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A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is
considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize
nonconvex shapes, what gives much more realistic results. Special attention is thereby paid to the problem of
determining the corresponding value of the parameter ¢ in the algorithm. The size of the parameter e significantly
influences the recognizing number and configuration of earthquake zones. A method for selecting the parameter ¢

in the case of big data is also proposed. The method is applied to the problem of earthquake data zoning in a wider

area of the Republic of Croatia.

1. Introduction

In this paper, we consider a problem of seismogenic zoning in some
bounded area (see e.g. Markusi¢ and Herak (1998); Marti nez-A lvarez
et al. (2015); Morales-Esteban et al. (2010, 2014); Scitovski and Scitovski
(2013)). It is well known that seismic moments can be considered as
stationary Poisson processes with a fixed occurrence rate over time (Cho
et al.,, 2010), and that devastating earthquakes usually occur without
warning and in seconds they can destroy whole cities and severely injure
or even kill thousands of inhabitants. Hence it is important to regularly
monitor the occurrence of earthquakes and to study their characteristics.
The well-known Gutenberg-Richter Law is often used in various studies
of seismic activity, e.g. Asencio-Cortés et al. (2017) have studied
different seismogenic zones in a wider area of the Republic of Croatia
(hereinafter referred to as: Croatia) in terms of earthquake predictability.

Seismic activity in a wider area of Croatia is considered in this paper.
Namely, due to its nonconvex geographical shape, in order to analyze
seismogenic zones of Croatia, the whole area of Bosnia and Herzegovina
and parts of Montenegro, Serbia, Italy and Slovenia should be taken into
consideration. Data on seismic activity in a wider area of Croatia can be
downloaded free of charge from U.S. Geological Survey http://
earthquake.usgs.gov/. These data are of the form: Year/Month/Day/hh/
mm/ss/Latitude (¢)/Longitude (1)/Depth/Magnitude (M;)/. Similarly to
Scitovski and Scitovski (2013), based on such data the set

o ={d = (hi@)ER L, <4 <U, L,<¢;<U,} (€))

is defined, which contains earthquake locations determined by longitude
J; and latitude ¢;. Furthermore, to each point a' the weight w; > 0 is
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associates, which is defined as the magnitude M; of the earthquake in the
point a’. In this case, ./C[12.5,21] x [41.5,47.5] (see Fig. 1a), and the
data number is |.«7| = 8744. In the numerical experiments given below,
only 5324 data with the magnitude > 3 will be used, among which there
are 4051 data of magnitude <4, 1124 data of magnitude between 4 and 5,
and 149 data of magnitude > 5 (see Fig. 1b).

If the rectangle R = [L;, Uj] x [L,, U,] is relatively small (such that
relative distances in this rectangle do not significantly differ from relative
distances in the corresponding rectangle in the Gauss-Kriiger coordinate
system), then all evaluations can be carried out directly with the data
from the set .. Otherwise it would be necessary to transform the data set
in the Gauss-Kriiger coordinate system. In the aforementioned case of
data from a wider area of Croatia, the rectangle R = [12.5, 21] x [41.5,
47.5] can be considered as relatively small and no transition to the Gauss-
Kriiger coordinate system is necessary.

The problem of determining seismogenic zones can be considered as a
classical data clustering problem. A partition of the set ./ into k disjoint
subsets 71, ..., 1, 1 < k < |7|, such that

Uf:lﬂ-i = "9/7 NIy = ®7 r?ésv |7Z]| > 17 ]: 17 “-7k7 (2)

will be denoted by IT = {z1, ..., 7} and the set of all such partitions will
be denoted by #(.7,k). The elements 71, ..., zx of the partition IT are
called clusters in R?.

If d R2xR?2>R,, R, = [0,+0) is some distance-like function (see
e.g. Kogan (2007)), then by introducing the objective func-
tion F: RZ>R,,
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(b) Normalized data
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Fig. 1. Earthquake locations in a wider area of Croatia since 1950: magnitude > 5 (red points), magnitude between 4 and 5 (orange points), and magnitude < 4 (brown points), and a
normalized data set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

F(Clvn-vck) :; }gl.igcd(cjval% (3)
the following global optimization problem can be formulated:

argmin F(cy,...,cx), (€))
cj€conv(/)

where conv(.%/) is a convex hull of the set .« (see e.g. Grbic¢ et al. (2013);
Morales-Esteban et al. (2014); Scitovski and Scitovski (2013); Sci-
tovski (2017)).

The paper is organized as follows. Some previous results concerning
seismogenic zoning which can be found in the literature are mentioned in
the next section. In Section 3, first the procedure of normalizing the data
is given, and then the density-based algorithm for earthquake zoning is
described, with special attention paid to the selection of parameters in
the algorithm. Section 4 presents the application of the proposed algo-
rithm to earthquake zoning in a wider area of Croatia and also discusses
the case of a big data set.

2. Related works concerning seismogenic zoning

Problem (4) is a complex global optimization problem for the solution
of which numerous methods can be found in the literature (see e.g.
Bezdek et al. (2005); Kogan (2007); Theodoridis and Koutroumbas
(2009); Zaki and W.M. (2014)). The problem of seismic zoning is most
commonly solved by using the Least Squares (LS) distance-like function
dis or the ordinary Euclidean distance function dy (see Kogan (2007);
Scitovski and Scitovski (2013)). In this case, the obtained zones of
seismic activity are of spherical form. In Morales-Esteban et al. (2014), a
new efficient algorithm using the adoptive Mahalanobis distance-like
function was applied to seismic catalogues of Croatia and the Iberian
Peninsula. In that case, the obtained zones of seismic activity were of
elliptical form. For real earthquake data sets, these forms are too ideal-
ized and do not approximate well the current situation in space. In Reyes
and Cardenas (2010), a study of seismic zoning for continental Chile
based on a neural network is presented and Parvez (2013) provides
significant contributions in the field of seismic zonation and micro-
zonation studies in the Indian subcontinent.

Another important shortcoming of seismic zoning when solving
problem (4) by using various distance-like functions is how to determine
the most appropriate number of clusters in an optimal partition. Namely,
it is well known that if the number of clusters is not given in advance, to
recognize the right number of clusters is a complex problem in cluster
analysis (see e.g. Kogan (2007); Vendramin et al. (2009)). This problem
is solved by using various indexes (see e.g. Morales-Esteban et al. (2014);
Scitovski and Scitovski (2013); Vendramin et al. (2009)), but the results
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are not always reliable enough.

For the foregoing reasons, it makes sense to consider the application
of density-based clustering techniques to the problem of seismic zoning.
These techniques are based on the idea that objects which form a dense
region should be grouped together into one cluster. One of the most
widely used density-based clustering algorithms, i.e., the DBSCAN
(Density-Based Spatial Clustering of Applications with Noise), was orig-
inally proposed in Ester et al. (1996).

The DBSCAN algorithm has rapidly gained popularity and has been
applied in various areas of applications, such as medical images, geology,
spam detection, etc. (see Birant and Kut (2007); Jiang et al. (2011);
Karami and Johansson (2014)). This algorithm is well described in the
papers: Birant and Kut (2007), Mimaroglu and Aksehirli (2011), Zaki and
Meira (2014), where corresponding pseudocodes can also be found. In
the case of large data sets, there are efficient modifications, such as the
Rough-DBSCAN algorithm (see Viswanath and Babu (2009)).

It makes sense to apply the DBSCAN algorithm if the set .2/ has a large
number of points (in the literature, test examples mostly contain between
3000 and 700000 points in two-dimensional space). The most important
advantages of this algorithm are as follows:

o the possibility of recognizing non-convex clusters,

e the partition with the most appropriate number of clusters is obtained
automatically, and

it is not necessary to use indexes for defining an appropriate number
of clusters in a partition.

Earthquake zoning

Let ./ be the set defined in (1) and for each @’ € .« let the weight
w; > 0 be defined as the magnitude of the earthquake in the point a’. We
will try to identify zones of those earthquakes that took place in the
reference area.

3.1. Data preparation

As already mentioned, our set .%/ is contained in the rectangle R = [L,,
Ul x [L,, U,] with sides of generally unequal length. Therefore, first the
set .o/ will be normalized. This can be done by transforming the set .« into
the set % = {T(d)) : a' € /}c[0,1]* by using the mapping T : R—[0,1]%,
where (see e.g. Scitovski and Sarlija (2014))

. 1 1
T(x)=D(x—u), D= dlag(iUA LU L )7 u= (Lth)T,
o~ Ly
(©)]

After all necessary evaluations on the set .% are done, the obtained
results will be transformed again into the rectangle R by using the inverse
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(b) Sorted sequence (g(b))
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Fig. 2. The choice of the parameter ¢. Red lines denote centroids ry, r2 of the clusters Ry, Ry, and orange lines denote the length of the right edge of the interval around the centroid
containing 95% and 99% of elements of that cluster, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

mapping T~ : [0, 1]2—>R, T 1) =D x +u
For example, the corresponding normalized set .% for data related to
seismic activity in a wider area of Croatia is shown in Fig. 1b.

3.2. A density-based algorithm for earthquake zoning

In the set .% constructed in this way we will find disjoint clusters
71, ..., g and the set of noise ./ by using the DBSCAN algorithm. In doing
so, the Euclidean distance function dy will be used.

For the chosen & > 0, the algorithm is run by selecting the point b° €
% in whose e-neighborhood

So(B) = {be 7 dy(B',b) <€)} ©®

there are as many points from the set . as possible. The minimum
number of points that could be found in that e-neighborhood will be
denoted by MinPts. Many different proposals for the selection of the
parameter MinPts can be found in the literature. The heuristic suggests
that MinPts should be approximately In(m) (see Birant and Kut (2007)).
In order to reduce computational complexity, for the data with two
features (o/CcR?) MinPts is usually fixed to 4 (Jiang et al., 2011). The
point b® € % for which the requirement |./",(B,b%)| > MinPts is met is
called a Core Point.

The chosen point b° will be the first point of the cluster 7, that will be
further supplemented such that it includes (Ester et al., 1996):

e all points p € .# located within the e-neighborhood of b°. These
points are said to be directly density-reachable from b°

e all points p € .% for which there is a chain of objects p, ...,pn € %,
pl = b0 and pn = p such that pi+1 is directly density-reachable from

(a) Core points

1.0

pi with respect to £ and MinPts, for 1 < i < n. These points are said to
be density-reachable.

The points of the cluster z; defined in such a way are said to be
density-connected, and the cluster itself has the following features (Ester
et al., 1996):

(i) (Maximality) If ¢ € = and p is density-reachable from g with
respect to ¢ and MinPts, then p € z;

(i) (Connectivity) Points p and q are density-connected with
respect to ¢ and MinPts.

Furthermore, a point p € .% is a border point if it is not a core point,
but  density-reachable  from  another core  point, ie.
1 < |N.(+7,p)| < MinPts. Note that border points form a cluster edge. Noise
is a set of points which are neither core points nor border points.

In the next step, we look at the set .#\z; and repeat the previous
procedure starting with a new core point. The procedure is repeated as
long as there is a possibility of choosing a core point in the rest of the set
.# in whose e-neighborhood there are at least MinPts points from .%.

3.2.1. Selection of the parameter ¢

Several different proposals for the selection of the parameter ¢ can be
found in the literature (see e.g. Andrade et al. (2013); Ester et al. (1996);
Jiang et al. (2011); Karami and Johansson (2014)).

In our paper, an exact method for determining the size of the
parameter ¢ will be proposed provided that there is prior knowledge of
the parameter MinPts. In Section 4.2, this method is modified for big data
sets. First, for each b € . we determine radius ¢(b) > 0 of the circle

(b) Border points and noise
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e . % .
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Fig. 3. Separation of the set of core points from the set of border points and noise.
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Fig. 4. The results of the Rough-DBSCAN algorithm with MinPts = 4 and ¢ = 0.016.

47t

Fig. 5. Significant earthquake zones for the Republic of Croatia.

containing MinPts elements of the set .%. The set )i of all radii obtained in
such a way will be grouped into two clusters R;(r1) and Ry (r2), where
r) < rp are corresponding centroids by using the LS-distance-like function
dis: R2XR*>R, dis(a,b) =| @ — b||2. This can be achieved by applying
the one-dimensional center-based LS-clustering method using the effi-
cient SymDIRECT algorithm proposed in Grbic et al. (2013) or the
SepDIRECT algorithm proposed in Scitovski (2017). It is important to
note that the LS-distance-like function must be used, which successfully
separates small values of the radii from large ones (see Sabo et al. (2013);
Sabo and Scitovski (2015)). Namely, in this way, most of the values of the
radii of circles assigned to core points will be grouped around the smaller
centroid r;, while the radii of circles assigned to border points and noise
will be grouped around the larger centroid rs. If in the larger cluster Ry
the smallest interval around the centroid r; containing 95% elements of
that cluster is found, then it would make sense to take the value of our
parameter ¢ as the length of the right edge of that interval.

Example 1. Let us consider the set .o/ of 5324 earthquake locations of
magnitude > 3 in a wider area of Croatia since 1950 (see Fig. 1a) and the
corresponding normalized set % (Fig. 1b).

For each b' € .%, Fig. 2a shows a corresponding radius p(b)) of the
circle containing MinPts = 4 elements of the set .22, whereas Fig. 2b gives
a sorted sequence of these radii (()(bi)). Grouping this sequence of radii
(g(bi)) into two clusters by using the LS-distance-like function yields the
centroid r; = 0.00646 of the cluster R; consisting of 5002 relatively small
radii and the centroid r, = 0.03289 of the cluster R, consisting of 322
relatively large radii. The smallest interval around the centroid r; con-
taining 95% of elements of the cluster R1 is (—0.003089,0.0160158).
Thus in this case we choose ¢ = 0.016 (see Fig. 2a-b), although a slightly
higher value would be acceptable, too.

Fig. 3a shows the points from the set .% associated to the cluster Ry
(core points), and Fig. 3b shows the points from the set .% associated to
the cluster Ry (border points and noise).
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3.2.2. Implementation of the DBSCAN algorithm

The DBSCAN algorithm has already been described at the beginning of
this section. For the purpose of calculation, a corresponding Mathematica-
program was constructed which uses the Rough-DBSCAN algorithm
(Viswanath and Babu, 2009).

An obvious advantage of the DBSCAN algorithm for earthquake
zoning is the possibility of recognizing non-convex clusters. In addition to
that, the algorithm is constructed such that it automatically determines
the number of disjoint clusters and the set of noise ./, too.

Possible disadvantages of the DBSCAN algorithm are that it is not easy
to determine proper values for ¢ and MinPts. Computational complexity
without a special structure is @(m?). Therefore, the algorithm can take a
large amount of time and because of that, it is not suitable to work with
very large data sets. But if a spatial index is used (Viswanath and Babu,
2009), the complexity can be reduced to #'(mlog m). It should also be
taken into account when the border points of two clusters are relatively
close as it can happen that these clusters are connected.

4. Application of the Rough-DBSCAN algorithm to earthquake
zoning

Previously in Section 2 and Subsection 3.2.2, we have mentioned the
reasons why it would make sense to apply the DBSCAN algorithm to
earthquake zoning. In the following subsection, this algorithm will be
applied to the earthquake data from a wider area of Croatia, and Sub-
section 4.2 will consider problems that can occur in the case of a
significantly larger data set.

4.1. An example: earthquake zoning in a wider area of Croatia

The DBSCAN algorithm will be tested on the set ./ which consists of
5324 earthquake locations of magnitude > 3 in a wider area of Croatia
since 1950 (see Fig. 1a). The set .2/ will first be normalized according to
Subsection 3.1, and then the set % = T(.%/)c[0,1]* will be considered
(see Fig. 1b). Parameters MinPts = 4 and ¢ = 0.016 are chosen as in
Example 1.

By implementing the DBSCAN algorithm on the set . with MinPts = 4
and e = 0.016, 15 clusters with 1081, 999, 1081, 541, 156, 69, 41, 57, 87,
40, 19, 80, 31, 24 and 12 elements will be obtained, respectively, and
they are shown by different colors in Fig. 4a. The remaining 1006 points
represent the noise set (see Fig. 4b).

Significant earthquake zones for the Republic of Croatia are the
clusters shown in Fig. 5:

m1: the red cluster with 1081 points (South Croatia);

ro: the blue cluster with 156 points (the vicinity of Zagreb);

n3: the orange cluster with 541 points (North Italy and Istria);

r4: the black cluster with 999 points (Central Italy);

rs: the green cluster with 1081 points (Montenegro and North
Albania);
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Table 1
Selection of the parameter ¢ from the sample.
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Ry r IRz ) £(95%) £(99%) CPU(1) (sec) CPU(2) (sec)
Set ./ 5002 0.0065 322 0.0329 0.016 0.020 151.94 9.42
T, = (0.7, 0.2) 888 0.0057 71 0.0200 0.010 0.012 3.70 3.73
T, = (0.6, 0.3) 659 0.0064 135 0.0172 0.011 0.040 2.42 3.42
T3 = (0.35, 0.65) 305 0.0094 43 0.0268 0.0166 0.0175 0.42 1.81
T4 = (0.25, 0.75) 376 0.0085 34 0.0292 0.016 0.018 0.58 1.95

(a) T = (0.7,0.2)

(b) T = (0.6,0.3)

(c) T = (0.35,0.65) (d) T = (0.25,0.75)

Fig. 6. Selection of different windows in the square [0, 1]

7e: the brown cluster with 40 points (North Bosnia).

In Markusi¢ and Herak (1998), this area is divided into 17 seismic
zones by using data from the Croatian earthquake catalogue (see Herak
et al. (1996)). Significant similarity with our results can be mentioned.

4.2. Application of the DBSCAN algorithm to a very large earthquake data
set

If we would like to zone a normalized set . which has significantly
more data, the first problem might occur when determining an appro-
priate parameter ¢. Namely, it is estimated that computational
complexity of the procedure described in Subsection 3.2.1 is @ (m?) and
hence large CPU-time can be required for the described procedure of
searching for the parameter e.

In order to shorten that time, the following can be done. Within the
square [0, 171? containing the set .%, let us choose a window with
approximately 10% of the area of the square [0, 1]2. This can be done by
selecting the point T € [0,1]*> and the number p = 0.15 and defining
the window

@)

If the procedure described in Subsection 3.2.1 is applied to the win-
dow Wr, the approximation et of the parameter ¢ will be obtained in a
significantly shorter period of time (see CPUl-time in Table 1). The
procedure can be repeated several times.

The described procedure will be illustrated on the set .% from
Example 1. This will enable us to compare the obtained results with the
e-value 0.016 obtained in Subsection 3.2.1.

An experiment will be conducted for estimating the parameter ¢ with
four points: T; = (0.7, 0.2) (Fig. 6a), Ty = (0.6, 0.3) (Fig. 6b), T3 = (0.35,
0.65) (Fig. 6¢), T4 = (0.25, 0.75) (Fig. 6d) and the result will be compared
with the parameter ¢ obtained based upon all points of the set .%.

The results are shown in Table 1. For each point T;, the number of
elements |R;| is given as well as the centroid r; of a larger cluster, the
number of elements |Ry| and the centroid ry of the smaller cluster, the
length of the right edge of the smallest interval around the centroid r;
containing 95% and 99% elements of the cluster R;, respectively, and
CPU(1)-time necessary for calculating the set of all radii i and CPU(2)-
time necessary for the implementation of the SymDIRECT algorithm on

Wr={be2:|T-b|e<p}
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the set M. It can be seen that the obtained approximations of the
parameter ¢ are acceptable if window (7) is selected representatively.
Also, the necessary CPU-time is significantly shorter in relation to the
CPU-time for the whole set .o7.

5. Conclusions

The advantages of the density-based clustering algorithm DBSCAN for
earthquake zoning can be seen in the possibility of recognizing non-
convex clusters and in the fact that the partition with the most appro-
priate number of clusters is obtained automatically without using in-
dexes. High computational complexity and rather long implementation
in the case of big data sets can be listed as shortcomings of this method.
This shortcoming is significantly reduced by using the Rough-DBSCAN
modification. The parameter ¢ estimation method proved to be good and
to considerably accelerate the calculation process.
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