of the recovered inversion model is increased
by incorporating a priori geologic information and assumptions. This
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can be accomplished through, the regularization term (Oldenburg and
Li, 2005; Constable et al., 1987) or parameterizing the inversion model
(Pidlisecky et al., 2011; McMillan et al., 2015a; Kang et al., 2015).
Multiple data sets may be considered through cooperative or joint
inversions (Haber and Oldenburg, 1998; McMillan et al., 2015b).

Each of these advances relies on a workflow and associated software
implementation. Unfortunately, each software implementation is typi-
cally developed as a stand-alone solution. As a result, these advances
are not readily interoperable with regard to concepts, terminology,
notation and software.

The advancement of EM geophysical techniques and the expansion
of their application requires a flexible set of concepts and tools that are
organized in a framework so that researchers can more readily
experiment with, and explore, new ideas. For example, if we consider
research questions within the growing application of EM for reservoir
characterization and monitoring in settings with steel cased wells (cf.
Hoversten et al., 2015, 2014; Um et al., 2015; Commer et al., 2015;
Cuevas, 2014b; Pardo and Torres-Verdin, 2013), the numerical tools
employed must enable investigation into factors such as the impact of
variable magnetic permeability (Wu and Habashy, 1994; Heagy et al.,
2015) and casing integrity (Brill et al., 2012) on electromagnetic
signals. Various modelling approaches in both time and frequency
domain simulations are being explored, these include employing
highly-refined meshes (Commer et al., 2015), using cylindrical sym-
metry (Heagy et al., 2015) or approximating the casing on a coarse-
scale (Um et al., 2015), possibly 3D anisotropic approximations
(Caudillo-Mata et al., 2014). Beyond forward simulations that predict
EM responses, to enable the interpretation of field data with these tools
requires that machinery to address the inverse problem and experi-
ment with approaches for constrained and/or time lapse inversions be
in place (Devriese and Oldenburg, 2016; Marsala et al., 2015).
Typically, addressing each of these complexities would require a
custom implementation, particularly for the frequency domain and
time domain simulations, although aspects, such as physical proper-
ties, are common to both. Inconsistencies between implementations
and the need to implement a custom solution for each type of EM
method under consideration presents a significant barrier to a
researcher's ability to experiment with and extend ideas.

Building from the body of work on EM geophysical simulations and
inversions, the aim of our efforts is to identify a common, modular
framework suitable across the suite of electromagnetic problems. This
conceptual organization has been tested and developed through a
numerical implementation. The implementation is modular in design
with the expressed goal of affording researchers the ability to rapidly
adjust, interchange, and extend elements. By developing the software
in the open, we also aim to promote an open dialog on approaches for
solving forward and inverse problems in EM geophysics.

The implementation we describe for EM forward and inverse
problems extends a general framework for geophysical simulation
and gradient based inverse problems, called SIMPEG (Cockett et al.,
2015). The implementation of SIMPEG is open-source, written in Python
and has dependencies on the standard numerical computing packages
NumPy, SciPy, and Matplotlib (van der Walt et al., 2011; Oliphant,
2007; Hunter, 2007). The contribution described in this paper is the
implementation of the physics engine for problems in electromag-
netics, including the forward simulation and calculation of the sensi-
tivities (SIMPEGEM). Building within the SIMPEG ecosystem has expedited
the development process and allowed developments to be made in
tandem with other applications (http://simpeg.xyz). SIMPEGEM aspires
to follow best practices in terms of documentation, testing, continuous
integration using the publically available services Sphinx, Travis CI,
and Coveralls (Brandl, 2010; Kalderimis and Meyer, 2011; Merwin
et al., 2015). As of the writing of this paper, when any line of code is
changed in the open source repository, over 3 h of testing is completed;
documentation and examples are also tested and automatically
updated (http://docs.simpeg.xyz). We hope these practices encourage

the growth of a community and collaborative, reproducible software
development in the field of EM geophysics.

The paper is organized as follows. To provide context for the
structure and implementation of SIMPEGEM, we begin with a brief
overview of the SIMPEG inversion framework as well as the governing
equations for electromagnetics in Section 2. In Section 3, we discuss
the motivating factors for the EM framework, and in Section 4, we
discuss the framework and implementation of the forward simulation
and calculation of sensitivities in SIMPEGEM. We demonstrate the
implementation with two synthetic examples and one field example
in Section 5. The first example shows the similarities between the time
and frequency domain implementations for a 1D inversion. In the
second example, we invert field data from the Bookpurnong Irrigation
district in Australia. The final example is a 3D example that demon-
strates how the modular implementation is used to compute the
sensitivity for a parametric model of a block in a layered space where
a transmitter is positioned inside a steel cased well.

2. Background

We are focused on geophysical inverse problems in electromag-
netics (EM), that is, given EM data, we want to find a model of the
earth that explains those data and satisfies prior assumptions about the
geologic setting. We follow the SIMPEG framework, shown in Fig. 1,
which takes a gradient-based approach to the inverse problem (Cockett
et al., 2015). Inputs to the inversion are the data and associated
uncertainties, a description of the governing equations, as well as prior
knowledge and assumptions about the model. With these defined, the
SIMPEG framework accomplishes two main objectives:

1. the ability to forward simulate data and compute sensitivities

Fig. 1. Inversion approach using the SIMPEG framework. Adapted from Cockett et al.
(2015).
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(Forward Simulation - outlined in green in Fig. 1),
2. the ability to assess and update the model in an inversion (Inversion

Elements and Inversion as Optimization - outlined in red in Fig. 1).

The implementation of the framework is organized into the self-
contained modules shown in Fig. 1; each module is defined as a base-
class within SIMPEG. The Mesh provides the discretization and numerical
operators. These are leveraged by the Problem, which is the numerical
physics engine; the Problem computes fields and fluxes when provided
a model and Sources. The Sources are specified in the Survey, as
are the Receivers. The Receivers take the Fields computed by
the Problem and evaluate them at the receiver locations to create
predicted data. Each action taken to compute data, when provided a
model, has an associated derivative with respect to the model; these
components are assembled to create the sensitivity. Having the ability
to compute both predicted data and sensitivities accomplishes the first
objective.

To accomplish the second objective of assessing and updating the
model in the context of the data and our assumptions, we consider a
gradient-based approach to the inversion. For this, we specify an
objective function which generally consists of a DataMisfit and
Regularization. The DataMisfit is a metric that evaluates the
agreement between the observed and predicted data, while the
Regularization is a metric constructed to assess the model's
agreement with assumptions and prior knowledge. These are combined
with a trade-off parameter to form a mathematical statement of the
InvProblem, an optimization problem. The machinery to update the
model is provided by the Optimization. An Inversion brings all of
the elements together and dispatches Directives for solving the
InvProblem. These Directives are instructions that capture the
heuristics for solving the inverse problem; for example, specifying a
target misfit that, once reached, terminates the inversion, or using a
beta-cooling schedule that updates the value of the trade-off parameter
between the DataMisfit and Regularization (cf. Parker, 1994;
Oldenburg and Li, 2005 and references within).

The output of this process is a model that must be assessed and
evaluated prior to interpretation; the entire process requires iteration
by a human, where underlying assumptions and parameter choices are
re-evaluated and challenged. Be it in resource exploration, character-
ization or development; environmental remediation or monitoring; or
geotechnical applications – the goal of this model is to aid and inform a
complex decision.

Here we note that the inversion framework described above is
agnostic to the type of forward simulation employed, provided the
machinery to solve the forward simulation and compute sensitivities is
implemented. Specific to the EM problem, we require this machinery
for Maxwell's equations. As such, we focus our attention on the
Forward Simulation portion of the implementation for the EM
problem and refer the reader to Cockett et al. (2015) and Oldenburg
and Li (2005) for a more complete discussion of inversions.

2.1. Governing equations

Maxwell's equations are the governing equations of electromagnetic
problems. They are a set of coupled partial differential equations that
connect electric and magnetic fields and fluxes. We consider the quasi-
static regime, ignoring the contribution of displacement current (Ward
and Hohmann, 1988; Telford et al., 1990; Haber, 2014)1

We begin by considering the first order quasi-static EM problem in
time,

e b
t

s

h j s

∇
→

× → + ∂
→

∂
= →

∇
→

×
→

−
→

= →

m

e (1)

where e→, h
→

are the electric and magnetic fields, b
→

is the magnetic flux

density, j
→

is the current density, and s→m, s→e are the magnetic and
electric source terms. s→e is a physical, electric current density, while s→m
is “magnetic current density”. Although s→m is unphysical, as continuity
of the magnetic current density would require magnetic monopoles, the
definition of a magnetic source term can be a useful construct, as we
will later demonstrate in Section 4 (see also Ward and Hohmann,
1988).
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where we use capital letters to denote frequency domain variables. The
fields and fluxes are related through the physical properties: electrical
conductivity σ, and magnetic permeability μ, as described by the
constitutive relations

J σ E
B H
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⎯→⎯
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(3)

The physical properties, σ and μ are generally distributed and hetero-
geneous. For isotropic materials, σ and μ are scalars, while for
anisotropic materials they are 3×3 symmetric positive definite tensors.
The same constitutive relations can be applied in the time domain
provided that the physical properties, σ, μ are not frequency-depen-
dent.

In an EM geophysical survey, the sources provide the input
energy to excite responses that depend on the physical property
distribution in the earth. These responses, electric and magnetic
fields and fluxes, are sampled by receivers to give the observed data.
The simulation of Maxwell's equations may be conducted in either
the time or frequency domain, depending on the nature of the
source; harmonic waveforms are naturally represented in the
frequency domain, while transient waveforms are better described
in the time domain.

The aim of the inverse problem is to find a model, m (which may be
a voxel-based or a parametric representation) that is consistent with
observed data and with prior knowledge and assumptions about the
model. Addressing the inverse problem using a gradient-based ap-
proach requires two abilities of the forward simulation: (1) the ability
to compute predicted data given a model

d m= [ ]pred (4)

and (2) the ability to compute or access the sensitivity, given by

d
d

J m m
m

[ ] = [ ] .
(5)

To employ second order optimization techniques, we also require the
adjoint of the sensitivity, J⊤. These two elements, when combined into
the SIMPEG framework, enable data to be simulated and gradient-based
inversions to be run. As such, this work benefits from other peoples’
contributions to the underlying inversion machinery, including: dis-
crete operators on a variety of meshes, model parameterizations,
regularizations, optimizations, and inversion directives (Cockett
et al., 2015).

3. Motivation

The motivation for the development of this framework is that it
be a resource for researchers in the field of electromagnetic

1 In most geophysical electromagnetic surveys, low frequencies or late-time measure-
ments are employed. In these scenarios σ ε ω⪢ 0 (eg. conductivities are typically less than
1S/m, ε = 8.85 × 10 F/m0 −12 and frequencies considered are generally less than 10 Hz5 ),
so displacement current can safely be ignored.
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geophysics. To best serve this goal, we require a framework that is
modular and extensible in order to enable exploration of ideas. An
associated numerical implementation is essential for this work to be
tested and acted upon. As such, we provide a tested, documented,
fully open-source software implementation of the framework (under
the permissive MIT license).

Specific to the EM problem, we require the implementation of
Maxwell's equations in both the time domain and frequency domain.
The implementation must allow for variable electrical conductivity and
magnetic permeability, anisotropic physical properties; various model
parameterizations of the physical properties (e.g. voxel log-conductivity
or parametric representations); a range of sources including wires,
dipoles, natural sources; variable receiver types; variable formulations
of Maxwell's equations; solution approaches such as using a primary-
secondary formulation; and the flexibility to work with and move
between a variety of meshes such as tensor, cylindrically symmetric,
curvilinear, and octree discretizations. Furthermore, the sensitivity
computation must be flexible enough to be computed for any sensible
combination of these approaches. In the following section, we will
outline the framework we have used to organize and implement these
ideas.

4. Simulation framework

The aim of the forward simulation is to compute predicted data,
dpred, when provided with an inversion model,2 m and Sources.
SIMPEGEM contains implementations for both time domain (TDEM) and
frequency domain (FDEM) simulations, allowing data from commonly
used EM methods to be simulated.

The framework we follow to perform the forward simulation is
shown in Fig. 2; it consists of two overarching categories:

1. the Problem, which is the implementation of the governing
equations,

2. the Survey, which provides the source(s) to excite the system as
well as the receivers to samples the fields and produce predicted data
at receiver locations.

Here, we provide a brief overview of each of the components, and
discuss them in more detail in the sections that follow.

The ‘engine’ of the forward simulation is the physics; it contains
the machinery to solve the system of equations for EM fields and
fluxes in the simulation domain when provided with a description of
the physical properties and sources. In general, the physics engine
may be an analytic or numeric implementation of Maxwell's equa-
tions. Here, we focus our attention on the numerical implementation
using a standard staggered-grid finite volume approach, requiring
that the physical properties, fields, fluxes and sources be defined on a
mesh (cf. Haber, 2014; Hyman et al., 2002; Hyman and Shashkov,
1999; Yee, 1966). We discretize fields on edges, fluxes on faces and
physical properties in cell centers, as shown in Fig. 3. To construct
the necessary differential and averaging operators, we leverage the
Mesh class within SIMPEG (Cockett et al., 2015, 2016).

To compute electromagnetic responses, the forward simulation
requires the definition of a physical property model describing the
electrical conductivity (σ) and magnetic permeability (μ) on the
simulation mesh, as well as discrete representations of the sources
used to excite EM responses (s s, )e m . Often in solving an inverse
problem, the model which one inverts for (the vector m), is some
discrete representation of the earth that is decoupled from the
physical property model. This decoupling requires the definition of

a Mapping capable of translating m to physical properties on the
simulation mesh. For instance, if the inversion model is chosen to be
log-conductivity, an exponential mapping is required to obtain
electrical conductivity (i.e. σ m= ( )). To support this abstraction,
SIMPEG provides a number of extensible Mapping classes (Cockett
et al., 2015; Kang et al., 2015).

With both the physical property model and the source specified,
we define and solve the physics, a Maxwell system of the form

A m u q s s( ) = ( , ),m e (6)

for an electric or magnetic field or flux. Here, A is the system matrix
that may eliminate a field or flux to obtain a second-order system in
a single field or flux, u, the solution vector. Correspondingly, the
vector q is the second order right-hand-side. Note, if there are
necessary manipulations to make Eq. (6) easier to solve numerically
(e.g. symmetry) we can add these here; doing so has no effect on the
derivative. The remaining fields and fluxes can be computed from u
anywhere in the simulation domain, through an operation of the
form

f F u m s m s m m= ( ( ), ( ), ( ), )e m (7)

where f is conceptually a vector of all of the fields and fluxes (i.e. e, b,
h and j). This vector is never stored in the implementation, instead
the fields are computed on demand through the subset of stored
solution vectors (u). From the computed fields (f ), predicted data
are created by the Receivers through an operation of the form

d P f= ( )pred (8)

In the simplest case, the action of P selects the component of
interest and interpolates the fields to the receiver locations, more
involved cases could include the computation of ratios of fields, as
is the case for impedance or tipper data. Obtaining predicted data
from the framework concludes the forward simulation.

The same framework is employed for both time domain TDEM and
frequency domain FDEM implementations within SIMPEGEM. In the
case of the FDEM implementation, the matrix A m( ) and the solution
vector u represent all frequencies. As these frequencies are inde-
pendent (i.e. a block diagonal matrix, ), each frequency can be
solved independently. In the TDEM code, the matrix A m( ) and the
solution vector u represent all timesteps (Oldenburg et al., 2013;
Haber, 2014) and take the form of a lower triangular block matrix
(bidiagonal in the case of Backward Euler, ), meaning the
computation of each time-step depends on previous time-steps.
The form of these matrices will be discussed further in the Physics
section (Section 4.2)

To perform a gradient-based inversion, we require the sensitivity
of the data with respect to the inversion model, thus, each action
taken to calculate data from the model must have an associated
derivative. The full sensitivity is a dense matrix and is expensive to
form and store, but when the optimization problem is solved using
an iterative optimization approach, it does not need to be explicitly
formed; all that is required are products and adjoint-products with a
vector. We treat this using a modular approach so that individual
elements of the framework can be rapidly interchanged or extended.
The process we follow to compute matrix-vector products with the
sensitivity is shown with red arrows in Fig. 4 (b). The sensitivity-
vector product Jv is built in stages by taking matrix vector products
with the relevant derivatives in each module, starting with the
derivative of the physical property with respect to the model. The
product with the adjoint is similarly shown in Fig. 4 (c) starting with
the adjoint of the receiver operation.

Using electrical conductivity, σ , as the only active property de-
scribed by the inversion model m for brevity, the sensitivity takes the
form

2We use the term inversion model to describe a parameterized representation of the
earth (e.g. voxel-based or parametric), even if the model is solely used for forward
modelling, its form sets the context for the inverse problem and the parameter-space that
is to be explored.
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Fig. 2. Forward simulation framework.

Fig. 3. Location of variables in the finite volume implementation for both a unit cell in (a) cartesian and (b) cylindrical coordinates (after Heagy et al., 2015).

Fig. 4. (a) Contributions of each module to the sensitivity. (b) process for computing Jv and (c) J v⊤ ; stars indicate where the source derivatives are incorporated.
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The annotations denote which of the elements shown in Fig. 4 are
responsible for computing the respective contribution to the sensitivity.
If the model provided is in terms of μ or a source/receiver location, this
property replaces the role of σ . The flexibility to invoke distinct
properties of interest (e.g. σ, μ, source location, etc.) in the inversion
requires quite a bit of ‘wiring’ to keep track of which model parameters
are associated with which properties; this is achieved through a
property mapping or PropMap (physical properties, location proper-
ties, etc.) within SIMPEG.

Although typically the source terms do not have model dependence
and thus their derivatives are zero, the derivatives of se and sm must be
considered in a general implementation. For example, if one wishes to
use a primary-secondary approach, where source fields are constructed
by solving a simplified problem, the source terms may have dependence
on the model meaning their derivatives have a non-zero contribution to
the sensitivity (c.f. Coggon, 1971; Haber, 2014; Heagy et al., 2015); this
will be demonstrated in the Casing Example in Section 5.3.

The derivative of the solution vector u with respect to the model is
found by implicitly taking the derivative of Eq. (6) with respect to m,
giving
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The annotations below the equation indicate the methods of the
Problem class that are responsible for calculating the respective
derivatives. Typically the model dependence of the system matrix is
through the physical properties (i.e. σ, μ). Thus, to compute derivatives
with respect to m, the derivatives are first taken with respect to σ and
the dependence of σ on m is treated using chain rule. The chain rule
dependence is computed and tested automatically in SIMPEG using the
composable Mapping classes.

In the following sections, we discuss the implementation of elements
shown in Figure 2 and highlight their contribution to the forward
simulation and calculation of the sensitivity. We begin by discussing the
inversion model and its relationship to the physical properties (Section
4.1), move on to the core of the forward simulation, the Physics (Section
4.2), and to how Sources which excite the system are defined (Section
4.3). Following these, we then discuss how Fields are calculated every-
where in the domain (Section 4.4) and how they are evaluated by the

Receivers to create predicted data (Section 4.5). We conclude this
section with a Summary and discussion on testing (Section 4.6).

4.1. Model and physical properties

For all EM problems, we require an inversion model that can be
mapped to meaningful physical properties in the discretized Maxwell
system. Typically, we consider the model to be a description of the
electrical conductivity distribution in the earth. Often, the model is
taken to be log-conductivity, in which case, an exponential mapping is
required ExpMap to convert the model to electrical conductivity. The
inversion model may be defined on a subset of a mesh and referred to
as an ‘active cell’ model. For instance, air cells may be excluded and
only the subsurface considered; in this case an InjectActiveCells
map is used to inject the active model into the full simulation domain.
In the case of a parametric inversion, the inversion model is defined on
a domain that is independent of the forward modelling mesh and the
mapping takes the parametric representation and defines a physical
property on the forward modelling mesh (e.g. a gaussian ellipsoid
defined geometrically) (Li et al., 2010; Pidlisecky et al., 2011; McMillan
et al., 2015b; Kang et al., 2015). Maps can be composed, for instance, a
layered, 1D log conductivity model defined only in the subsurface may
be mapped to a 2D cylindrical Mesh, as shown in Fig. 5.

import numpy as np

from SimPEG import Mesh, Maps

mesh = Mesh.CylMesh([20, 20]) # SimPEG cylindrically symmetric mesh

m_air = np.log(1e-8) # value of the model in the air cells

indAct = mesh.vectorCCz < 0.0 # define active cells to be subsurface only

mapping = ( Maps.ExpMap(mesh) *

Maps.SurjectVertical1D(mesh) *

Maps.InjectActiveCells(mesh, indAct, m_air, nC=mesh.nCz) )

In the code above, the ‘multiplication’ performs the composition of
the mappings. For the contribution of this action to the sensitivity, the
derivative of the electrical conductivity with respect to the model is
computed using the chain rule for the composed maps (cf. Kang et al.,
2015; Heagy et al., 2014). During an inversion, the electrical con-
ductivity on the simulation mesh associated with the current inversion
model and its derivative are accessed through the BaseEMProblem,
which is inherited by both the TDEM and FDEM problems. In some
cases, variable magnetic permeability must be considered; this is
accomplished through a property mapping (PropMap). The PropMap
handles the organization and independent mappings of distinct
physical properties (i.e. σ , μ).

4.2. Physics

To formulate a system of equations fromMaxwell's equations in time

Fig. 5. Mapping an inversion model, a 1D layered, log conductivity model defined below the surface, to electrical conductivity defined in the full simulation domain.
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(Eq. (1)) or frequency (Eq. (2)) that can be solved numerically using a
finite volume approach, we require a statement of the problem in terms
of two equations with two unknowns, one of which is a field (discretized
on edges), and the other a flux (discretized on faces). Thus, we can
consider either the E-B formulation, or the H-J formulation. For the
frequency-domain problem, we can discretize the electric field, e→, on

edges, the magnetic flux, b
→
, on faces, physical properties σ and μ-1 at cell

centers, and the source terms s→m and s→e on faces and edges, respectively
(see Fig. 3). Doing so, we obtain the discrete system:

iωCe b s
C M b M e s

+ =
− =

μ σ

m
f e

e
⊤

1− (11)

where C is the discrete edge curl, M
μ
f

1− is the face inner-product matrix

for μ 1− , Mσ
e is the edge inner-product matrix for σ ; these inner product

matrices can be computed for isotropic, diagonally anisotropic or fully
anisotropic physical properties using operators within SIMPEG's Mesh
class (Cockett et al., 2015, 2016).

Note that the source-term se is an integrated quantity. Alternatively, the

H-J formulation discretizes h
→

on edges, j
→

on faces, ρ and μ at cell centers,
and the source terms s→m, s→e on edges and faces, respectively, giving

iωC M j M h s
Ch j s

+ =
− = .

ρ μ
f e

m

e

⊤

(12)

Similarly, sm is an integrated quantity. In a full 3D simulation, the electric
and magnetic contributions for the two formulations are merely staggered
from one another. However, if using an assumption of cylindrically
symmetry, the appropriate formulation must be used to simulate either
rotational electric or magnetic contributions (Heagy et al., 2015). For both
the basic FDEM and TDEM implementations, natural boundary conditions
( x Ωb n× = 0 ∀ → ∈ ∂ in E-B formulation or x Ωj n× = 0 ∀ → ∈ ∂ in H-J
formulation), in which the fields are assumed to have decayed to a
negligible value at the boundary, are employed to construct the differential
operators, the framework and implementation are however, extensible to
consider other boundary conditions (cf. Haber, 2014; Rivera Rios, 2014).

In order to solve either Eq. (11) or Eq. (12), we eliminate one
variable and solve the second order system. This elimination is
performed by the FDEM problem classes. For instance, in FDEM
Problem_e, we eliminate b and obtain a second order system in e

iω e iωC M C M C M s s( + ) ⏞ = −
μ σ μ
f e

m
u

f
m e

A q s s

⊤

getA

( )

⊤

getRHS

( , )

1 1

m e

− −

(13)

FDEM Problem_e has methods getA and getRHS to construct the
system

and associated methods getADeriv and getRHSDeriv to construct
the derivatives of each with respect to the inversion model. These
function definitions are methods of the Problem class, where the
self variable refers to the instance of the class, and is standard
Python (cf. Python documentation - https://docs.python.org/3/
tutorial/classes.html). For FDEM Problem_e, getRHSDeriv is
zero unless one or both of the source terms have model
dependence. However, if we eliminate e and solve for b
(Problem_b), the right hand side contains the matrix Mσ

e , and
therefore will, in general, have a non-zero derivative. To solve this
linear system of equations, SIMPEG interfaces to standard numerical
solver packages (e.g. SciPy, Mumps (Oliphant, 2007; Amestoy et al.,
2001, 2006), using for example pymatsolver https://github.com/

rowanc1/pymatsolver). The components used to perform the
forward simulation are assembled in the fields method of the
BaseFDEMProblem class; the fields method solves the forward
simulation for the solution vector u (from Eq. (13)) at each
frequency and source considered.

Similarly for the time-domain problem, the semi-discretized E-B
formulation is given by

d
dt

Ce b s

C M b M e s

+ =

− =
μ σ

m

f e
e

⊤
1− (14)

and the semi-discretized H-J formulation is given by

d
dt

C M j
M h

s

Ch j s

+ =

− = .

ρ
μf
e

m

e

⊤

(15)

For the time discretization, we use Backward Euler (cf. Ascher,
2008). To form the TDEM Problem_b, we eliminate e from Eq. (14)
and apply Backward Euler for the time discretization. A single timestep
takes the form

⏟⏟ ⏟t t
CM C M b I b CM s s+ 1

Δ
+ −1

Δ
= +σ μ σ

e f
k

k
k

k e k k

A m
u

A m
u

e m

q s s

−1 ⊤

( )

+1

( )

−1 +1 +1

( , )
k

k
k

k k
1

m e

−

0
+1

+1

−1
+1

+1

⎛
⎝⎜

⎞
⎠⎟

(16)

where t t tΔ = −k k k+1 is the timestep and the superscripts k, k + 1
indicate the time index. Each TDEM problem formulation (ie.
Problem_e, Problem_b, Problem_h, Problem_j) has methods
to create the matrices along the block-diagonals, A m( )k

0
+1 and A m( )k

−1
+1 ,

as well as a method to construct the right hand side, q s s( , )k
m e

+1 , at
each timestep. When inverting for a model in electrical conductivity
using Problem_b, the sub-diagonal matrices are independent of m,
however, in other formulations, such as Problem_e, the sub-diag-
onal matrices do have dependence on electrical conductivity, thus in
general, the model dependence must be considered. Depending on the
solver chosen, it can be advantageous to make the system symmetric;
this is accomplished by multiplying both sides by M μ

f ⊤
1− . To solve the

full time-stepping problem, we assemble all timesteps in a lower block
bidiagonal matrix, with on-diagonal matrices A m( )k

0 and sub-diagonal
matrices A m( )k

−1 , giving

A m
A m A m

A m A m

A m A m
A m A m

u
u
u

u
u

q
q
q

q
q

( )
( ) ( )

( ) ( )
⋱ ⋱

( ) ( )
( ) ( )

⋮
=

⋮
n n

n n

n
n

n

n

A m
u q s s

0
0

−1
1

0
1

−1
2

0
2

−1
−1

0
−1

−1 0

( )

0

1

2

−1

0

1

2

−1

( , )m e

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

(17)

When solving the forward simulation, the full time-stepping matrix,
A m( ), is not formed, instead the block system is solved using forward

def getA(self, freq):
MfMui = self.MfMui
MeSigma = self.MeSigma
C = self.mesh.edgeCurl
return C.T*MfMui*C + 1j*omega(freq)*MeSigma

def getRHS(self, freq):
s_m, s_e = self.getSourceTerm(freq)

MfMui = self.MfMui
C = self.mesh.edgeCurl
return C.T * (MfMui * s_m) -1j * omega(freq) * s_e
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substitution with each block-row being computed when necessary.
The initial condition, u0, depends on the source type and waveform; it
is computed numerically or specified using an analytic solution. For
example, if using a grounded source and a step-off waveform, u0 is
found by solving the direct current resistivity or the magnetometric
resistivity problem, depending on which field we choose to solve for.
When a general current waveform is considered, the initial condition
will be u 0=0 , and either sm or se, depending on type of the source
used, will have non-zero values during the on-time.

Derivatives of the matrices along the block-diagonals of A m( ) along
with derivatives of the right-hand-side are stitched together in a
forward time stepping approach to compute the contribution of d

d
u
m

to
Jv and in a backwards time stepping approach for the contribution of
d
d

u
m

⊤
to J v⊤ .

4.3. Sources

Sources input EM energy into the system. They can include
grounded wires, loops, dipoles and natural sources. Controlled sources
are implemented in the FDEM and TDEM modules of SIMPEGEM, and
natural sources are implemented in the NSEM module. For simulations,
we require that the sources be discretized onto the mesh so that a right-
hand-side for the Maxwell system can be constructed (i.e. getRHS).
This is addressed by the evalmethod of the source which returns both
the magnetic and electric sources (s s,m e, shown in Fig. 2) on the
simulation mesh.

In some cases, a primary-secondary approach can be advanta-
geous for addressing the forward problem (cf. Coggon, 1971; Haber,
2014; Heagy et al., 2015). We split up the fields and fluxes into
primary and secondary components (e e e= + , b b b= + ) and
define a “Primary Problem”, a simple problem, often with an analytic
solution, that is solved in order to construct a source term for a
secondary problem. For instance, a point magnetic dipole source
may be simulated by defining a zero-frequency primary which
satisfies

e
C M b s

= 0
= .μ

f
e

⊤
1− (18)

If we define μ 1− to be a constant, Eq. (18) has an analytic solution
for b that may be expressed in terms of a curl of a vector potential
(cf. Griffiths, 2007). When using a mimetic discretization, by
defining the vector potential and taking a discrete curl, we maintain
that the magnetic flux density is divergence free as the divergence
operator is in the null space of the edge curl operator ( v∇·∇ × → = 0),
so numerically we avoid creating magnetic monopoles (c.f. Haber,
2014). The secondary problem is then

iω iωCe b b

C M b M e C M M b

+ = −

− = − −
μ σ μ μ
f e f f⊤ ⊤

1 1 1− − −

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(19)

The source terms for the secondary problem are iωs b= − ,m and
s C M M b= − ( − )

μ μe
f f⊤

1 1− − . In scenarios where magnetic permeabil-

ity is homogeneous, the electric source contribution is zero.
The left hand side is the same discrete Maxwell system as in Eq. (11);

the distinction is that we are solving for secondary fields, and a primary
problem was solved (analytically or numerically) in order to construct
the source terms. To obtain the total fields, which we sample with the
receivers, we must add the primary fields back to the solution. To keep
track of the primary fields, they are assigned as properties of the source
class.

In most cases, source terms do not have a derivative with respect to
the model. However, in a primary-secondary problem in electrical
conductivity the source term depends on the electrical conductivity and
derivatives must be considered (see Section 5.3). This is similar to

inverting for magnetic permeability using a primary-secondary ap-
proach described in Eq. (19) (Coggon, 1971; Haber, 2014; Heagy et al.,
2015). It is also possible to consider your inversion model to be the
location or waveform of the source, in which case the derivative is also
non-zero and source derivatives can be included in the optimization
procedure.

4.4. Fields

By solving the second-order linear system, as in Eq. (13), we obtain
a solution vector, u, of one field or flux everywhere in the domain. In
the case of a primary-secondary problem, this solution is a secondary
field. To examine all of the fields, we require easy access to the total
fields and total fluxes everywhere in the domain. This is achieved
through the Fields object.

For efficient memory usage, only the solution vector is stored, all
other fields and fluxes are calculated on demand through matrix vector
multiplications. As such, each problem type (e, b, h, j) has an
associated Fields object with methods to take the solution vector and
translate it to the desired field or flux. For instance, Fields_j stores
the solution vector from Problem_j and has methods to compute the
total magnetic field in the simulation domain by first computing the
secondary magnetic field from the solution vector (u; in this example,
u j= ) and adding back any contribution from the source

iω
h M C M u s= 1 (− + )μ ρ

e f
m

−1 ⊤
(20)

For their contribution to the sensitivity (Eq. (9)), the fields have
methods to compute derivatives when provided the vectors v and vd

d
u
m

(from the Physics). For instance, for h

d
d

d
d

d
d

d
d

d
d

d
d

d
d

h
m

v h
u

u
m

v h
s

s
m

h
s

s
m

h
m

v= + + + ∂
∂e

e

m

m⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (21)

The derivatives for e, b, and j take the same form. Conceptually, the
product of the full derivative and a vector v( )d

d
f
m can be thought of as a

stacked vector of all of the contributions from all of the fields and
fluxes, however, this is never formed in practice.

4.5. Receivers

The measured data consist of specific spatial components of the
fields or fluxes sampled at the receiver locations at a certain time or
frequency. Receivers have the method eval that interpolates the
necessary components of the fields and fluxes to the receiver locations
and evaluates the data required for the problem, such as the frequency
domain fields or natural source impedance data. For the frequency
domain problem, real and imaginary components are treated as
separate data so that when inverting, we are always working with real
values. The separation of the data evaluation from fields in receiver
objects allows the derivative computation to be performed and tested in
a modular fashion; this enables rapid development and implementa-
tion of new receiver types.

4.6. Summary

Having defined the role of each of the elements in the forward
simulation framework outlined in Fig. 2, the necessary machinery to
compute predicted data and sensitivities is at hand for both FDEM and
TDEM problems. The modular nature of the framework allows us to
make several abstractions which make the code more transparent and
ensure consistency across implementations. For instance, the definition
of the physical properties and associated inner product matrices is
common to all formulations in both time and frequency domains. Thus,
these are defined as properties of a BaseEM class which is inherited by
both the TDEM and FDEM modules. Within each of the TDEM and FDEM
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modules, common methods for the calculation of the fields, sensitivities
and adjoint are defined and shared across the approaches that solve for
e, b, h, or j (see the documentation http://docs.simpeg.xyz).

Testing is conducted using comparisons with analytics, cross-
comparisons between formulations, order tests on the sensitivity,
adjoint tests, examples, tests on the finite volume operators, projec-
tions, interpolations, solvers, etc. Tests are run upon each update to the
repository through the continuous integration service TravisCI
(Kalderimis and Meyer, 2011). This ensures that we can trust the tools
that we use and move faster in our research into new methods and
implementations. This also supports new developers and researchers in
contributing to the code base without fear of breaking assumptions and
ideas laid out by previous development.

5. Examples

To demonstrate the application and structure of the framework, we
explore three examples, one field example and two synthetic examples.
The purpose of the first synthetic example is to show simple time and
frequency domain electromagnetic inversions, and highlight the com-
mon framework. For this, we invert for a 1D layered Earth using a 2D
cylindrically symmetric mesh for the forward simulation. In the second
example, we show 1D inversions of field data (RESOLVE and SkyTEM)
collected over the Bookpurnong Irrigation district in Australia. The
final example is a 3D synthetic example that demonstrates a sensitivity
analysis using a parametric model of a block in a layered space for a
reservoir characterization problem where the transmitter is positioned
down-hole in a steel-cased well. We use this example to demonstrate
how mappings, multiple physical properties (both electrical conductiv-
ity and magnetic permeability), and multiple meshes, a cylindrically
symmetric and a 3D tensor mesh, can be composed in a primary-
secondary approach for performing the forward simulation and
computing the sensitivities. The scripts used to run these examples
are available on http://docs.simpeg.xyz.

5.1. Cylindrically symmetric inversions

The purpose of this example is to demonstrate the implementation
of the electromagnetic inversion in both time and frequency domains.
We have chosen this example as it is computationally light, can be run
on any modern laptop without installing complex dependencies, and
yet it uses most of the elements and functionality needed to solve a
large 3D EM problem. The script used to run this simulation is
available at: https://doi.org/10.6084/m9.figshare.5035175.

We consider two 1D inversions for log-conductivity from an EM
survey, one frequency domain experiment and one time domain
experiment. Both surveys use a vertical magnetic dipole (VMD) source
located on the surface. For simplicity, we consider a single receiver,
measuring the vertical magnetic field, located 50 m radially away from
the source. The magnetic permeability is taken to be that of free space
(μ μ= 0), and electrical conductivity is assumed to be frequency-
independent.

Fig. 6 shows the setup used for: (a) the frequency domain
simulation, (b) the time domain simulation, and (c) the common
inversion implementation. In both, a cylindrical mesh is employed for
the forward simulation and a 1D layered earth, described in terms of
log-conductivity. To map the inversion model to electrical conductivity,
a composite mapping is used to inject the 1D subsurface model into
one including air cells (InjectActiveCells), surject the 1D model
onto the 2D simulation mesh (SurjectVertical1D) and take the
exponential to obtain electrical conductivity (ExpMap), as described in
the Model and Physical Properties section (Section 4.1).

The distinction between the frequency and time domain inversions
comes in the setup of the forward simulations. Each employs the
appropriate description of the physics (FDEM or TDEM) in the
problem, and the definition of the survey, consisting of both sources

and receivers, must be tailored to the physics chosen. For the FDEM
survey, a vertical harmonic magnetic dipole located at the origin
transmits at five frequencies logarithmically spaced between 100 Hz
and 1000 Hz. The receiver is located at (50 m, 0 m, 0 m) and measures
the secondary magnetic flux (with the primary being the free-space
response of a harmonic magnetic dipole). The observed response is
complex-valued, having both real and imaginary components. We
consider these as separate data, giving a total of ten data points for
this example. For the time domain survey, we again use a vertical
magnetic dipole at the origin, however, we now use a step-off wave-
form. The observed responses are defined through time, and thus are
all real-valued. For this example, we sample 10 time channels,
logarithmically spaced between 10 s−4 and 2 × 10 s−3 . These time
channels were selected to be sensitive to depths similar to the FDEM
simulation.

With the forward simulation parameters defined in both the time
and frequency domain simulations, we can generate synthetic data. The
model used consists of a 100 m thick conductive layer (0.05 S/m)
whose top boundary is 100 m-below from the surface, as shown in
Fig. 6. The conductivity of the half-space earth is 0.01 S/m. In both
cases, 3% gaussian noise is added to the simulated data, and these are
treated as the observed data (dobs) for the inversion.

For the inversions, we specify the inversion elements: a data misfit
and a regularization. We use an ℓ2 data misfit of the form

ϕ W d d= 1
2

∥ ( − )∥d d
pred obs

2
2

(22)

where W = 1/ϵd iii and we define dϵ = 3%| | + floori i
obs . For both simula-

tions the floor is set to d10 ∥ ∥−5 obs . The regularization is chosen to be a
Tikhonov regularization on the 1D model

ϕ α αm m D m= 1
2

( ∥ − ∥ + ∥ ∥ )m s x xref 2
2

2
2

(23)

where mref is the reference model which is set to be a half- space of
log(10 )−2 . The matrix Dx is a 1D gradient operator. For both examples
α = 0.5s and α = 1x . The data misfit and regularization are combined
with a trade-off parameter, β, in the statement of the inverse problem.
To optimize, we use the second-order Inexact Gauss Newton scheme.
In this inversion we use a beta-cooling approach, where β is reduced by
a factor of 4 every 3 Gauss Newton iterations.

The initial β is chosen to relatively weight the influence of the data
misfit and regularization terms. We do this by estimating the largest
eigenvalue of J J⊤ and W Wm m

⊤ using one iteration of the power method.
We then take their ratio and multiply by a scalar to weight their relative
contributions. For this example, we used a factor of 10. For a stopping
criteria, we use the discrepancy principle, stopping the inversion when
ϕ χϕ≤ *d d , with χ = 1 and ϕ N* = 0.5d data (with ϕd as defined in Eq. (22).)

The FDEM inversion reaches the target misfit after 9 iterations, and
the TDEM inversion reaches the target misfit after 6 iterations. Fig. 7
shows the recovered models (a), predicted and observed data for the
FDEM inversion (b) and predicted and observed data for the TDEM
inversion (c). In both the FDEM and TDEM inversions, the data are fit
well. The recovered models are smooth, as is expected when employing
an ℓ2, Tikhonov regularization. Both the location and amplitude of the
conductive layer is well resolved in the FDEM and TDEM inversions.
The structure of both models are comparable, demonstrating that the
information content in both the FDEM and TDEM data are similar. The
recovered model can be improved by many additional techniques that
are not explored here (e.g. using compact norms in the regularization).
The SIMPEG package provides a number of additional directives and
regularization modules which can be useful for this purpose.

5.2. Bookpurnong field example

The purpose of this example is to demonstrate the use of the
framework for inverting field data and provide an inversion that can be
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Fig. 6. Diagram showing the entire setup and organization of (a) the frequency domain simulation; (b) the time domain simulation; and (c) the common inversion framework used for
each example. The muted text shows the programmatic inputs to each class instance.

Fig. 7. (a) True and recovered models for the FDEM and TDEM inversions; predicted and observed data for (b) the FDEM example, and (c) the TDEM example. In (b) the magnetic field
data are in the negative z-direction.
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compared with other results in the literature. In particular, we invert
frequency and time domain data collected over the Bookpurnong
Irrigation District in Southern Australia. The Murray River and
adjacent floodplain in the Bookpurnong region have become exten-
sively salinized, resulting in vegetation die-back (Munday et al., 2006;
Overton et al., 2004). Multiple electrical and electromagnetic data sets
have been collected with the aim of characterizing the near-surface
hydrologic model of the area (Munday et al., 2006). For a more
complete background on the geology and hydrogeology of the
Bookpurnong region, we refer the reader to Munday et al. (2006).

Here, we will focus our attention to the RESOLVE frequency-
domain data collected in 2008 and the SkyTEM time-domain data
collected in 2006. These data are shown in Fig. 8. The RESOLVE
system consists of 5 pairs of horizontal coplanar coils, with nominal
frequencies of 400 Hz, 1800 Hz, 8200 Hz, 40,000 Hz, and 130,000 Hz
as well as a vertical coaxial coil pair of coils which operates at 3200 Hz.
For the Bookpurnong survey, the bird was flown at ∼50 m altitude
(Viezzoli et al., 2010). The SkyTEM time-domain system operates in

two transmitter modes that can be run sequentially. The high moment
mode has high current and operates at a low base frequency (25 Hz and
can be lowered to 12.5 Hz), and the low moment operates at a lower
current and higher base frequency (222.5 Hz) (Sørensen and Auken,
2004). The Bookpurnong SkyTEM survey was flown at an altitude of
∼60 m (Viezzoli et al., 2010).

Multiple authors have inverted these data sets; 1D spatially
constrained inversions of the SkyTEM and RESOLVE data were
performed by (Viezzoli et al., 2009, 2010). Yang (2017) independently
inverted these data in 1D and provides a discussion at http://em.
geosci.xyz/content/case_histories/bookpurnong/index.html. The
SkyTEM data (high moment) were inverted in 3D by (Wilson et al.,
2010). In the example that follows, we select a location where both the
RESOLVE and SkyTEM datasets have soundings and invert them in
1D, we then proceed to perform a stitched 1D inversion of the
RESOLVE data. The data have been made available with the
permission of CSIRO and are accessible, along with the script used to
run the inversions at https://doi.org/10.6084/m9.figshare.5107711.

Fig. 8. 400 Hz In-phase RESOLVE data at (left) and High Moment SkyTEM data at 156 μs. The white dot at (462,100 m, 6,196,500 m) on both images is the location of the stations
chosen to demonstrate the 1D inversions in frequency and time.

Fig. 9. (a) Models recovered from the 1D inversion of RESOLVE (back) and SkyTEM (blue) data at the location (462,100 m, 6,196,500 m). (b) Observed (lines) and predicted (points)
frequency domain data. (c) Observed and predicted time domain data. (d) Source waveform used in for the SkyTEM inversion, the x-axis is time (μ s) on a linear scale.
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5.2.1. 1D Inversion of RESOLVE and SkyTEM soundings
We have selected a sounding location (462,100 m, 6,196,500 m) at

which to perform 1D inversions of the RESOLVE and SkyTEM (High
Moment) data. The observed data at this location are shown in Fig. 9
(b) and (c). For the RESOLVE inversion, we consider the horizontal co-
planar data collected at 400 Hz, 1800 Hz, 8200 Hz, 40,000 Hz, and
130,000 Hz. For the noise model, we assign 10% error for the three
lowest frequencies and 15% error for the two highest; a noise floor of
20 ppm is assigned to all data. The inversion mesh uses cells that
expand logarithmically with depth, starting at the surface with a finest
cell size of 1 m. The forward simulation is carried out on the
cylindrically symmetric mesh, similar to the previous example. In the
inversion, we employ a Tikhonov regularization in which length scales
have been omitted in the regularization function. A fixed trade-off
parameter of β = 2 is used, αz is set to be 1, and αs is 10−3. A half-space
reference model with conductivity 0.1 S/m is used, this also served as
the starting model for the inversion. The inversion reached target misfit
after 2 iterations. The resulting model and data fits are shown in Fig. 9.
Very close to the surface, we recover a resistor, while below that, we
recover a conductive unit (∼2 S/m). Examining the data (Fig. 9b), we
see that the real components are larger in magnitude than the
imaginary, and that with increasing frequency, the magnitude of the
imaginary component decreases while the real component increases;
such behavior is consistent with an inductive- limit response, and we
thus expect to recover conductive structures in the model.

For the time domain inversion, we consider the SkyTEM high
moment data. We use the source waveform shown in the inset plot in
Fig. 9 (c). For data, we use 21 time channels from 47 μs to 4.4 ms; the
latest three time channels (5.6 ms, 7 ms and 8.8 ms) are not included.
For data errors, we assign a 12% uncertainty and a floor of
2.4 × 10 V/Am−14 4. We again use a Tikhonov regularization, here with
α = 1z and α = 10s

−1. The trade-off parameter is β = 20. A half-space
starting model of 0.1 S/m is again employed. For the reference model,
we use the model recovered from the RESOLVE 1D inversion. As we
are using the high-moment data, we do not expect the SkyTEM data to
be as sensitive to the near surface structures as the RESOLVE data. By
using the model recovered in the RESOLVE inversion as the starting
model for the SkyTEM inversion, we can assess agreement between the
two and isolate structures that are introduced by the SkyTEM inver-
sion. The inversion reached the target misfit after 3 iteration and the

results are shown in Fig. 9. At this location, there is good agreement in
the models recovered from the RESOLVE and SkyTEM data, with both
supporting a near-surface resistor and showing a deeper conductive
structure.

5.2.2. Stitched 1D inversion of RESOLVE data
Next, we perform a stitched 1D inversion of the RESOLVE data set.

With this example, we aim to demonstrate a practical inversion
workflow that will run on modest computational resources. As such,
we have heavily downsampled the data set, taking 1021 stations of the
40,825 collected. A 1D stitched inversion is a relatively straight-
forward approach for creating a conductivity model - each sounding
is inverted independently and the inversion results are then assembled
to create a 3D model. This can be a valuable quality-control step prior
to adopting more advanced techniques such as including lateral or 3D
regularization across soundings or even performing a 3D inversion. In
cases where the geology is relatively simple, a stitched 1D inversion
may be sufficient. The inversion parameters are the same as those used
in the inversion of the RESOLVE sounding discussed in the previous
section. A plan- view of the recovered model 9.9 m below the surface is
shown in Fig. 10a. A global χ - factor of 0.74 was reached, and plots
comparing the real component of the observed and predicted data at
400 Hz are shown in Figs. 10 (b) & (c).

The recovered model (Fig. 10a), bears similar features to the
models found by Viezzoli et al. (2010) (Fig. 4 of Viezzoli et al., 2010)
and by Yang (2017). In general, the northwestern portion of the
Murray river is more resistive, in particular near (459,000 m,
6,200,000 m) and (460,000 m, 6,198,000 m) while the southeastern
portion of the river is more conductive. Two mechanisms of river
salinization have been discussed in Munday et al. (2006), Viezzoli et al.
(2010): the resistive regions are attributed to a “losing” groundwater
system, in which freshwater from the Murray River discharges to
adjacent banks, while the conductive regions are attributed to a
“gaining” system, in which regional saline groundwater seeps into the
river.

5.3. Steel-Cased well: Sensitivity analysis for a parametric model

The purpose of this example is to demonstrate the modular
implementation of SIMPEGEM and how it can be used to experiment

Fig. 10. (a) Conductivity model 9.9 m below the surface from a stitched 1D inversion of RESOLVE data. (b) Real component of the observed RESOLVE data at 400 Hz. (c) Real
component of the predicted data at 400 Hz.
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with simulation and inversion approaches. Conducting electromagnetic
surveys in settings where steel casing is present is growing in interest
for applications such as monitoring hydraulic fracturing or enhanced
oil recovery (Hoversten et al., 2015, 2014; Um et al., 2015; Commer
et al., 2015; Marsala et al., 2015; Cuevas, 2014a; Weiss et al., 2015;
Yang et al., 2016). Steel is highly conductive (∼5.5 × 10 S/m6 ), has a
significant magnetic permeability ( μ μ∼50 − 1000 0) (Wu and Habashy,
1994). This is a large contrast to typical geologic settings, with
conductivities typically less than 1 S/m and permeabilities similar to
that of free space, μ0. In addition to the large physical property
contrast, the geometry of well casing also presents a significant
computational challenge. Well casing is cylindrical in shape and only
millimeters thick, while the geologic structures we aim to characterize
are on the scale of hundreds of meters to kilometers. Inverting
electromagnetic data from such settings requires that we have the
ability to accurately simulate and compute sensitivities for models with

casing and 3D geologic variations. One strategy that may be considered
is using a primary- secondary approach, simulating the casing in a
simple background and using these fields to construct a source for the
secondary problem which considers the 3D structures of interest
(Heagy et al., 2015). Here, we demonstrate how the framework can
be employed to implement this approach and compute the sensitivities.
The parametric representation of the model allows us to investigate the
expected data sensitivity to specific features of the model such as the
location, spatial extent and physical properties of a geologic target.
Such an analysis may be used to investigate how well we expect certain
features of the model to be resolved in an inversion and it could be
employed as a survey design tool. In what follows, we outline the
general approach and then discuss a specific implementation. The
script used to generate this example is available at: https://doi.org/10.
6084/m9.figshare.5036123.

5.3.1. Approach
In this example we design a survey to resolve a conductive body in a

reservoir layer in the presence of a vertical, steel-cased well as shown in
Fig. 11. To calculate the sensitivity of the data with respect to each
model parameter requires that we be able to simulate and calculate
derivatives of each component used to simulate data.

Fig. 11. Setup of parametric models and calculation of the sensitivity for a primary secondary approach of simulating 3D geology and steel casing.

Fig. 12. Cross sectional slice of primary (casing + background) real current density. The
colorbar is logarithmically scaled and shows the amplitude of the real current density.

Fig. 13. Depth slice at z = −950 m showing the source current density for the secondary
problem.
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We use a primary-secondary approach, as described in Heagy et al.
(2015). The physical properties, fields and fluxes are composed of two
parts, a primary and a secondary part. For example in the E-B

formulation, σ σ σ= + , μ μ μ= + , E E E
⎯→⎯

=
⎯→⎯

+
⎯→⎯

,

B B B
⎯→⎯

=
⎯→⎯

+
⎯→⎯

. A primary problem, which includes the cylindrically
symmetric part of the model (casing, source, and layered background)
is defined

E iω B

μ B σ E s

∇
→

×
⎯→⎯

+
⎯→⎯

= 0

∇
→

×
⎯→⎯

−
⎯→⎯

= →.e−1 (24)

This primary problem is solved on a cylindrically symmetric mesh with
cells fine enough to capture the width of the casing and its solution
yields the primary fields. The primary fields are then interpolated to a
3D tensor mesh, suitable for discretizing 3D reservoir-scale features.
The primary fields are used to construct the source current density for
the secondary problem, given by

E iω B

μ B σ E q

q σ σ E

∇
→

×
⎯→⎯

+
⎯→⎯

= 0

∇
→

×
⎯→⎯

−
⎯→⎯

= →

→ = ( − )
⎯→⎯

.

−1

(25)

By solving the secondary problem, we then obtain secondary fields and
fluxes. These are sampled by the receivers to create predicted data.

In Eq. (25), we see that the source term, q→ has model dependence

through σ, σ and E
⎯→⎯

. Typically primary-secondary approaches are
used when the background is assumed to be known, as it is captured in
the primary. Here, however, we do not wish to assume that the
background is known; in practice it may be constrained, but it is not
generally well known. The primary solution is used instead to separate

the contributions of the casing and the block so that we can avoid a
potentially crippling assumption. This approach allows an appropri-
ately tailored mesh to be constructed for each problem. Thus, we
require derivatives not only on the 3D secondary mesh, but also
derivatives of the primary fields (in this case on a cylindrically
symmetric mesh). To implement this type of primary-secondary
problem, we construct a Primary-Secondary source which solves the
primary problem to provide the primary fields. Since all derivatives are
implemented for the primary problem, when computing sensitivities
for the secondary problem, the derivatives due to the primary problem
are accounted for in the contributions of the source term to the
derivative. This is conceptually shown in Fig. 11.

For this example, we wish to investigate how sensitive the specified
survey is to aspects of the model which we might want to resolve in a
field survey, such as the geometry and location of the anomalous body,
as well as the physical properties of the geologic units. A voxel-based
description of the model does not promote investigation of these
questions, so we will instead apply a parametric description of the
model. The model is parameterized into nine parameters which we
consider to be unknowns ( σlog( )background , σlog( )layer , σlog( )block , z0layer,
hlayer, x0block, xΔ block, y0block, yΔ block). In what follows, we examine the
sensitivity of the data with respect to these model parameters.

5.3.2. Implementation
The model we use is shown in Fig. 11. It consists of a 1 km long

vertical steel cased well (diameter: 10 cm, thickness: 1 cm) with
conductivity σ = 5.5 × 106 S/m, and magnetic permeability μ μ= 50 0.
The casing is assumed to be filled with fluid having a conductivity of
1S/m. The background has a resistivity of Ω100 m, and the 100 m thick
reservoir layer has a resistivity of Ω10 m. The target of this survey is the
conductive block (2S/m) with dimensions 400 m × 250 m × 100 m. The

Fig. 14. Simulated real electric field data as measured at the surface using a primary secondary approach for casing and a conductive target (outlined in white). The upper panels show
the total Ex (a) and Ey (b); the lower panels show the secondary (due to the conductive block) Ex (c) and Ey (d). Note that the colorbars showing the secondary electric fields are not on
the same scale. The limits of the colorbars have been set so that the zero-crossing is always shown in the same color.
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source used consists of two grounded electrodes, a positive electrode
coupled to the casing at a depth of 950 m, and a return electrode 10 km
from the wellhead on the surface. We consider a frequency-domain
experiment at a transmitting frequency of 0.5 Hz and 1A current. For
data, we consider two horizontal components (x and y) of the real part
of the electric field measured at the surface.

To accomplish this simulation and sensitivity calculation, we
construct 3 mappings, shown conceptually in Fig. 11, in order to
obtain: (1) σ on the primary (cylindrical) mesh, (2) σ on the
secondary mesh (as is needed in Eq. (25)) and (3) σ on the secondary
mesh. Differentiability of the electrical conductivity models with
respect to each of the 9 parameters is achieved by constructing the
model using arctangent functions (cf. Aghasi et al., 2011; McMillan
et al., 2015b). Each of these parameterizations can be independently
tested for second-order convergence to check the validity of the
computation of the derivatives (cf. Haber, 2014).

The source term for the secondary fields requires that we simulate

the primary fields. For this, we use the mapping of m to σ on the
primary mesh and employ the H-J formulation of Maxwell's equations
in the frequency domain in order to describe a vertically and radially
oriented current density and a rotational magnetic field. In this
simulation, we also consider the permeability of the casing. The source
consists of a wire-path terminating downhole at −950 m where it is
coupled to the casing. At the surface, the return electrode is 10 km
radially away from the well.3 With these parameters defined, we have
sufficient information to solve the primary problem and thereby obtain
the primary electric field everywhere in the simulation domain. The
real, primary current density for this example is shown in Fig. 12.

This primary field is described on the cylindrical mesh, so in order
to use it to construct the source term for the secondary problem, we

Fig. 15. Sensitivity of surface real Ex (left) and Ey (right) data with respect to the physical properties, ( V m σ( / )/(log( ))).

3 Due to the symmetry employed, the return electrode is a disc. Numerical experiments
over a half-space show that the real, radial electric field from the cylindrical simulation
exhibits the same character as the 3D simulation but is slightly reduced in magnitude.
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interpolate it to the 3D tensor mesh. The remaining pieces necessary
for the definition of the secondary source on the 3D mesh are defining σ
and σ ; this is achieved through the mappings defined above. The
primary problem and source, along with the mapping required to
define σ , are used to define a primary-secondary source, which solves
a forward simulation to compute the secondary source-current, se,
shown in Fig. 13. Note that the source current density is only present
where there are structures in the secondary model that were not
captured in the primary, in this case, where the conductive block is
present.

With the source term for the secondary problem defined, the
secondary problem is then solved resulting in the predicted data at
the surface. Here, we focus our attention to the real x, y components of
the electric field, as shown in Fig. 14. The top two panels show the total
(casing and conductive target) x-component (a) and y-component (b)
of the electric field while the bottom two panels show the secondary
(due to the conductive target, outlined in white) x-component (c) and
y-component (d) of the electric field. As expected, the total electric field
is dominated by the source that is located in the casing. As shown in
Fig. 12 the majority of the current is exiting into the layer at depth, but
current is still emanating along all depths of the casing. Measured
electric fields at the surface are sensitive to the currents that come from
the top part of the casing and hence the observed fields are strongest
closest to the pipe and they fall off rapidly with distance. The behavior
of the secondary electric field is, to first order, like that expected from a
dipole at depth oriented in the x-direction. It has a broad smooth
signature at the surface.

Now that the pieces are in place to perform the forward simulation,
we want to compute the sensitivity. Generally, we do not form the full
sensitivity when performing an inversion as it is a large, dense matrix.
Here however, since the inversion model is composed of only nine
parameters, the final sensitivity matrix is small (nine by number of
data). The steps followed to stitch together and compute the sensitivity

are shown in the diagram in Fig. 11. To check the simulation approach
for this example, the sensitivity is tested for second-order convergence
(cf. Haber, 2014).

Figs. 15, 16 and 17 shows the sensitivity of both the real Ex(left),
and real Ey (right) data with respect to each of the 9 model parameters.
Note that the colorbars are not identical in each image and the units of
the sensitivity are dependent on the parameter under consideration. In
each image, the white outline shows the horizontal location of the
block.

In Fig. 15, we focus on the physical properties of the background
layer and block, all parametrized in terms of σlog( ). Clearly, the
conductivity of the background has the largest influence on the data,
in particular near the well (at the origin), followed by the conductivity
of the layer, where the injection electrode is situated. There are 4 orders
of magnitude difference between the maximum sensitivity of the data
with respect to the conductivity of the block and that of the back-
ground. This indicates that in order to resolve such an anomalous body,
the background must be well-constrained. When looking at Fig. 15 (f),
we see that the areas of largest sensitivity of the Ey data with respect to
the physical properties of the block are spatially distant from the body
and the well. This indicates that if one is designing a survey, it may be
advantageous to collect data in these regions as these are also regions
where the influence of the properties of the background are less
dominant.

In Fig. 16, we focus on the depth and thickness of the layer. Note
that the depth and thickness of the block are constrained to be the same
as the layer, so the character of the sensitivity is influenced by the
presence of the block. Here, the units of the sensitivity are V m m( / )/ .
Similarly, Fig. 17 shows the sensitivity with respect to the geometric
properties of the block.

To compare between the physical properties and geometry of the
model, the scales of interest must be taken into consideration. In
Table 1, we show the maximum amplitude of the sensitivity with

Fig. 16. Sensitivity of surface real Ex (left) and Ey (right) data with respect to the layer geometry, ( V m m( / )/ ).
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Fig. 17. Sensitivity of surface real Ex (left) and Ey (right) data with respect to the block geometry, ( V m m( / )/ ).
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respect to each individual model parameter. From this, we approximate
the sensitivity as linear about the true model and compute the
perturbation required to cause a change of 10 V/m−9 in the data
( m JΔ = 10 /max | |i i

−9 ). For ease of comparison, the perturbations in the
log-conductivity of the background, layer, and block were converted to
linear conductivity by

σ σ σ σ σΔ = exp[log( ) + Δ log( ) ] − exp[log( ) − Δ log( ) ]
2

.unit
unit unit unit unit

(26)

In Table 1, we see that to cause a perturbation in the Ex data by
∼10 V/m−9 , requires a 0.007% change in the conductivity of the
background, while the conductivity of the block would need to change
by 0.8% to have a comparable impact in the Ex data. In comparing
between physical properties and geometric features of the model, we
see that a change in the conductivity of the block by 0.8% has a similar
impact in the Ex data as moving x0 of the block by ∼16 m. For a change
in y0 of the block to have a comparable impact in the Ex data would
require that it be perturbed by ∼85 m. However, the Ey data are more
sensitive to y0; a perturbation of ∼24 m, about 1/3 of that required in
the Ex data, would result in a ∼10 V/m−9 change in the measured
responses.

Examining the nature of the sensitivity with respect to parameters
describing the target of interest provides insight both into how one
might design a survey sensitive to the target, and how well we may be
able to resolve various geometric features or physical properties in the
model. For the example shown here, we see that it may be advanta-
geous to collect data away from the well and hundreds of meters offset
from the block. These are regions where both the Ex and Ey data have
high sensitivity to features of the target and are distant from the steel-
cased well, where we have the highest sensitivity to the background.
Thus, data collected in these regions may improve our ability to resolve
the target of interest. The parametric definition of the model provides a
mechanism for examining how well we might expect to resolve various
aspects of the target, such as its spatial extent. There are clearly further
questions that may be investigated here, including exploring survey
parameters such as the impact of varying the frequency on our ability
to resolve the block, or performing the same analysis for a time-domain
survey. A modular framework, with accessible derivatives, is an asset
for exploring these types of questions.

6. Conclusion

The framework we have laid out has rigorously separated out
various contributions to the electromagnetic equations in both time
and frequency domain. We have organized these ideas into an object
oriented hierarchy that is consistent across formulations and attends to
implementation details and derivatives in a modular way. The organi-
zation of the framework and its associated numerical implementation
are designed to reflect the math. The goal is to create composable

pieces such that electromagnetic geophysical inversions and forward
simulations can be explored and experimented with by researchers in a
combinatorial, testable manner.

We strive to follow best practices in terms of software development
including version control, documentation unit testing, and continuous
integration. This work and the SIMPEG project are open-source and
licensed under the permissive MIT license. We believe these practices
promote transparency and reproducibility and we hope that these
promote the utility of this work to the wider geophysics community.
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