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a b s t r a c t

In this paper we describe the static topological fracture structure of five rock samples from three regions
in Eastern Mexico by the application of centrality and communicability measures used in the area of
complex networks. The information obtained from fracture images is used to characterize the fracture
networks. The analysis is divided into two groups of characteristics. The first provides a general summary
of the fracture network through the description of the number of nodes, edges, diameter, radius, lengths
and clustering coefficients. A second group of features centers on the description of communicability in
the network by means of three indexes recently proposed. In addition, we apply centrality measures
(betweenness, closeness, eigenvector and eccentricity) for quantifying the importance of nodes in the
entire network. Finally, we identify a topology for fracture networks using a classification based on the
degree of communicability. The most important results obtained in this work are focused in the topo-
logical characteristic patterns found in fracture networks applying the approach of complex networks
that in general provide local and global parameters of connectivity and communicability.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fracture systems have a large impact on fluid flow and, there-
fore, a crucial influence on the productivity of geological forma-
tions especially in those of low permeability. Rock fracture systems
have attracted much attention for a long time in fields such as
hydrocarbon geology and hydrogeology (Cacas et al., 1990; Caine
et al., 1996; Escuder-Viruete et al., 2003; Hitchmough et al., 2007;
Narr et al., 2006; Sarda et al., 2002; Sarkar et al., 2004). Analysis
for rock fracture systems is necessary in the evaluation of potential
oil production in reservoirs (Bogatkov and Babadagli, 2007; Han
et al., 2013; Hansford and Fisher, 2009; Witte et al., 2012). It is
traditionally centered in the determination of fracture lengths,
orientations, apertures, intensity and permeability; see for ex-
ample (Dershowitz and Herda, 1992; Hakami and Larsson, 1996;
Lee et al., 2011; Rouleau and Gale, 1985; Smith and Schwartz, 1984;
Voeckler and Allen, 2012; Koike et al., 2015). In nature fracture
networks are in 3D, and it is hard to study them from fracture
networks in 2D only. In addition, fracture flow capability not only
depends on the geometry and topology of the channel systems but
ago),
also on other parameters such as viscosity, pressure gradient,
rugosity of the surface (Berkowitz, 2002; Ghaffar et al., 2012).
Nevertheless, in geological scenarios the analysis in 2D images can
be useful in order to identify geometric and topological para-
meters that can support the characterization of the rock samples
(Jafari and Babadagli, 2012; Santiago et al., 2012; Sarkar et al.,
2004). In this work, we characterize the static properties in 2D
fracture networks though which a fluid may flow in order to
identify topological properties that may become important in
conductive fractures.

Recent contributions in the study of fracture characterization
are, for example, Lyman (2003), Santiago et al. (2014), Seetal and
Natarajan (2010) and Wang et al. (2011). In particular, works fo-
cused in the topological analysis of 2D fracture systems that apply
classical graph theory are reported (Andresen et al., 2013; Bour
and Davy, 1998; Hardebol and Bertotti, 2013; Sanderson and Nix-
on, 2015; Santiago et al., 2014; Yang et al., 1995). These authors
focus on computer image processing tools, techniques for ex-
tracting the rock fracture system from images, fracture tracing,
extraction of features of fractures such as length, width, spacing,
density, roughness, aperture and determination of orientations,
detection and quantification of cross and ending points of the
fractures, and in general computation of distributions of all of
these attributes. In previous works (Santiago et al., 2012, 2014) a
methodology is proposed for the identification of regions of
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Fig. 1. Samples of original fracture networks. (Left) Sample of fractures JT-6 with number of nodes and links of 663 and 728, respectively. (Right) Sample of fractures MM
with number of nodes and links of 1567 and 1996, respectively. A scale bar (mm) is included on each figure.
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interest through a preprocessing of fracture images in rocks. Noise
removal and filtering are applied to enhance the image quality and
to facilitate further processing, where the rock fracture system is
obtained after transforming it into a binary image.

In this work, for the analysis of the fractures in rocks, we use
information from two-dimensional binary images where con-
nected multiple fractures form a network. The five samples of
rocks we analyze come from three different locations of South-
Eastern Mexico, one of them (MM) comes from an outcrop (Jur-
assic–Early Cretaceous) located in Xochitlán, Chiapas; the sample
labeled with CH-2 comes from the Northern Golf of Mexico (Pa-
leocene-Eocene), and samples JT-3, JT-6 and JT-8 (Tithonian) are
belonging to the Campeche region. These samples are studied due
to the interest of characterizing naturally fracture reservoirs; and
all these samples come from naturally fractured rocks except CH-2
that corresponds to a clayey-sandstone reservoir. Depending on
the nature of the rock fracture system (cores, outcrops, hand-
samples), the revealed structures have significant heterogeneity
(Baker and Kuppe, 2000). Knowledge of the topological structural
properties of such fracture systems may provide useful informa-
tion for understanding their organization, function and dynamics.
For establishing the relation between insights gained from this
study and the fracture features that modelers need (Dershowitz
and Herda, 1992; Lee et al., 2011), we characterize topological
properties of the fracture networks by using quantitative measures
used in complex network (Estrada, 2010a; Newman, 2003, 2010)
in order to find distinctive patterns that modelers could use in
practice. Furthermore, a topological approach that classifies
networks in four classes is applied to fracture networks that is
essentially based on local and global communicability. One of the
most common indicators for identifying the most important nodes
within the network is the centrality of a graph or network, and in
this work, a set of centrality measures is applied and all of them
are correlated themselves. Three of such measures stand out as
important: closeness, betweenness, and eigenvector centrality
(Bonacich, 1987; Freeman, 1977; Sabidussi, 1966).

The organization of the document is presented as follows. In
Section 2, a fracture network is defined as a complex network
describing its main elements. In Section 3, the images of fracture
networks used are presented, first showing the original sources of
fracture images, and then displaying them as graphs; also in this
section, the methods and formulations of metrics applied are de-
scribed. In Section 4, the results of the application of centrality and
communicability measures and the relations among them are
presented. The method for identify the topological class for frac-
ture networks is also described in this section; and finally, in
Section 5, we comment our conclusions and relevant points.
2. Fracture networks as complex networks

In general, a network is defined as a tuple G¼(V,E), where V is a
finite set of nodes, and E is a relation between nodes. In an un-
directed graph, the relation is symmetric, that is, the links are
bidirectional, and it is named unweighted graph when the value of
connection is one if there is a relation between two nodes and



Fig. 2. Examples of extracted fracture networks using Ucinet for your representations. The representation of each network is projected so that avoids the nodes overlap each
other and optimizes space among nodes.

Table 1
Summary of characteristics of fracture networks.

Sample n m Size (n/m) D r C T M

JT-8 3585 4183 0.857 111 57 0.046 135 4353
CH-2 1686 1905 0.885 124 62 0.066 76 2669
MM 1567 1996 0.785 94 47 0.054 68 2045
JT-3 779 887 0.878 51 26 0.026 16 1239
JT- 6 633 728 0.869 51 26 0.065 26 1590

Description of parameters:
n¼number of nodes, m¼number of links, D¼diameter, r¼radius, C ¼clustering
coefficient, and T¼number of triangles, M¼total number of fracture segments.
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otherwise zero. Defining a fracture network as G, the set V of
nodes represents the intersection points of the fracture segments,
and the set E of edges represents links or connections between
intersection points. In this work, we define the fracture networks
as connected, undirected and unweighted graphs and denote as
n¼ |V| and m¼ |E| the number of nodes and edges or links, re-
spectively. ( )d s t,g is the length of a path between the nodes s and
t; the subindex g indicates that it is the geodesic path (the shortest
path). The connectivity of nodes and edges is given by the ad-
jacency matrix A, it contains only zeros and ones. Once this matrix
is determined from the fracture image, the centrality measures
and topological indices are computed, namely betweenness, clo-
seness, eigenvector centrality, eccentricity, invariability and the
Estrada index, all of them are described in Appendix A.
3. Method

3.1. Data processing

The data used in this work come from fracture images with
different file extensions (png, bmp). Two examples of original
images corresponding to fractures in rocks are shown in Fig. 1.
Other three of the samples used are similar to the traces displayed
on the left side in Fig. 1 that are JT-3, JT-8 and CH-2 (see Figs. B.1–
B.3 in Appendix B), the sizes of these fracture images are in
average 0.80�0.80 cm2; while the size of the sample on the right
side in Fig. 1, is 10�20 cm2 approximately. For the image
processing and algorithms to construct the fracture segments see
Santiago et al. (2012). The resulting fracture network is re-
presented by a graph with a set of nodes and edges or links.Matlab
is used for the data processing; and for the geometric re-
presentation of the network, we employed a computational tool
Ucinet (Borgatti et al., 2002). Networks resulting from this trans-
formation are presented in Fig. 2. In this transformation of original
fracture image into the construction of a graph, only the largest
connected network is extracted from the image (see Figs. B4 and
B5 in Appendix B), in graph theory it is named the largest com-
ponent, this is, due to not all the fracture segments are connected
among them. In Fig. B5, the nodes corresponding to the main
component are labeled on the original image. In general, these
resulting components or networks have an elongated structure



Fig. 3. Centrality measures applied to sample CH-2. Each graph indicates the behavior of a centrality measure, that is, betweenness, eccentricity, closeness and eigenvector
for (a), (b), (c) and (d), respectively.The x axis displays the nodes in ascending order according to the resulting value of the metric applied (y axis).

Fig. 4. Betweenness for sample JT-8 (see Fig. 2(b)). The magnitude is represented
by the size of the nodes, where the lowest values are in the extreme of the bran-
ches while the highest values are in the central part of the structure (backbone)
indicating the most important channels.

Table 2
Results of connectivity and communicability indices in fracture networks.

Sample n m Size (n/m) EE(G) σ ( )G Comm

JT- 6 633 728 0.869 1822.12 0.242 0.043
CH-2 1686 1905 0.885 4766.33 0.241 0.015
JT-3 779 887 0.878 2186.42 0.239 0.033
JT-8 3585 4183 0.857 10160.56 0.181 0.007
MM 1567 1996 0.785 4688.52 0.098 0.016
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with many branches.

3.2. Metrics and topological classes in complex networks

For analyzing fracture networks, first we apply traditional
statistical measures and then computing metrics that allow iden-
tifying the importance of nodes such as centrality measures. Later,
in a second analysis we apply a topological approach for classifying
fracture networks based on the local and global communicability,
all of them are described in the following paragraphs.

A basic centrality measure is the degree of a node (ki) see Eq.
(1) (Freeman, 1979) that adds up the links that connect to i node.
Other sophisticated measures that also compute the centrality in
the network utilizing distances among nodes are shown below

∑=
( )

k A
1

i
j

n

ji

Closeness centrality is the inverse sum of the geodesic dis-
tances obtained from a given node to the rest of the nodes in the



Fig. 5. Type of network class IV. In this graph, each circle represents the resulting
correlation between local and global communicability of each node. Most nodes in
each sample are correlated under the ideal line (local communicability is higher
that the global communicability), that is, some neighborhoods of nodes are well
communicated among them but at the same time they are few connected with
other neighborhoods belonging to the fracture network. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)
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network (Sabidussi, 1966). Betweenness centrality counts the
number of times where a node i falls on the geodesic paths among
all the pairs of nodes (Freeman, 1979). Eigenvector centrality is
based on the largest characteristic eigenvalue of the adjacency
matrix (Bonacich, 1987). Eccentricity is defined as the shortest
distance from a certain node to the farthest one in the network; in
particular, the largest eccentricity is called the diameter of the
network. A more detailed explanation of these metrics is given in
Appendix A and references.

The communicability in the networks is analyzed by the Es-
trada index and denoted by EE(G). This metric quantifies the
amount of subgraphs in the network (see Eq. (A.8), Appendix A).
Another measure of communicability described in Eq. (A.10) in
Appendix A (Estrada, 2012) that defines the capacity to connect
between pairs of nodes taking into account all the paths that
connect to all nodes.

The correlation between local and global communicability in
the network is computed using universal network classes defined
in Estrada (2012). The local communicability for a given node is
evaluated using the Estrada index considering odd closed path
subgraphs; and eigenvector centrality is used to measure global
communicability, combining these two variations of communic-
ability four classes are defined. The first type of network (class I) is
the homogeneous network or ideal network where the local
communicability is representative of the global one, that is, all the
nodes have the same degree in the whole network. The other
three classes belong to heterogeneous networks where local
communicability is not a good predictor of the global behavior
(Estrada, 2007; Estrada and Hatano, 2007). Topologically, class II
shows node neighborhoods separated by structural holes (neigh-
borhoods with low communicability). Class III includes networks
with highly connected nodes (central cores) surrounded by spar-
sely populated regions. Networks that combine both character-
istics of class II and III are classified as class IV.
4. Results and discussions

A summary of the main characteristics of the fracture net-
works described previously is presented in Table 1. It includes the
number of nodes (n) and edges (m), diameter (D), radius (r),
clustering coefficient C and number of triangles (T) sorted by the
number of nodes (633–3585). A ratio of network size is presented
in the fourth column; it establishes a relation between the
numbers of nodes and links, where a network with many links
will have a value close to zero. In all our networks, the resulting
values in the application of this metric are found between 0.78
and 0.88. The average clustering coefficient (0.0514) is relatively
low, consistent with the existence of a low number of triangles.
As a comparative example, this parameter takes values of 0.417
and 3.68 for problems associated with protein interaction and
drug networks (Estrada, 2012), respectively, networks defined as
small worlds (Watts and Strogatz, 1998). The last parameter in-
dicates the intensity of fractures computed by the total number of
links (fracture segments that connect the intersection of fracture
traces) found in the whole sample; unlike the parameter M, m
only includes the number of links belonging to the largest con-
nected network. The length of each link or fracture segment was
measured by the quantity of pixels, an example of length dis-
tribution taking the sample JT-6 is presented in Fig. B.6 in Ap-
pendix B.

4.1. Applying metrics to fracture networks

Unlike other networks, fracture networks have a low degree
typically between 3 and 6, with the existence of many nodes of
degree one corresponding to the extreme points of the segments
of fractures (effect of sampling). In many networks (such as in-
ternet, protein, gene, social) this parameter usually varies from one
to thousands or even millions of links.

To illustrate the relationships of the centrality measures (see
Fig. 3) we use the network extracted from sample CH-2 (Fig. 2(d)).
This fracture network has 1686 nodes shown in each subsection
of Fig. 3 in ascending order with respect to the resulting values of
each metric. Betweenness, eccentricity, closeness, and eigenvector
centralities show similar patterns to all the fracture samples used
(Figs. C.1–C.3 in Appendix C). In particular, for betweenness most
nodes have a value less than 0.1, and a few nodes are found as the
most important ones corresponding to the last one hundred
nodes with value over 0.2 (Fig. 3(a)) thus indicating a direct
dependence of fracture system size and the connectivity degree.
In Fig. 4, we show the network backbone that comprises the
nodes with the highest betweenness values (nodes represented
by the largest circles). In a fluid flow context, the backbone would
be the main structure for transporting any fluid. Eccentricity
and closeness show an almost linear relation to each other asso-
ciated to the elongated nature of the structures seen in all our
network samples (Fig. 2(b) and (c)). Eigenvector centrality has a
similar behavior to betweenness Fig. 3(d), with the difference that
the first nodes in eigenvector take value over zero. For describing
the flow efficiency considering the structure of the fracture net-
work, we consider the connections among fractures in the rock by
using the degree of nodes as is described in the next commu-
nicability indicators.

In Table 2, the results of communicability measures are pre-
sented. Fifth column shows the resulting values by the application
of Estrada index (EE(G)), where the minimum and maximum va-
lues are 1822.12 and 10160.56 corresponding to fractures JT-6 and
JT-8, respectively. As an example and in comparison with other
complex networks (Estrada, 2012) the minimum and maximum
real values for the trans-yeast and Internet networks are
3.589�104 and 6.174�1013 (considering the sum of odd and even



Fig. 6. Correlation among centrality measures. Each graphic compares three metrics using the sample JT-3 (Fig. 2(e)). The values of the metrics are indicated on the x, and y
axes, and the third metric is expressed by the color intensity according to the normalized values (0-1). The different combinations of measures are shown by the subsections
(a–f). (a) Eccentricity, closeness and betweenness; (b) Eccentricity, betweenness and closeness, (c) Eccentricity, eigenvector and betweenness, (d) Closeness, betweenness
and eccentricity, (e) closeness, eigenvector and eccentricity, and (f) betweenness, eigenvector and eccentricity. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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paths). In our fracture network, the EE(G) values are smaller than
in those problems because of the low connectivity among nodes
(Fig. 2), result characterized by the existence of many nodes that
have one link and in consequence reduce the possibility of gen-
erating paths. A second measure is the network invariability
σ ( )G described in Eq. (A.7) in Appendix A. This index measures the
heterogeneity of the degree (ki) for all i in the network, and takes
values between 0 and 1, where a value close to zero indicates a
more regular network (same degree for all the nodes). This index
is shown in Table 2 (sixth column) and comparing the hetero-
geneity with other networks where this metric has also been ap-
plied (Estrada et al., 2012); the fracture network values differ from
the US power grid network (0.009) but the values are slightly si-
milar to the human protein interaction network (0.283) that in
average is 0.2 for fracture networks. Our networks present a low
heterogeneity compared with other networks such as the Internet
network (0.548), a paradigm of high heterogeneity. Note also that
the values of σ ( )G are opposite to the values of EE(G) in the fol-
lowing sense: for instance JT-8 has a maximum EE(G) of 10160.56
being the network with more nodes in all our samples; however, it
has one of the lowest values of σ ( )G , 0.181. This result is an in-
dicative that larger fracture networks (considering the ratio be-
tween number of nodes and links) have a tendency to “homo-
genize”, that is, to maintain the same degree or number of links,
which σ ( )G leads to values close to zero.

The results obtained applying the second measure of commu-
nicability (Eq. (A.10) in Appendix A) are displayed in the last col-
umn (comm) in Table 2. In general, the values are less than 0.05,
indicating low communicability in these samples but slight var-
iations among them due to the different ratios (n/m). In the next
section, these indexes are used in order to define a topological
class for fracture networks.

4.2. Identifying a topological class for fracture networks

According to the description of the four topological classes
presented in Section 3, we correlate local and global commu-
nicability in the network to identify the universal network class
to which belong the fracture networks, and we obtained that our
fracture networks belong to class IV. An example is shown in
Fig. 5 (sample CH-2), where the red line is the theoretical cor-
relation between subgraph centrality (x axis) and eigenvector
centrality (y axis) (Estrada, 2007), and this line also characterizes
a homogeneous network (nodes with the same degree). Note that
a mixture of positive and negative deviations around the ex-
pected theoretical behavior exists. This pattern is illustrated in
Fig. 2(b), where it is observed that local neighborhoods are highly
connected but the presence of holes produces low global com-
municability in the whole network. Similar results for the rest of
the fracture network samples are presented in Appendix D. In the
next section, the centrality measures are used to identify corre-
lations among them and in order to find patterns in fracture
networks.

4.3. Comparison among centrality measures

Using sample JT-3 (Fig. 2(e)) as a typical example, six com-
parative graphics of the resulting characteristics are presented in
Fig. 6. Each graph displays three normalized centrality measures
and the relations are explained as follows. In Fig. 6(a) is shown a
positive correlation between eccentricity and closeness centrality
indicating that the value of the shortest distance of a given node to
the farthest one has the same behavior as the average distance
obtained of one given node to all the nodes of the whole network,
this pattern is also shown in Fig. 6(b). Recall that we are using the
inverse form for closeness centrality (see Eq. (A.4)).
Note that he greatest betweenness centrality is located on left
bottom in Fig. 6(a) (values on x between 0 and 0.2). These nodes
are interpreted as bottlenecks since the shortest paths pass
through them. In addition, the nodes with the lowest closeness
centrality and eccentricity have the greatest betweenness values
(called central nodes) and are displayed in Fig. 6(b) and (d) on the
left side in a triangular distribution region.

Eccentricity in Fig. 6(d) shows a large variability and has a rapid
decay in the range between 0 and 0.4 (on x axis). Nodes with
values less than 0.4 belong to the backbone of the network, nodes
with values greater than 0.4 form part of the branches of the
network. The comparison between eigenvector centrality and ec-
centricity in Fig. 6(c) does not show a definite pattern. However,
we found a relationship between eigenvector and closeness cen-
trality in Fig. 6(e); where nodes with the largest closeness cen-
trality (extreme nodes) and nodes with the smallest closeness
centrality (central nodes) are highly connected. This is observed in
the largest values on y axis if Fig. 6(e) indicating that locally some
extreme nodes form part of some highly connected branches, and
of course the central nodes as well. These results are consistent
with the structures displayed in Fig. 2.

In Fig. 6(c), the lowest betweenness values prevail over almost
all the range on the x axis (values between 0 and 0.8). Eccentricity
in most nodes is less than 0.6 indicating that our fracture networks
have in general short paths between any pair of nodes, and a few
are far away from the rest. Observe that in Fig. 6(e) most of the
nodes are concentrated in the region where the closeness index is
less than 0.8; however, there is no relationship with eigenvector
centrality.

The relationship between eigenvector and betweenness is
shown in Fig. 6(f), where it displays high concentration of nodes in
the range between 0 and 0.2 (on x axis) indicating that these
nodes belong to the network branches; and few nodes with values
over 0.2 belong to the backbone. Also in Fig. 6(f), the greatest ec-
centricities are concentrated in the range 0–0.2 on x axis. The
patterns found in Fig. 6 are similar to the rest of samples studied in
this work (see Appendix E). In general, the samples show a strong
dependence of their topological indices on the quantity of nodes
and links.

In summary, topologically we can conclude that fracture net-
works are structures with low heterogeneity in terms of global
connection. With respect to the communicability, nodes with high
importance in the whole network have the lowest closeness cen-
trality (Fig. 6(d)). This result agrees with observations on other
networks (Estrada, 2012), where a negative correlation between
these two indices is typical.
5. Conclusions

According to our analysis, fracture networks belong topolo-
gically to class IV characterized by the presence of holes sur-
rounded by neighborhoods of connected nodes. The node degree
for this kind of networks is at most 6 in all the fracture samples. A
positive linear correlation exists between closeness centrality
and eccentricity due to the characteristic elongated pattern found
in the networks analyzed. However, an opposite correlation ex-
ists between closeness centrality and betweenness centrality as is
shown in Fig. 6(b) and (d), and this behavior is also identified
between eccentricity and betweenness centrality. It is observed
that the farness between two nodes results in a low betweenness
centrality since central nodes are located, in most fracture sam-
ples, on the main stem or backbone of the fracture network. Ei-
genvector centrality has a large variability with respect to other
metrics except for betweenness where a tendency prevails along
the mean value of eigenvalue centrality as was shown in
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subsection (f) in Fig. 6. In addition, the narrow range of node
degree forces these networks to possess low heterogeneity, and
therefore low communicability.
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Appendix A. Description of metrics

In this appendix, definitions and formulations of the metrics
used in this work are presented. The first ones correspond to four
centrality measures and the last ones to communicability
measures.

Betweenness centrality

This measure was proposed initially by (Anthonisse, 1971), and
later by (Freeman, 1977). These authors define centrality CB(i) as
the ratio between ρst(i) and ρst, i.e., the number of times in which a
node i falls on the geodesic path between the nodes s and t, and
the number of shortest paths between the nodes s and t, respec-
tively. The formula for computing betweenness of a certain node i
is presented in Eq. (A.1). It measures the potential for controlling
the communication of a network. An improved version of this
centrality index is defined in (Brandes, 2001) and is expressed in
(A.2), where ρst(i) takes the value of ρsi. ρit if the shortest paths
between s and t pass through the node i, otherwise takes zero. dG
(s,t) is the shortest distance between the nodes s and t. A high
centrality score indicates that a node can be reached by other
nodes on short paths
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Closeness centrality: This measure adds up the inverse of the
sum the distances of a node to all other nodes in the network,
which is expressed by CC(v) in Eq. (A.3) (Sabidussi, 1966). For a
node v, it measures the inverse of the sum of the geodesic dis-
tances from a v node to a t node, for all tϵV. An inverse form of the
closeness centrality is described in Eq. (A.4), and it is used in this
work

( ) =
∑ ( ) ( )∈

C v
d v t
1

, A.3
C

t V G

( ) =
∑ ( )

− ( )
∈C v

d v t

n

,

1 A.4F
t V G

Eigenvector centrality: The function of this measure is to find
the most central nodes (Bonacich, 1972; Bonacich, 1987), i.e. those
with the smallest farness from others in terms of the global
structure of the network. The assumption is that each node's
centrality is the sum of the centrality values of the nodes that it is
connected to, and a node has high score if connected to many
nodes that are themselves well connected. The centrality matrix
obtained is an eigenvector of the adjacency matrix such that all of
its elements are positive. Eigenvector centrality is defined as the
eigenvector of A with the largest eigenvalue as in (A.5), where v is
the eigenvector for the maximum eigenvalue λmax(A) of the ad-
jacency matrix A.

∑
λ

( ) =
( ) ( )

C i
A

a v
1

A.5
E

max j

n

ji j

Eccentricity

This measure represented by e(i) in Eq. (A.6). It computes for a
node i the number of steps that are necessary to reach the t
farthest node (Sabidussi, 1966) in the whole network. This mea-
sure also considers the geodesic path (or the shortest path) be-
tween nodes, where the largest geodesic path in the network is its
diameter. dG(i,t) indicates the shortest path of a node i to the node
t, and max(dG(i,t)) represents the largest geodesic path identified
from the list of geodesic paths generated from node i to t node, for
tϵV

( ) = ( ( )) ⋅ ∀ ∈ ( )e i d i t i t Vmax , , , A.6G

Invariability index in the network

This index expressed by Estrada (2010b) represents the nor-
malized degree heterogeneity in a network by considering all pairs
of nodes that are connected to and is presented in Eq. (A.7). The
index varies from zero to 1, where minimum is obtained for any
regular network and the maximum is obtained for type star net-
works. Where ki and kj are the degrees of the nodes i and j

∑ρ ( ) =
− −

−
( )∈

⎛
⎝
⎜⎜
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n n k k

1
2 1

1 1

A.7i j E i j,

2

Estrada index

This topological index proposed by Estrada (2000) measures
the invariability of a network by accounting for all the subgraphs
in a global way. This index was initially used in the folding of
proteins, and later De la Peña et al. (2007) renamed it as “index
Estrada” of a graph. The formula is presented in Eq. (A.8), where A
is the adjacency matrix associated to the graph G

( ) = ( ) ( )EE G tr e A.8A

Communicability

Another communicability index accounts for all the channels of
communication between nodes giving more weight to the shortest
paths that connect them is presented in Eq. (A.10) which elim-
inates the EE(G) from the exponential matrix (Eq. (A.9)) defined by
(Estrada, 2012)

′ = ( )G e A.9A
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A

Clustering Coefficient: This index defines the number of tri-
angles connected to a certain node i, |C3(i)|, divided by the number
of triples from this node (Watts and Strogatz, 1998). This definition
is formulated in Eq. (A.11), where ki is the node degree i, and the
clustering coefficient average is expressed in (A.12)
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Appendix B. Original sketches of fractures in rocks

See Figs. B.1–B.6
Appendix C

See Figs. C.1–C.3
The three figures below exhibit behaviors of the respective

centrality measures, closeness, betweenness and eigenvector, in-
cluding in each figure the four samples used.
Fig. B.2. Sam

Fig. B.1. Sample CH-2.
Appendix D. Topology of classes for fracture network

See Fig. D.1
In this figure, results of applying the local and global commu-

nicability measures for classifying the fracture networks are pre-
sented for four samples.
Appendix E. Comparative graphics of centrality measures

See Figs. E.1–E.3
In this appendix, three figures are shown where each of them

indicates a different comparative of three centrality measures
presented for the four fracture network samples.
ple JT-3.

Fig. B.4. Networks obtained of sample JT-6 (Fig. 1), the nodes (circles) indicate the
intersection or extreme points of the fracture segments, and the links are the
connections among intersections or extreme points. The enclosed network is the
largest connected network (component with more nodes), and it is used in our
analysis.

Fig.B.3. Sample JT-8.



Fig. B.6. Length distribution of fracture segments from sample JT-6 (see Fig. 1). In
this picture all the links (trace of fracture) are measured by the quantity of pixels;
where x axis indicates the length of the segments, and y axis represents the fre-
quency. The behavior of this distribution is similar to the rest of the samples of
fractures.

Fig. B.5. The largest connected network in sample JT-6. The labels in circles re-
present the nodes or intersections of fracture traces that form the main component.
In picture, the traces look like discontinue lines however if we look very closely
they are solid lines.
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Fig. C.1. Closeness centrality. Each graph presents the normalized closeness values in ascending order for four samples. This measure indicates the average closeness to all
the nodes. Observe almost an increasing lineal variation in the values for sample JT-6 and a curved behavior for JT-3, JT-8 and MM.
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Fig. C.2. Betweenness centrality. Each graph displays the normalized betweenness values in ascending order, where approximately 50% of the nodes (intersection of
fractures) in every figure have values zero (they indicate extreme points in the fractures networks), and some few nodes have high betweenness values (it can be seen at the
end of the line).
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Fig. C.3. Eigenvector centrality. Each graph presents sorted and normalized eigenvalue values in ascending for each sample. Similar patterns are found in (a), (b) and
(d) where a curved line indicates that the values in most nodes are lower than 0.5 and some few nodes have a high value; however, in sample MM a wave line is displayed
pointing out some nodes have similar value of eigenvector centrality.
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Fig. D. 1. Type IV class for fracture networks in rocks. In these figures, the line shows the behavior of a homogenous network. Each circle represents the resulting correlation
between local and global communicability of each node. Most nodes in each sample are correlated under the ideal line that indicates that local communicability is higher
than global communicability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. E.1. Closeness centrality (x axis) vs betweenness centrality (y axis) vs eccentricity (colorbar): (a) fracture MM, (b) fracture JT-8, (c) fracture JT-6, and (d) fracture CH-2.
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Fig. E.2. Closeness centrality (x axis) vs eigenvector centrality (y axis) vs eccentricity (colorbar) for five samples: (a) fracture MM, (b) fracture JT-8, (c) fracture JT-6, and
(d) fracture CH-2.
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Fig. E.3. Betweenness centrality (x axis) vs eigenvector centrality (y axis) vs eccentricity (colorbar) for five samples: (a) fracture MM, (b) fracture JT-8, (c) fracture JT-6, and
(d) fracture CH-2.
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