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A B S T R A C T

Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points.
However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole
boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic
formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for gener-
ating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal
of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape
reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter.
Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity
and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With
this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point
formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity
and hole are then found by locating a shape gradient change in compactness of point set. The experimental
comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately
yield the boundaries of cavity and hole with varying point set densities and distributions.
1. Introduction

Shape reconstruction from planar points is a significant and funda-
mental operation in various GIS-related applications, such as carto-
graphic generalization (Galton and Duckham, 2006; Moreira and Santos,
2007), boundary extraction from 2-D point cloud (Zhu et al., 2008; Shen
et al., 2011), domain boundaries (Arampatzis et al., 2006; Kolingerov�a
and �Zalik, 2006), and geographic information retrieval (Duckham et al.,
2008; Bordogna et al., 2012). Several problems emerge from approxi-
mating the boundary of a planar point set. First, the use of spatial relation
between points is difficult for an optimal approximation model. Second,
non-uniformly distributed point set occurs generally to reach an unsat-
isfactory boundary because of the global measure. Third, the accurate
detection of multiple holes and cavities is another difficult task caused by
the lack of effective mathematical expression.

With the consideration of Gestalt law (Li et al., 2004), the proximity
relationships of points play a significant role in shape reconstruction
geometric model. The Delaunay Graph conforms to the Gestalt laws of
proximity and continuity, which is widely regarded as a good tool for
shape reconstruction. In ℝ2, several approaches to shape reconstruction
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through Delaunay filtering have been proposed. However, these ap-
proaches cannot define the boundary accurately given one or more of the
above approximate problems. For example, Kolingerov�a and �Zalik (2006)
adopted a global measure (the length of edges) to remove the longest
edges at each iteration; however, the measure was seriously influenced
by density variation. Duckham et al. (2008) proposed an algorithm that
can characterize the shape of different point densities and distributions;
however, this algorithm failed to detect holes. Peethambaran and
Muthuganapathy (2015) presented an automatic algorithm for cavities
and holes detection; however, this is limited to multiple cavities
and holes.

In this paper, we propose a new Delaunay-based approach for shape
reconstruction that considers cavity and hole structures. This method has
two procedures. The first reaches a rough boundary without holes and
pure cavities, and the second achieves the final boundary with precise
holes and cavities. Two key points of our approach are worth putting
forward. First, we construct an appropriate and practical data structure to
facilitate boundary manipulation in the succeeding procedures. Second,
cavity and hole are conceptualized as a low-density region surrounded by
the high-density region. With such density variation, we derive a
niversity, Nanjing 210023, Jiangsu, China.
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Fig. 1. Data structure used in this study.

Fig. 2. Illustrations of: (a) Incident edges of a vertex v0; (b) Triangles of a com-
mon edge e0.
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mathematic formulation for the two structures and design a statistical
method to detect them.

2. Related work

Several works have been proposed in the literature for shape recon-
struction from planar points. We divide these studies into two main ap-
proaches, namely, Delaunay-based and curve reconstruction method.

The Delaunay-based method includes two steps: (1) First, it builds a
geometric structure from a set of planar points; (2) it then extracts a series
of edges with such structure to reach a desirable boundary. The early and
well-knownwork is the Delaunay sculpture by Boissonnat (1984) and the
α-shape by Edelsbrunner et al. (1983). The α-shape obtained the
boundary by rolling trace with an empty disk of radius α. The α-shape
has been successfully applied in uniform distribution, but it suffers from
non-uniform density caused by global search. To solve this problem, a
family of α-shape has been proposed, including r-shape (Chaudhuri et al.,
1997), A-shape (Melkemi and Djebali, 2000), k-orderα-hulls
Fig. 3. Illustrations of irregular and r
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(Krasnoshchekov et al., 2010) and LDA-α-complex (Chevallier and
Maillot, 2011). Most of these studies methods are related to certain
external parameters and rarely involved the boundary topological ex-
amination. The Delaunay sculpture employs an iterative removal process
on triangulation network. In this context, the method captures geometric
and topological information of points nicely, which is simpler and sys-
tematic compared to other methods. Thereafter, many researchers
approximated the boundary based on Boissonnat's sculpture, but used
different removal strategies. Duckham et al. (2008) characterized the
shape by removing exterior edges in order of length until no edge is
longer than the length parameter. The algorithm can yield an accurate
shape of a wide range of different point densities. Furthermore, the al-
gorithm focuses only on external boundary. Peethambaran and Muthu-
ganapathy (2015) present an automatic algorithm that combines the
circumcenter and circumradius of Delaunay triangles to filter Delaunay
triangulation. In this context, the algorithm constructs the boundaries for
the holes based on the structural arrangement of Delaunay triangles.
Although the method is innovative, the attempt is not sufficiently
convincing for the thin holes (one is elongated more like a tubular
structure) detection. Given that proximity graphs play a vital role in
defining the shape and organization of planar points (Jaromczyk and
Toussaint, 1992), the Delaunay triangulation subgraphs and the dual
graph (Voronoi Diagram) have been also applied to shape reconstruction
such as the Gabriel graph (Park et al., 2006), simple-shape (Gheibi et al.,
2011) and the minimum spanning tree (Ohrhallinger and Mudur, 2013).
The Delaunay-based method can capture geometric information in a set
of planar points and several algorithms even consider topological ex-
amination to guarantee the topological correctness of boundary. How-
ever, these algorithms lack of the stability to approximate the actual
boundary in face of complex boundaries, especially for multiple cavities
and holes.
egular of a simplicial 2-complex.



Fig. 4. Illustrations of: (a) Sample points of cavity bounded by a simple polygon; (b)
Cavity edges and virtual edges.
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In a different method, curve reconstruction takes a set of points on a
smooth closed curve, identifies the points of curvature discontinuity, and
connects these points to the boundary. Such approaches largely rely on
the representation of curve fitting. Related techniques that compute the
curvature of the underlying shape have been proposed, which include
implicit simplicial model (Fang and Gossard, 1995), quadratic poly-
nomial (Yang and Lee, 1999) and moving least-squares (Lee, 2000).
Compared with the Delaunay-based approach, most of these methods are
faster, especially for point cloud data. However, these methods cannot
guarantee the topological correctness of the boundary because of the lack
of topological information, and the computation processes are
complicated.

3. Preliminaries

3.1. Data structure

An appropriate and practical data structure is vital to represent geo-
metric information and topological relations for the boundary manipu-
lation, especially for a quick access to boundary edges and topology
examination.

In this paper, we adopt a hierarchical data structure (Fig. 1) to
represent the topological relation, namely, vertex-edge-triangle. Each
Fig. 5. Illustrations of: (a) Sample points of

Fig. 6. Illustrations of: (a) Line segments
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vertex records the x, y coordinates, and the links between vertices in the
Delaunay triangulation express geometric information. The topological
information includes Vertex-edge relation (each edge consists of two
vertices) and edge-triangle (each triangle consists of three edges) rela-
tion. This study adopted an approach provided by Green and Sibson
(1978) to construct the Delaunay triangulation. To efficiently manipulate
the boundary, each vertex records its incident edges (see Fig. 2(a)) and
each edge records a list of triangles using this edge as the common edge
(see Fig. 2(b)) when constructing the Delaunay triangulation. In the past,
various data structures have been proposed for boundary representation.
One, the winged-edge structure (Weiler, 1985), is familiar to many. The
topological information stored in the winged-edge structure for each
edge is composed of the adjacencies of the given edge with other edges,
vertices, and faces. The winged-edge structure is not sufficient because its
information content does not consider the derivation of some important
adjacency information (e.g., the adjacency of edges around a vertex). The
hierarchical data structure represent the adjacency information by
splitting it into two structure (vertex-edge and edge-triangle), which can
allow for the derivation of adjacency information. Moreover, information
organized hierarchically allows to improve time efficiency.
hole; (b) Hole polygon; (c) Hole edges.

in cavity; (b) Line segments in hole.

Fig. 7. An example of boundary angle.



Fig. 8. Example of cavity with satisfactory triangle: (a) Point set; (b) Cavity with satisfactory triangle; (c) Boundary with sharp corners.

Fig. 9. An example of a hole: (a) Point set; (b) Hole.
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3.2. Related geometrical definition
Definition 1. Delaunay triangulation:
Let S be a set of unorganized points inℝ2. The Voronoi cell of a

point p 2 S, denoted as VpðSÞ, is the set of pointsx 2 ℝ2 that are close to p
than any other point in S:

VpðSÞ ¼
�
x 2 ℝ2jkx� pk � kx� qk; q 2 S; q≠p

�
The union of the Voronoi cells of all points s 2 S forms the Voronoi

diagram ofS, denoted as

VDðSÞ ¼ ∪VpðSÞ; p 2 S

The dual of the Voronoi diagram obtained by connecting the points S,
which associated polygons are adjacent, is called Delaunay triangulation
of S, DTðSÞ (Boissonnat and Oudot, 2005).

To define the topological space of Delaunay triangulation graph, the
concept of simplicial complex is adopted in this paper. Vertices, edges
and triangles are all examples of simplices. An n-dimensional simplex is
called an n –simplex. A 0-simplex is a point, a 1-simplex is a line segment
and a 2- simplex is a triangle. A collection of simplices forms a simplicial
complex (Definition 2).

Definition 2. Simplicial complex:
Let E be a linear space. A simplicial complex K is a finite collection of

simplices in E if K satisfies the following two conditions:
Fig. 10. Density variation of cavity and h
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(1) Any face of a simple from K is also in K;
(2) The intersection of any two simplices C;D 2 K is either empty or a

face of both C and D

A two dimensional Delaunay triangulation is an example of simplicial
2-complex. In a simplicial 2-complex, if line segments do not belong to
any triangle, line segments are considered as either dangling edges,
bridges or isolated edges; if more than two line segments which are
attached to a single triangle are linked through one vertex, the vertex is
called junction vertex (See Fig. 3).

Definition 3. Irregularity of a simplicial 2-complex:
A simplicial 2-complex is irregular if it suffers from dangling edges,

bridges or junction vertices (Peethambaran andMuthuganapathy, 2015).
We can use the proposed data structure to carry on the irregularity
readily for topological examination.

Definition 4. Boundary edge:
An edge is a boundary edge of DTðSÞ if it only belongs to one trian-

gle, namely, the edge is not the common edge.
The boundary of Delaunay triangulation is represented by a collection

of boundary edges.

Definition 5. Boundary vertex:
A vertex is a boundary vertex of DTðSÞ if it is incident with a

boundary edge. All other vertices are referred to as interior vertices.

Definition 6. Boundary triangle:
A triangle is a boundary triangle of DTðSÞ if it consists of at least one

boundary edge.
According to Gestalt law of proximity, the boundary is formed by

connecting neighboring points. Thus, two types of boundary triangles
exist in DTðSÞ. An obtuse triangle (the circumradius of such triangle that
lies external to it) always shows too big angle, making two boundary
vertices non-neighbors on the boundary. Such triangle is considered to be
unsatisfactory triangle (Kolingerov�a and �Zalik, 2006), whereas all other
triangles are satisfactory triangles.

Definition 7. Cavity:
Let Q⊂ℝ2 be a simple polygon bounding all sample points P (see

Fig. 4(a)), convðPÞ be the convex hull of P, and C be the set of all open
ole by Voronoi: (a) Cavity; (b) Hole.



Fig. 11. Compactness of two structures:(a) Delaunay triangulation of a cavity; (b) Compactness of point set in cavity; (c) Compactness variation of cavity; (d) Delaunay triangulation of a
hole; (e) Compactness of point set in hole; (f) Compactness variation of hole.
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connected regions of convðPÞn Q. Each polygon given by closure C is
referred as a cavity (Mistry et al., 2014). The edges ofQ in each cavity are
called cavity edges (bold black lines exceptm and n in Fig. 4(b)), and the
Fig. 12. Different stages of the proposed algorithm for cavity detection: (a) Result with Algorith
value with the change of k value; (e) Determination of compactness threshold.
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edges of convðPÞ in the cavities are called virtual edges (line segment m
and n in Fig. 4(b)). Each cavity is composed of several cavity edges and
one virtual edge.
m 1 (ℛ¼120); (b) Point set where FðpÞ>T; (c) Final boundary with Algorithm 2; (d) PBM
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Definition 8. Hole:
Armed with Jordan curve theorem (Hales, 2007), let H be a simple

closed curve bounding all sample points in the plane ℝ2(see Fig. 5(b)).
Then its complement, ℝ2nH , consists of exactly two connected compo-
nents. One is bounded (the interior) and the other is unbounded (the
exterior). Let B be the “interior” region (see Fig. 5(b)) bounded by the
curve H and M be the set of all connected regions of M⊂B (see
Fig. 5(b)). Each connected polygon is referred as a hole and the closed
polygonal curves are hole boundaries. In DTðSÞ, the edges of M in each
hole are called hole edges (see Fig. 5(c)).

Observation 1: Hole can be regarded as the extension of cavity.
A simple closed curve C1 bounds all sample points P, the line seg-

ments are said to be cavity edges (see Fig. 6 (a)), if they lie to the exterior
of C1 according to the Jordan curve theorem. Let convðPÞ be the convex
hull of P and C2 be a simple closed curve bounding the convex hull. In this
case, the previous cavity edges can be said to be hole edges (see Fig. 6 (b))
as they lie to the interior of C2.
4. Proposed algorithm

Our algorithm can be divided into two main parts, which are rough
shape reconstruction and refined shape reconstruction.

4.1. Rough shape reconstruction

Various parameters have been used for shape reconstruction,
including length, area, and perimeter. However, these measures are
global constants, which directly lead to unsatisfactory results when point
set S⊂ℝ2 is distributed in different densities. According to Definition 6,
the unsatisfactory triangles of DTðSÞ push two boundary vertices further
away from each other in high and low density regions. Hence, the
boundary edges corresponding to unsatisfactory triangles should be
removed. Based on the above, a relative parameter–angleℛis adopted in
the rough shape reconstruction to evaluate the criterion for boundary
edge. Let a boundary edge be e and the angle opposite to e be AngleðeÞ
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(see Fig. 7). If AngleðeÞ>ℛ, the boundary edge is removed, otherwise, it
is maintained. The boundary edges of unsatisfactory triangles are
evidently more likely to be deleted both in high and low density regions.

The rough shape reconstruction (Algorithm1) proceeds by the iterative
removal of boundary edges satisfyingAngleðeÞ>ℛand Irregularity
ðDTðSÞ; eÞ¼false (see Definition 3). In each iteration, one boundary edge e
may be removed from DTðSÞ, we measure the list of boundary edges B in
descending order of edge length to avoid the multiplicity of reconstructed
results. Various criteria (e.g., length and circumradius) have been used for
ordering the boundary triangles. We have conducted some validation ex-
periments, which showed that no criteria can ensure the best shape and
have a major effect on the reconstructed results. The reason for choosing
length is that, when compared with other criteria (e.g., circumradius),
length can get a quick access from the list B. When a boundary edge e is
removed, two new boundary edges will be inserted into B, reordering the
new B. In our approach, we use a heap based priority queue (denoted
by rootðBÞ in Algorithm 1) to make sure that the longest boundary edge is
selected first at each iteration. The algorithm terminates when B is empty.
4.2. Formulation of cavity and hole

In this section, we provide a mathematical definition forObservation
1 and propose a statistical approach to detect them.

Algorithm 1 is based on the removal of boundary edges where satis-
factory triangles should be retained. However, it cannot satisfy the
following structures:

● Cavity with satisfactory triangles

Broadly, we can obtain a desirable result from cavities with unsatis-
factory triangles by setting a suitable threshold in Algorithm 1. However,
in case of satisfactory triangulates (see Fig. 8(b)) during the iteration,
Algorithm 1 becomes invalid and precludes further cavity detection.
Moreover, if we relax the threshold to detect the structure, the final
boundary becomes undesirable, as indicated by many shape corners
(see Fig. 8(c)).
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● Hole

According to the definition of boundary edge, the edges inside the
hole do not belong to the boundary edge. Hence, the holes (see Fig. 9)
cannot be detected in Algorithm 1.

As shown in Fig. 10, we adopt the Voronoi diagram to express the
density variation of the two structures. The density of the point set is
defined as the reciprocal of Voronoi area occupied by each point. Cavity
and hole structures are then conceptualized as a structure with the low-
density region surrounded by high-density region.

It can be observed from the Delaunay Diagram (the dual graph of
Voronoi) that the length variations of the edges incident to points in the
border of cavity and hole tend to have relatively larger, as both short and
Fig. 13. Different stages of the proposed algorithm for cavity detection: (a) Result with Algorith
value with the change of k value; (e) Determination of compactness threshold.

Fig. 14. Experim
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long edges exist (see Figs. 8 and 9). To exploit this characteristic, we
adopt a statistical variable-compactness of point, which is expressed
as follows:

Definition 9. Compactness of point:
In DTðSÞ, for a point p 2 S, the neighborhood NðpÞ is the set of edges

incident to point p. The compactness of p is defined as

FðpÞ ¼ Local�SDðpÞ=Local�Mean�LengthðpÞ (1)

where Local�Mean�LengthðpÞ
is the mean length of edges in NðpÞ, and Local�SDðpÞis the standard
deviation of the lengths of edges in NðpÞ. Here,
m 1 (ℛ¼120); (b) Point set where FðpÞ>T; (c) Final boundary with Algorithm 2; (d) PBM

ental data.
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Local�Mean�LengthðpÞ ¼ 1
dðpÞ

XdðpÞ
i¼1

jeij (2)

where dðpÞ
denotes the number of Delaunay edges incident to p, and jeij is the length
of edges in NðpÞ.
Fig. 15. Effects of

Table 1
Experimental results of statistical test of the Kruskal-Wallis test.

Our result vs modified α-shape our result vs RGG

Experiment 2
C shape
Density ¼-2.45 P > 0.05 P < 0.05
Density¼�2.15 P < 0.05 P < 0.05
Density ¼-1.97 P > 0.05 P < 0.05
Density ¼-1.85 P > 0.05 P < 0.05
Density ¼-1.75 P > 0.05 P < 0.05
Density ¼-1.67 P > 0.05 P < 0.05
Iran
Density ¼-3.31 P > 0.05 P < 0.05
Density ¼-3.03 P < 0.05 P < 0.05
Density ¼-2.78 P < 0.05 P < 0.05
Density ¼-2.53 P<0.05 P>0.05
Density ¼-2.4 P < 0.05 P < 0.05
Density ¼-2.29 P<0.05 P>0.05
A shape
Density ¼-2.45 P < 0.05 P < 0.05
Density ¼-2.14 P > 0.05 P < 0.05
Density ¼-1.96 P > 0.05 P < 0.05
Density ¼-1.84 P > 0.05 P < 0.05
Density ¼-1.74 P > 0.05 P < 0.05
Density ¼-1.65 P > 0.05 P < 0.05
South Africa
Density ¼-2.28 P < 0.05 P < 0.05
Density ¼-2.01 P<0.05 P>0.05
Density ¼-1.92 P < 0.05 P < 0.05
Density ¼-1.81 P > 0.05 P > 0.05
Density ¼-1.72 P<0.05 P>0.05
Density ¼-1.63 P < 0.05 P < 0.05
Experiment 3
K shape
r¼0 P < 0.05 P < 0.05
r¼0.5 � 10�3 P < 0.05 P < 0.05
r¼1.0 � 10�3 P < 0.05 P < 0.05
r¼1.5 � 10�3 P < 0.05 P < 0.05
r¼2.0 � 10�3 P > 0.05 P < 0.05
r¼2.5 � 10�3 P > 0.05 P > 0.05
r¼3.0 � 10�3 P > 0.05 P > 0.05

*The result is convincing when P < 0.05.
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Local�SDðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dðPÞ
XdðPÞ

i¼1
ðLocal�Mean�LengthðpÞ � jeijÞ2

s
(3)

Instead of standard deviation, FðpÞ is a relative parameter, which can
compare the discrete degree of two data sets that have different numbers
or have a great difference in mean value. Evidently, FðpÞ value of each
point inside boundary will be small given that the lengths of their
parameter.ℛ.

Our result vs modified α-shape our result vs RGG

K shape
Density¼�2.38 P < 0.05 P < 0.05
Density¼�2.20 P < 0.05 P < 0.05
Density¼�2.09 P < 0.05 P < 0.05
Density¼�1.93 P < 0.05 P < 0.05
Density¼�1.85 P < 0.05 P < 0.05
Density¼�1.75 P<0.05 P>0.05
Argentina
Density¼�2.79 P > 0.05 P < 0.05
Density¼�2.45 P < 0.05 P < 0.05
Density¼�2.19 P > 0.05 P > 0.05
Density ¼-2.0 P > 0.05 P < 0.05
Density¼�1.88 P > 0.05 P < 0.05
Density¼�1.76 P > 0.05 P < 0.05
B shape
Density¼�2.39 P<0.05 P>0.05
Density¼�2.22 P<0.05 P>0.05
Density¼�2.10 P < 0.05 P < 0.05
Density¼�1.95 P < 0.05 P < 0.05
Density¼�1.86 P > 0.05 P < 0.05
Density¼�1.77 P > 0.05 P > 0.05
He Fei
Density¼�1.96 P < 0.05 P < 0.05
Density¼�1.90 P < 0.05 P < 0.05
Density¼�1.82 P < 0.05 P < 0.05
Density¼�1.75 P < 0.05 P < 0.05
Density¼�1.64 P < 0.05 P < 0.05
Density¼�1.58 P < 0.05 P < 0.05

B shape
r¼0 P < 0.05 P < 0.05
r¼0.5 � 10�3 P < 0.05 P < 0.05
r¼1.0 � 10�3 P < 0.05 P < 0.05
r¼1.5 � 10�3 P < 0.05 P < 0.05
r¼2.0 � 10�3 P > 0.05 P > 0.05
r¼2.5 � 10�3 P > 0.05 P > 0.05



Fig. 16. Variation in accuracy of varied cavities with changing density of point sets.

Fig. 17. Variation in accuracy of varied holes with changing density of point sets.
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incident edges change little. In contrast, FðpÞ will be large for the points
on the border of cavity and holes with a larger length variation than
those inside.

As shown in Fig. 11, the points on the border of the cavity and hole
have greater FðpÞ, as denoted by Sets ¼ fFðpÞjFðpÞ>Tg. FðpÞ value can
effectively capture the gradient changes from the boundary to the inside
of DTðSÞ. We pose this variation as the problem that one requires an
effective means of determining the point by locating a sharp gradient
change in the FðpÞ values. A clustering method is employed to determine
T in this paper. The first step sorts the FðpÞ values of all points in
ascending order, and the values are then detected in order. When the first
point where FðpÞ value cannot satisfy the rule of k standard deviations
Fig. 18. Shapes generated for Argentina shape point se

Fig. 19. Shapes generated for B shape point set wi

Fig. 20. Shapes generated for He Fei point set wit
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occurs, T is assigned the Fðpþ 1Þ

value. The rule is defined as follows:

jxi � xj � kσ (4)

where x is the mean value of the FðpÞ values and σ is the standard de-
viation of the FðpÞ values. Evidently, T becomes large with the
increased k value.

The rule splits all the values into two clusters. Hence, values in the
same cluster should be ensured as similar to each other and dissimilar to
those in different clusters for obtaining a suitable k. PBM index (Pakhira
t with density �2.45 (log of points per unit area).

th density �2.22 (log of points per unit area).

h density �1.96 (log of points per unit area).
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et al., 2004) provides a measure of how “neatly split” the two clusters are.
PBM index is expressed as:

PBM ¼
�
1
Nc

E1

ENc

DNc

�2

(5)

ENc ¼
XNc

i¼1
Ei，Ei ¼

XNi

j¼1

��xj � vi
��; DNc ¼ maxNc

i;j¼1

���vi � vj
��	 (6)

where Nc is the number of clusters, Ni is the total number of points
in Ci cluster, vi is the center of the Ci cluster, and DNc

is the measurement of the maximum separation between a pair of
Fig. 21. Effects of i

Fig. 22. Illustration of: (a) POI data set of Luoyang (gray point set) and urban contour (black li
comparative boundary (gray line).

Fig. 23. Extracting the results of different bu
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clusters. When this index is large, the rule of k standard deviations
generally gains better result.

When both short and long edges exist in the Sets, the next step in-
volves filtering these edges to obtain the final boundary. From clustering
analysis perspective, the compactness of the points in the final boundary
does not vary too much, and evidently, the long edges incident to points
on the border of cavity and hole should be removed. Furthermore, Al-
gorithm1 can further act on the retained edges. In this paper, we use the
AUTOCLUST algorithm (Estivill-Castro and Lee, 2002a) to delete the
long edges of the Delaunay triangulation. The algorithm combined hi-
erarchical exploration with graph and density information to detect the
spatial cluster of different hierarchy (refer to the inside AUTOCLUST for
more details). The specific expressions are as follows:
nhomogeneity.

ne) generated by our algorithm; (b) Boundary generated by our method (black line) versus

ilding boundaries using our algorithm.



Fig. 24. Experimental data.

Fig. 25. Variation in accuracy of cavity and h

Fig. 26. Examples of a limit
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TðpÞ ¼ feijjeij> Local�Mean�LengthðpÞ þ Global SD g (7)

Global SD ¼ 1
N

XN

i¼1
Local�SDðpÞ (8)

where Global SDmeans the average of Local�SDðpÞ values in DTðSÞ. If
an edge incident to point p in Sets belongs to TðpÞ, the edge is
removed from DTðSÞ.

Refined shape reconstruction (Algorithm 2) aims to detect pure cav-
ities and holes. First, we construct the list of points A, where FðpÞ values
are more than T from the Delaunay triangulation of rough boundary. The
list A is then divided into boundary vertices AB and interior vertices AI .
In Algorithm 2, pure cavity (line. 5–16) detection has priority over hole
detection (line. 17–28) because the proposed method is based on
ole with changing density of point sets.

ation of our algorithm.
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filtering virtual boundary edges. Afterwards, we sort the FðpÞ of A and
e of NðpÞ in descending order to yield the unique boundary. For cavities,
the virtual boundary edge is first determined if it is a removal edge on
the long edges and Irregularity constraints. The long edges constraint is
simple that e should belong to TðpÞ. When one edge can be deleted, the
remaining two edges corresponding to the triangle are added into list B' .
Compared with cavities, the holes located inside Delaunay triangulation
have no boundary edges. Hence, the edges in holes are removed simply in
the descending order of A and NðpÞ on the-
long edges and Irregularity constraints. Furthermore, several edges in list
B'may not belong to TðpÞafter B' is updated. To solve this problem, we
employ Algorithm 1 to detect these edges.
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Combining with Algorithms 1 and 2, Figs. 12 and 13, respectively,
shows the steps of cavity and hole detection. First, we employ Algorithm
1 to produce rough boundaries (see Figs. 12(a) and 13(a)), and then use
Algorithm 2 to locate and detect the two structures based on the rough
result. The PBM index is adopted to determine where the cavity and hole
are (i.e. FðpÞ>T), as shown in Fig. 12(d)–(e) and 13(d)–(e). The final
boundaries (see Fig. 12(c) and 13(c))) are generated based on the con-
straints of Algorithms 1 and 2.
4.3. Time complexity

The proposed algorithm has a computational complexity is OðN2Þ
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where N is the cardinality of input points. In Algorithm 1, the number of
boundary edges in the list B is linearly proportional to the number of
vertices by Euler's formula. Hence the time complexity of sorting step is
OðNlogNÞ (line 2). Next, the main filtration loop (line 3–10) requires
OðNÞ time. In Algorithm 2, finding the cavity/hole requires two steps:
computation of FðpÞ and determination of T, which can be done in OðNÞ
and OðNlogNÞ time. Three preprocessing steps need to be executed
before proceeding the main filtration procedures of cavity and hole: (1)
sorting the list of FðpÞ of border points (line 2) takes OðNlogNÞ time; (2)
splitting the sorted result into two components (line 3) takes OðNÞ time;
(3) sorting the list of edges incident to one border point (line 4) takes
OðNlogNÞ time. Finally, the main filtration loops of cavity (line 5–16) and
hole (line 17–28) each require OðN2Þ time.

5. Experimentation

The proposed algorithm is implemented in C# using the ArcGIS 10.0
software. We conducted several experiments to test the algorithm's
abilities to reconstruct shapes derived from point patterns with well-
defined shapes. We also present a comparative study with two other
representative approaches considering both cavity and hole detection.
One is alpha-shape (Edelsbrunner et al., 1983) and the other is RGG
(Peethambaran and Muthuganapathy, 2015). To ensure fair comparison
with our method and RGG, the alpha-shape output was modified by
considering Irregularity of a simplicial 2-complex.

Three experiments were designed to evaluate the performance of our
method. First, the experiments examined the effects of varying parame-
ters on our shape reconstruction method. Second, the effects of varying
point densities on the performance of the three approaches were
analyzed. Finally, the effects of increasing inhomogeneity on the per-
formance of the three approaches were studied.

5.1. Experimental setup

We chose four different uppercase letters for the tests: “A,” ”B,” ”C,”
and ”K” (see Fig. 14(a)). The letter shapes were generated using a sans
serif font (Arial). Another type of shape was borders of three countries
and one city (see Fig. 14(b)-(e)).

We used the L2 error norm (Duckham et al., 2008) for the perfor-
mance evaluation of the three approaches quantitatively. The L2 error
norm provides a good measure of closeness between true shapes and the
reconstructed result of input points. This term is defined as the area of the
symmetric difference between an original region O and a reconstructed
result S as a proportion of the total area ofS. That is,

L2 error norm ¼ AreaððO� SÞ∪ðS� OÞÞ
AreaðOÞ (9)

The L2 error norm of zero means that the two shapes are equal in area
and that their boundaries are similar.

To ensure randomized not by chance, for each shape, 50 replications
of internal points were generated, and the average accuracy of these 50
replications for each shape at each parameter was set as the final accu-
racy. All the external parameters that led to the lowest L2 error norm
were used as the optimal parameterization for the following
experimentations.

5.2. Experiment 1: effects of parameter ℛ

In this experiment, each shape was filled with a number of evenly
polygon vertices and semi-random distribution of internal points. The
semi-random distribution of internal points were generated based on the
x-outline algorithm (Zhong and Duckham, 2016). Each point must be
greater than a certain threshold distance d from any other points, where
d ¼ ffiffiffiffiffiffiffiffiffiffi

rA=π
p

; A is the total area of true shape; r is the normalized minimum
allowed pair-wise distance which is the ratio between πd2 and A.
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Semi-random distribution was chosen because the truly random points
are highly inhomogeneous, producing clusters and unwanted holes. In
Experiment 1, we defined r¼2.5 � 10�3 for the shapes.

Fig. 15 (a) and (b) exhibit the variations in the L2 error norm of varied
cavities and holes, respectively, as reconstructed using our method. In
general, two line charts of all shapes reveal three major phases. First, the
accuracy of all shapes exhibit progressive improvement with decreasing
ℛ parameter from 180 (i.e., the convex hull), characterized by
decreasing L2error norm. Second, below a certain parameter, the algo-
rithm starts to filter the body of shapes, indicated by a rapid decrease in
L2error norm. All the shapes in Fig. 15 (a) and (b) have response curves
that lead to that rapid change as the parameter decreases from value
around 120. All the curves also represent a relatively low L2 error norm
and stay relatively small changes within a certain range. The L2 error
norm of these shapes can often reach its minimum at around these
parameter values. Third, when the parameter is smaller than a certain
value, our algorithm begins to erode the interior of these shapes, char-
acterized from a sharp increasing L2 error norm, however, L2 error norm
shows a steady state with decreasing parameter value when considering
the semi-random point set and our Irregularity of a simplicial 2-complex.

The accuracy curves in two graphs demonstrate that the performance
of our algorithm for all shapes can provide good reconstructed shapes at
parameter 120, since the L2 error norm of parameter 120 can often
exhibit a relatively low curve. Furthermore, the accuracy results suggest
that these shapes can reach theminimum L2 error norm at the parameters
of around 80–120.
5.3. Experiment 2: effects of varying point densities

In this experiment, we aim to investigate the potential relationship
between the accuracy of three approaches and the point density. Point
density is defined that the point set filled shapes using on average one
point occupying a region of n� n pixels (Duckham et al., 2008). Each
shape was filled with polygon vertices and a truly-random distribution of
internal points. We used the nonparametric Kruskal-Wallis test to
examine the null hypothesis that the difference in accuracy between our
method and RGG or modified alpha-shape may have occurred by chance.
The null hypothesis is rejected as the coefficient of significant difference
is at 0.05 level (i.e., P < 0.05). All the statistical test results are presented
in Table 1.

Figs. 16 and 17 exhibit the variations in the L2 error norm of varied
cavities and holes generated by three methods with varying densities. For
cavity structure, the accuracy of the modified alpha-shape and our
method increase as the point set density increases. Conversely, the RGG
results exhibited large variations with changing densities in several cases
(especially in “C” shape). This is mainly due to the problem of Cavity with
satisfactory triangles. Our algorithm performs relatively better than the
other two approaches as the point sets density increases for K and Iran
shapes. For Argentina shape, the boundary of Argentina is elongated with
different levels of sinuosity, which makes the chance of reconstruted
shape errors more than the shapes with relatively large area to perimeter
ratio (e.g., Iran). Our method did not significantly outperform the other
two approaches on this kind of shape (see Fig. 18).

For hole detection, the accuracy of the modified alpha-shape and our
method increase as the point set density increases. For B shape, RGG fails
to detect the holes (see Fig. 19(a)) at the point density of �2.22, leading
to an increase in L2 error norm. Our method can generate amore accurate
B shape than modified alpha-shape (see Fig. 19(b) and (c)). It can be
observed from the letter shapes that our algorithm exceeds the accuracy
of RGG at higher point density and is more accurate than modified alpha-
shape at lower density.

Unlike letter shapes, South Africa and He Fei shapes possess different
levels of cavities and holes, our method significantly outperforms the
other two approaches. In addition to that, RGG is lack of the robustness to
the varied holes, especially for the thin holes (see Fig. 20(a)). α-shape
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relies on a global parameter, which may generate undesirable holes with
truly-random distribution of internal points (see Fig. 20(c)).
5.4. Experiment 3: effects of inhomogeneity

Compared with country or city border, the letter shapes can capture a
more precise summary of the reconstructed shapes, we focused on the
letter shapes in this experiment. The letters K and A is a representative
shape for cavities detection (Peethambaran and Muthuganapathy, 2015)
and hole detection (Edelsbrunner et al., 1983). We set the parameter r
from o (truly random point distributions) to 3 � 10�3 (semi-random
point distributions) in cavity detection and set parameter r from o to
2.5 � 10�3 in hole detection. Each shape was only filled with varied
distribution of internal points (without polygon vertices). The density of
points for K and A was fixed approximately at �1.75 and �1.84
respectively where our method did not significantly outperform the other
two alternatives in Experiment 2.

Fig. 21(a) and (b) display the variations in the L2 error norm of K and
A shapes generated by the three methods with decreasing homogeneity
distributions. As inhomogeneity in point distributions decreases, the
accuracy of all shapes by three approaches increases. To be more precise,
a truly random distribution of points may lack several features of the
original shape, making the deviation between the final boundary results
and the original shape become great. The semi-random distribution is
structurally closer to the original shape thereby making the reconstruc-
tion more accurate. The magnitude of L2 error norm from truly-random
to semi-random distribution indicated that our method was more
tolerant than the other two approaches, characterized by minimal
magnitude of L2 error norm (approximately 64% for K shape and 70% for
A shape). The modified alpha-shape was in a moderate effect with
magnitude of 73% and 74%. RGG was particularly sensitive to the
increasing homogeneity with magnitude of 78% and 85%. This is mainly
due to the absence of boundary points capable of defining shapes. For K
and A shape, the nonparametric Kruskal-Wallis test shows that the pro-
posed algorithm significantly outperformed modified alpha-shape and
RGG with parameter r from 0 to 1.5 � 10�3. It becomes clear that the
proposed algorithm outperformed the other two algorithms as the point
set is close to truly-random distribution.

6. Applications

In this section, two applications validate the practicability of our al-
gorithm, as well as illustrate its wide range of potential applications. In
the first application, we employ the algorithm to obtain urban contour
using Point of Interest (POI) data, an important part of urban
morphology. Fig. 22(a) displays the actual POI data (geographic entity
Fig. 27. Example our algorithm and AMOEA plus our algor
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data) of Luoyang city, China, and shows 77 497 records in the POI
dataset. As urban contour is a simple polygon that contains all entities,
we simply adopted Algorithm 1 and cavity detection to extract it. The
administrative boundary of Luoyang is used for comparison to validate
the boundary produced by our approach. It can be observed from
Fig. 22(b) that our method is a good choice for this task.

The second application comes from building boundary extraction
based on LIDAR data. We conducted experiments with various geomet-
rical shapes of building boundaries from Kuala Lumpur City Center
District in Malaysia (provided by Shen et al., 2008) to validate our al-
gorithm. The point density was estimated at about 6 points per square
meter, the vertical accuracy of LIDAR data was 15 cm, and the horizontal
resolution was 30 cm. The resulting building boundaries are shown in
Fig. 23. We can see that the proposed method can describe the concaves
or holes of different building boundaries effectively.

7. Discussion

In our algorithm, the points on the border of the cavity and hole have
greater FðpÞ value. The circumstances where FðpÞ of points inside the
Delaunay triangulation are greater than or similar to FðpÞ of points on the
border of the cavity/hole reveals a limitation of our algorithm. Fig. 24
provides two defined shapes by example to illustrate the problem of our
method. Each shape was filled with even polygon vertices and a truly-
random distribution of internal points.

For cavity detection, the proposed algorithm was outperformed by
modified alpha-shape with density of points from �2.20 to �2.04 (see
Fig. 25(a)). Within this range, FðpÞ of points inside the Delaunay trian-
gulation are similar to FðpÞ of points on the border of the cavity. Hence, a
very small part border points are selected out, precluding further cavity
detection (see Fig. 26(a)). To obtain the pure cavity, the parameterℛ can
be relaxed. As shown in Fig. 26(b), the performance of our method is still
worse than modified alpha-shape. When the point density increases at
�1.98, FðpÞ of points inside the Delaunay triangulation are significantly
lower than FðpÞ of points on the border. The cavity shape can get a
desirable result (see Fig. 25(a)). Fig. 25(c)-(d) and 26(c)-(d) show the
same experiment as cavity experiments. Two results for hole detection
represent a relatively high L2 error norm with varying point densities
(see Fig. 25(c)-(d)). The experiment in this case yielded several unde-
sirable holes (e.g., Fig. 26(c)) as FðpÞ of points inside the Delaunay
triangulation are greater than FðpÞ of points on the border. This limita-
tion of our algorithm may due to two issues. One is the inhomogeneous
distribution (especially in truly random distribution) of internal points,
which can cause extremely uneven edge lengths incident to points inside
the reconstructed shape. The other is the shapes (e.g., thin hole in Fig. 24
and Argentina shape in Fig. 18). This disadvantage may produce the
ithm for a cavity shape point set containing noise data.
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negative influence on the detection of hole/cavity boundaries (See
Figs. 25 and 26) and generate undesirable holes (See Figs. 23 and 26(c)).
Moreover, each method generating holes is different from each other,
which include edge-based (e.g., our algorithm) and triangle-based (e.g.,
alpha-shape) filtration and the experiment results illustrate that our
method did not outperform the modified alpha-shape in certain cir-
cumstances (e.g., Fig. 25(c)), hence it becomes a challenging task to
handle the undesirable holes for reaching the desirable shape.

The proposed algorithm generates boundaries containing all the
points even noise. Hence, the algorithm does not deal with noise well.
However, noise can be pre-processed using a spatial clustering algorithm
(e.g., AMOEA method by Estivill-Castro and Lee (2002b)). Fig. 27 shows
a cavity shape point set with noise data. Our algorithm can separate
sample points from noise data using an appropriate clustering in a pre-
processing step.

8. Conclusions and future work

To validate our algorithm objectively, we conducted a series of ex-
periments and compared with other Delaunay-based shape reconstruc-
tion approaches: alpha-shape and RGG, some significant results are
summarized as follows:

● The accuracy of shape reconstruction by the proposed algorithm in-
creases as the point set density increases. For cavity structure, in
many cases our method significantly outperforms the comparative
methods at less dense regions. For hole structure, our method has the
ability to deal with different hole structure with varying densities,
and there is no restriction on the number of holes as well.

● The accuracy of shape reconstruction by our method increases as the
inhomogeneity in the point distribution decreases. For both cavity
and hole structure, the proposed algorithm outperformed the other
two alternatives as the point set is close to truly-random distribution
(see Experiment 3).

● The total time complexity of our algorithm is OðN2Þ time, however,
RGG and alpha-shape require OðNlogNÞ time.

In cases where the input points tend to be inhomogeneous (especially
in truly random distribution), our algorithm revealed some limitations,
so it needs to be solved in future work. Apart from this context, the ex-
tensions of the algorithm to higher dimensions are possible based on the
proposed data structure, which requires both redesign and modification
on the corresponding algorithms.
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