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The color layers of contour-lines separated from scanned topographic map are the basis of contour-line
extraction, but it is difficult to separate them well due to the color aliasing and mixed color problems.
This paper will focus us on contour-line color layer separation and presents a novel approach for it based
on fuzzy clustering and Single-prototype Region Growing for Contour-line Layer (SRGCL). The purpose of
this paper is to provide a solution for processing scanned topographic maps on which contour-lines are
abundant and densely distributed, for example, in the condition similar to hilly areas and mountainous
regions, the contour-lines always occupy the largest proportion in linear features and the contour-line
separation is the most difficult task. The proposed approach includes steps as follows. First step, line
features are extracted from the map to reduce the interference from area features in fuzzy clustering.
Second step, fuzzy clustering algorithm is employed to obtain membership matrix of pixels in the line
map. Third step, based on the membership matrix, we obtain the most-similar prototype and the second-
similar prototype of each pixel as the indicators of the pixel in SRGCL. The spatial relationship and the
fuzzy similarity of color features are used in SRGCL to overcome the inaccurate classification of ambig-
uous pixels. The procedure focusing on single contour-line layer will improve the accuracy of contour-
line segmentation result of SRGCL relative to general segmentation methods. We verified the algorithm
on several USGS historical maps, the experimental results show that our algorithm produces contour-line
color layers with good continuity and few noises, which verifies the improvement in contour-line color
layer separation of our algorithm relative to two general segmentation methods.

& 2016 Published by Elsevier Ltd.
1. Introduction

Historical topographic maps contain rich cartographic in-
formation, such as locations of buildings, roads, contour-lines and
hydrography (Chiang et al., 2013). Essentially, these geographic
elements consisting of color point, linear, and area features are
used to represent topographic and geographic information about
the parts of the Earth (Chen et al., 2006). Because the topographic
maps are invaluable carriers of information about the landscape in
the past over large areas (Chiang et al., 2014), lots of research ef-
forts had been made in extracting geographic elements from maps
(Chen et al., 2006; Khotanzad and Zink, 2003; Chiang et al., 2009;
iao).
Gamba and Mecocci, 1999; Leyk et al., 2006; Cao and Tan, 2002).
Among all graphical elements, contour-line is the most important
one to characterize three-dimensional terrain on two-dimensional
map sheets. Without contour-lines, a topographic map degen-
erates into a planimetric map providing no three-dimensional data
about the terrain (Chen et al., 2006; Khotanzad and Zink, 2003;
San et al., 2004; Salvatore and Guitton, 2004). An example is
shown in Fig. 1, where contour-lines are usually drawn in a very
dense way. The close space between lines and their widely dis-
tribution make contour-line extraction the most time-consuming
process. Meanwhile, color aliasing and mixed color will emerge
from the frequent overlapping of contour-lines and background or
other area geographic features, which makes the contour-line
extraction process even worse. However, the accurate topographic
height information is extremely valuable for terrain analysis and
change detection and plays the key role in constructing three-
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Fig. 1. The purpose of color image segmentation in color map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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dimension geographical information. Therefore, the contour-line
extraction is necessary and it has to be done accurately and effi-
ciently. Automatic contour-line extraction techniques have great
significance in constructing Geographical Information Systems.

Although many types of sequence steps in extracting contour-
lines from topographic map have been shown in (Salvatore and
Guitton, 2004; Samet and Hancer, 2012; Wu et al., 2009), there are
two main necessary steps: (1) Color Image Segmentation (CIS):
separate the contour-line color layer from the original map;
(2) contour-line reparation: solve the problems of gap and con-
glutination. All the subsequent procedures strongly depend on the
results of CIS (Chiang et al., 2014; Leyk, 2010). For the low quality
maps, the result of CIS is not accurate and it is hard to resolve
disconnection and conglutination of contour-lines. The most ob-
vious difference between topographic map and natural image is
that colors in topographic map are mainly used to distinguish
different feature categories. The segmentation of topographic map
can also be defined as segmentation of the map into different color
layers, which represent different categories of elements. Fig. 1
shows the goal of color map segmentation and four color layers
are separated from the original color map. Each layer represents a
type of geographic elements, such as contour-line layer (brown),
vegetation layer (green), rivers layer (blue) and other thematic
objects layer (black).

Some researchers (Pouderoux et al., 2007; San et al., 2004;
Salvatore and Guitton, 2004; Samet and Hancer, 2012; Xin et al.,
2006) focused on the contour-line reparation step which deals
with the CIS by color space transformation and threshold seg-
mentation or other simple algorithms. Although these methods
achieved good results in high quality maps, there are many low
quality topographic maps that cannot be segmented well.

Numerous algorithms of topographic maps color segmentation
were proposed in recent years(Chen et al., 2006; Khotanzad and
Zink, 2003; Feng and Song, 1996; Wu et al., 1994; Zheng et al.,
2003). Chen and Khotanzad used a color key set to solve the
problem of color aliasing and false colors in maps for segmenting
the color topographic maps (Chen et al., 2006; Khotanzad and
Zink, 2003). Unfortunately, this method could only be applied to
maps with high quality. Feng et al. proposed a method for feature
separation based on color clustering (Feng and Song, 1996). Con-
sidering the existence of color aliasing and false colors, Wu et al.
(1994) proposed a method which combined fuzzy clustering and
neural networks to extract the lines and characters of the map.
Zheng et al. presented a CIS method of fuzzy clustering based on
two-dimensional histogram (Zheng et al., 2003). Although the
above algorithms can segment maps automatically, these un-
supervised methods cannot overcome the shortcomings of false
color and color aliasing because they do not consider the planar
spatial relationship.

In order to make full use of the information of distribution in
color space, local homogeneity and connected regions in color
map, Leyk proposed a segmentation method based on Seeded
Region Growing (SRG) which employs the information from the
local image plane, the frequency domain and the color space (Leyk
and Boesch, 2010). G–K fuzzy clustering algorithm (Gustafson and
Kessel, 1978), which is a transformation of Fuzzy c-means (FCM)
algorithm, uses Mahalanobis distance (MD) as the distance mea-
sure. The results based on Euclidean distance show that the seg-
mentation is good only when the data set contains clusters that
are well separated or clusters of roughly the same shape, but G–K
algorithm overcomes the this defect of FCM. Both these two
methods have good performance in dealing with low-quality map
segmentation, but they still have some limitations. Leyk's method
requires extensive parameterization which needs to be turned
through prior knowledge, such as the prototype initialization
parameter will sensitively influence the results. It also has the
limitation of overcoming the disadvantage of order dependencies
required by SRG. On the other hand, mixed color and color aliasing
problems could still cause inaccurate segmentation results in G–K
algorithm since it cannot fix the problem of imbalance date sets
clustering.

This kind of segmentation methods are designed to segment a
map into different color layers. It is note worthy that it is hard to
generate a segmentation framework suitable for all kinds of maps
as well as can separate all layers accurately. Thus, we think im-
provement in map layers extraction can only be achieved at the
cost of highly specialized algorithm. Our goal is to develop a robust
and accurately contour-line color layer separation algorithm to
extract the color layer of contour-lines in color topographic maps.
We proposed a method which is slightly different from traditional
information extraction method of topographic maps. Instead of
general color image segmentation, the new method focuses on a



T. Liu et al. / Computers & Geosciences 88 (2016) 41–53 43
specialized direction which is contour-line layer segmentation.
The proposed method is direct at processing topographic maps
whose contour-lines are abundantly and densely distributed. In
such maps (like hilly area and mountainous region), the contour-
lines always occupy the largest proportion in linear features and
the contour-line separation is the most difficult task. In this
method, the most-similar prototype and the second similar pro-
totype of each pixel are obtained using fuzzy cluster. Based on
fuzzy clustering results, we adopt a Single-prototype Region
Growing algorithm for Contour-line Layer (SRGCL) to extract the
color layer of contour-lines. Afterwards, a high quality contour-line
layer can be obtained. The proposed method is on the basis of
fuzzy clustering and a special SRG. It overcomes the disadvantages
of both fuzzy clustering and SRG, which could make a significant
improvement in separating contour-line layer.

The remaining of this paper is arranged as follows. In the
Section 2, we analyze the color features of topographic map. In
Section 3, the proposed method will be described in detail with
regard to lines extraction, fuzzy clustering and single-prototype
region growing. The experimental performance of our method will
be shown in Section 4 and the conclusions will be discussed in
Section 5.
2. Color analysis in scanned topographic map

Topographic map mainly consists of linear features and area
features. The elements of contour-lines, roads, rivers and so on are
linear features, and the elements of green field, bodies of water,
Fig. 2. Illustrations for showing color distribution of overlapped contour-lines. (a1) and
overlapping and overlapped contour-lines respectively. (a5) and (b5) show their distribut
contour-lines without overlapping respectively, and yellow points represent overlapped
reader is referred to the web version of this article.)
background and etc. are area features. In many topographic maps
like hilly area and mountainous region which include lots of var-
iations in terrain, contour-lines occupy the largest proportion
among linear features. In this kind of topographic maps, contour-
lines are always distributed densely and abundantly. It makes the
contour-lines very difficult to extract. Thus how to achieve the
contour-line layer accurately from this kind of maps is a very
important task for scanned topographic map digitalization.

The color space of CIE Lab, or named as Lab, specified by the
International Commission on Illumination, which is designed to
approximate human vision that aspires to perceptual uniformity
(Ke et al., 2004). The original purpose of drawing map is to show
geographic features to humans, different geographic features
should be distinguished by different colors in human vision. Thus,
all processes in this paper are based on the Lab color space.

Lots of challenges exist in contour-lines extraction process be-
cause of color aliasing and false colors derived from the scanning
process. Meanwhile, closely spaced and intersecting/overlapping
features inherent to the map would further increase the degree of
challenges (Khotanzad and Zink, 2003). Fortunately, there exist
some regular patterns of color in topographic maps which can be
utilized for segmentation. Alireza et al. analyzed the difficulty of
separating the brown contour-lines from a scanned image of a
topographic map and arrived at the conclusion that color aliasing
appears between the two colors which adjoin each other (Kho-
tanzad and Zink, 2003). But the challenges of lines overlapped by
area features are not discussed in detail, i.e. mixed color, which
also is a big challenge on CIS. Fig. 2 shows this phenomenon. Fig. 2
(a1) and (b1) are two small pieces of original maps which only
(b1) are original maps. (a2–a4) and (b2–b4) are green field, contour-lines without
ion in color space, where green points and red points represent the green fields and
contour-lines. (For interpretation of the references to color in this figure legend, the



Fig. 3. The left column shows original scanned maps. The right column shows distribution of color layers in the Lab color space. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The framework of proposed method.
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consist of contour-lines and green field; (a2–a4) and (b2–b4) are
the segmentation results obtained manually; (a5) and (b5) are the
distribution of these pixels in the Lab color space. From the dis-
tribution we can see the color of the overlapped contour-lines is
distributed between the color of the contour-lines without over-
lapping and the color of the green field in the Lab color space.

As a result of false colors, color aliasing and mixed colors, there
is no clear boundary between different prototypes in color space.
Meanwhile, the shapes of color layers in color space are not sphere
but elliptical, as shown in Fig. 3. Two topographic maps are seg-
mented into different geographic element layers manually (ex-
cluding background). Layers are mapped into the Lab color space
with different color labels. Although a few pixels maybe lost
during the process of manual segmentation, these mapping
models show the distribution of topographic map in color space
distinctively. In addition, they help to choose an appropriate
clustering algorithm as shown in the following Section 3.
3. Proposed method

In this section, a new contour-line color layer separation
method is proposed. This method, initial seeds can be auto-
matically obtained from fuzzy clustering without prior knowledge.
Additionally, the potentially growable seeds can also be discovered
from fuzzy clustering process. Based on these clustering results, a
region growing method SRGCL, which is specific to contour-line, is
applied to grow the contour-line color layer. As discussed, this
method is designed for only the contour-line color layer separation
and works well when the maps show very dense and abundant
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contour-line. This method can obtain consecutive contour-line
results without prior knowledge and sensitive parameters. The
framework of this method is shown in Fig. 4.

Linear feature extraction method proposed by Miao et al. Qiguang
et al. (2013) is first employed to get the line map which contains only
linear features from scanned original map. Then, fuzzy clustering
algorithm is applied on the line map. After fuzzy clustering, a fuzzy
membership matrix can be obtained, which records the membership
of each pixel to each prototype. Then the most-similar prototype and
the second-similar prototype of each pixel are achieved from this
matrix, which are the basic of the subsequent region growing pro-
cess. Based on the previous fuzzy clustering results, the contour-line
layer will iteratively grow from the initial seeds.

3.1. Line extraction

Although line features contain a large amount of geographic
information, area features occupy the largest share of pixels in
topographic maps. Moreover, color aliasing and mixed color are
mainly caused by the overlapping of these geographic features.
Removing the area features from topographic maps is necessary
for the following reasons.

) Area features reduces the calculation efficiency because of the
large amount of pixels in them. Removing them could sig-
nificantly reduce computational time.

) Color aliasing and mixed color, caused by the overlapping of
lines and areas, are distributed between the two original colors
in the Lab color space as shown in Section 2. After line features
extraction, one of the two original colors will be removed,
which helps to ensure the accuracy of fuzzy clustering.
Fig. 5. (a) The original topographic map. (b) The line map obtained using lines extraction
proposed method.
) In our method, the characteristic of fuzzy clustering in dealing
with imbalanced data set (will be introduced in Section 3.2) is
used to obtain initial seeds. Thus, contour-lines prototype needs
to contain the largest amount of pixels in all linear feature
prototypes. Fortunately, in the contour-line densely distribution
maps, after area features removing, contour-lines always occupy
the largest proportion.

The line extraction method proposed by Miao et al. Qiguang
et al. (2013), is based on energy density and the shear transform.
The energy density in a grayscale image, is defined as the average
energy in an area, can be described by the following formula.
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where E is the energy density, M�N is the size of the area, and
( )f i j, is the gray-value of a pixel in the negative image. Then

templates in the horizontal and vertical directions are built to
separate lines from background based on energy density. The
linear information loss problem, due to the directional limits of
lines only separated in one direction image, needs to be addressed.
Hence, the shear transform is an affine transform, similar to the
rotation transform (Xu et al., 2012), is employed to add the di-
rectional characteristics of the lines. Finally, a topographic map
only contains lines obtained as shown in Fig. 5(b).

3.2. Fuzzy clustering

Fuzzy c-means (FCM) has many applications in image seg-
mentation. Due to the introduction of fuzzification to every pixel,
method. (c) The contour-line layer result of fuzzy cluster. (d) The final result of our



Fig. 6. Points with similarity from MND. (a) Before adding points, B and A are the same class. (b) After adding points, B and C are the same class. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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FCM achieved good performance (Cai et al., 2007; Krinidis and
Chatzis, 2010). Compared with hard cluster, FCM keeps more ori-
ginal information of images (Sun et al., 2008). Because the Eu-
clidean distance is employed as distance measure, the segmenta-
tion is good only when the data set contains clusters that are well
separated or clusters of roughly the same size and shape (Krish-
napuram and Kim, 1999). To overcome this shortcoming, Gus-
tafson and Kessel presented the G–K algorithm with the Mahala-
nobis distance (MD) as the distance measure (Gustafson and
Kessel, 1978). G–K algorithm preserves the volume and, hence, is
suitable for cases where the data set contains ellipsoidal clusters of
similar volume (Krishnapuram and Kim, 1999). As mentioned in
Section 2, colors of topographic maps distribute as spheroids in
the Lab color space. So, G–K algorithm is adopted in our method.

Assume that = ( ⋯ )X x x x, , n1 2 is a data set of p-dimensional
feature vectors. Let = ( ⋯ )V v v v, , c1 2 represent a c-tuple centers of
clusters and = ( ) ×U ujk c n be a fuzzy membership matrix with ujk

denoting the grade of membership of feature point xk in cluster j.
The objective function of G–K algorithm can be described as for-
mula (2).
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where m is any real number greater than 1 which determines
the fuzziness of the resulting clusters. X contains all pixels of line
features in the line map with 3-dimensional color feature vectors,
c equals the number of feature layers in the line map, n is the size
of X , and m is set as 2 which is widely accepted as a good choice
(Hathaway and Bezdek, 2001; Xu and Wunsch, 2005). Aj is a po-
sitive definite symmetric matrix defined as formula (3).
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where ρj is a cluster volume and is simply fixed as 1 for each
cluster, which makes the clusters with approximately equal vo-
lumes. p is the dimension of feature vectors of data (in our new
method the dimension of the Lab color space is 3. Fj is a fuzzy
covariance matrix defined as formula (4).
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The minimization of the objective functional in formula (2) is
achieved by the alternating optimization method according to
formulas (5) and (6) until the objective functional converge to a
stable state.
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After clustering, fuzzy membership matrix U is achieved.
Meanwhile, classifying each pixel to its most similar prototype, the
contour-line layer result of fuzzy clustering is also available as
shown in Fig. 5(c).

G–K algorithm is capable of detecting ellipsoidal cloud clusters
of dissimilar sizes and orientations to various degrees (Krishna-
puram and Kim, 1999), but the distribution of pixels in color space
is rather complex. The boundaries between prototypes are fuzzy as
analyzed in Section 2. Otherwise, in the map, the amount of pixels
in contour-lines is always larger than that in other linear features.
All these facts would cause misclassification in clustering results.
To explain how this misclassification appears, we use mutual
neighbor distance (MND) (Chidananda Gowda and Krishna, 1978)
as distance measure and illustrate this situation in Fig. 6. MND is
calculated based two values: ( )NN a b, is the neighbor number of b
with respect to a and ( )NN b a, is the neighbor number of a with
respect to b, where a and b are two points in the same space. The
value of MND is given as formula (7).

( ) = ( ) + ( ) ( )MND a b NN a b NN b a, , , 7

In Fig. 6(a), the nearest neighbor of A is B, and B's nearest
neighbor is A. So, ( )MND A B, is 2 and, for the same reason,

( )MND B C, is 3. Therefore, in Fig. 6(a), point B is more similar to A
than C. However, in Fig. 6(b) by adding points D, E and F,

( )MND A B, comes to 5, but ( )MND B C, is still 3. In this case, point B
is more similar to C than A. Similarly, in a line map the contour-
line layer could be considered as red group of Fig. 6(b). The pixels
of contour-line layer has larger relative frequency compare to that
of other layers, thus in color space the contour-line prototype has
bigger volume. B in Fig. 6 could represent the mixed color or color
aliasing pixels obtained from the intersection or overlapping be-
tween contour-line and other features. Although these pixels
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ought to be part of contour-line layer, they are easily classified into
other layers in clustering results.

In general, G–K algorithm could get a good performance in
detecting the shape of geographic elements in color space. How-
ever, the result prototypes with larger amount of pixels will lose
some parts of the boundary pixels. To overcome this shortcoming,
a single-prototype region growing method is proposed for con-
tour-line layer extraction.

3.3. Single-prototype region growing for contour-line layer

Seeded Region Growing algorithmwas proposed by Adams and
Bischof in 1994 (Adams and Bischof, 1994). The application of SRG
is in the image segmentation in gray level, and the initial seeds
input are needed (Mehnert and Jackway, 1997). Researchers later
improved this method and expanded it to color image segmen-
tation (Fan et al., 2001; Shih and Cheng, 2005), medical image
segmentation (Hojjatoleslami and Kittler, 1998; Wu et al., 2008),
video object analysis (Grinias and Tziritas, 2001) and 3-D image
segmentation (Revol-Muller et al., 2002). Based on SRG, Leyk ap-
plied homogeneity in color topographic maps segmentation (Leyk
and Boesch, 2010). This method makes full use of plane relation
information, frequency of homogeneous pixels and color space
information to segment map and produces acceptable results. It is
dynamic in solving discrimination problems and it can prevent
over-segmentation. However, as prior described, this method is
directed at all color layers extraction. Thus, accuracy segmentation
results in all layers are extremely difficult in this method, espe-
cially when the geographic element distributes complexity in the
situation of contour-line in the maps which we are processing. To
solve this issue, we apply a specific SRG to obtain accuracy con-
tour-line layer as follows.

Based on fuzzy membership matrix U , the SRGCL consists of
four steps of contour-line layer automatic identification, in-
itialization of seeds, single-prototype region growing and post-
processing. U denotes the grades of membership of each pixel in
each cluster. Generally, the cluster that has the biggest grade is
regarded as the ascription of each pixel. However, as mentioned
before, color aliasing and mixed color will cause inaccurate seg-
mentation in clustering. Hence, the second-similar prototype is
employed in region growing. Every pixel xk should hold a most
similar prototype pmk and a second similar prototype psk, which
are defined in formulas (8) and (9) respectively.

= { | = ( ) = ⋯ } ( )pm p u u j cmax , 1, 8k pk jk

= { | = ( ) = ⋯ ≠ } ( )ps q u u j c and j pmax , 1, 9k qk jk

where c is the number of prototypes. Thus a most similar proto-
type set = { ⋯ }PM pm pm pm, , n1 2 as well as a second-similar pro-
totype set = { ⋯ }PS ps ps ps, , n1 2 are obtained, where n is the
number of pixels. As analyzed previously, most similar prototype
alone could lose some mixed color and color aliasing pixels be-
cause of imbalance data distribution. Thus, we employ the second-
similar prototype which is used to discover potential contour-line
pixels. These potential pixels may lose their original membership
of contour-line prototype during clustering. Hypothetically in
Fig. 6, B represents a contour-line pixel (red color in Fig. 6a) which
is influenced because of color aliasing or mixed color. With the
increasing amount of contour-line pixels, B is easier to be classified
into other layer (blue color in Fig. 6b). But it still has some simi-
larity to contour-line prototype as described in Fig. 2. Thus, its
second-similar prototype should be contour-line. Based on all of
the above analysis, along with the combination of plane relation
information contained in region growing process, these potential
contour-line pixels could return to their original prototype which
is the contour-line layer.

a) Contour-line layer automatic identification
For the random value of initial cluster centers and the complex
computing, it is difficult to point out which prototype
corresponds to the contour-line layer. However, for contour-
lines of the maps which we focused on, due to their wide
distribution they occupy the largest proportion in a line map,
an automatic contour-line layer identify method is introduced
here. The main idea of this method to first choose n rows and n
column of line map randomly; then check corresponding pmk

of pixels lie on these lines to find out the prototype cp with the
largest proportion, which is the prototype of contour-line
layer. This entire ideal can be described by formula (10).

( )
′ = { }
= { | ¬ ∃ ( ′ = ) > ( ′ = ) = ⋯ } 10

PM pm

cp i j crad PM j crad PM i i j c, , 1, 2
k

where k equals the indexes of pixels lie on the random chosen
lines, ( )crad A equals the number of elements in set A.

b) Initialization of seeds
This step has to have a sufficient number of initial seeds that
SRGCL can successfully work over the maps. Meanwhile, the
initial seeds must be pure enough that it only contains pixels
which belong to the contour-line prototype. If a pixel k and the
majority of the neighbors around it show the same most si-
milar prototype as cp, then k is registered as an initial seed Scp

of contour-line prototype, thus it represents one starting pixel
for SRGCL. The initial seed Scp can be achieved by formula (11).

δ= { = ( = ) > } ( )S k Pm cp and crad Pm cp 11cp k k

where k is the neighbor of k, δ describes the threshold of a
majority. As a majority, δ should be larger than 4 to guarantee
the reliability of initial seeds. Otherwise, the selected seeds
might not belong to contour-line layer. A over strict threshold
like 7 or 8 could cause the quantity of initial seeds to be
smaller, which then leads to higher iterations. However, this
parameter has limited influence to the contour-line separation
result. That is because the growing process will offset the
missing of initial seeds by costing a few more iterations.

c) Single-prototype region growing method
Based on the contour-line prototype cp and initial seeds men-

tioned above, a single-prototype region growing method is in-
troduced here.

Besides PM and PS , a label set { }mrk for denoting whether a
pixel has been classified is needed. If a pixel has been classified to
a prototype, mrk is set to 1, otherwise, set mrk to 0. An iterative
process is described as follow.

Step 1 Starting at the initial seeds Scp and then search the
connected ×m m neighbors for the pixels have the same pm. If the
neighbors have not been classified and they have the same pm
with Scp, these pixels are registered as new seeds of the contour-
line layer, as described in formula (12).

∈ ⇐ ∀ ( = = ) ( ∃ ¯ = ) ( )k S k pm cp mr and k pm cp, 0 , 12cp k k k

Step 2 Beginning with the seeds Scp of contour-line layer and
search their 3�3 neighbors for the pixels whose second similar
prototype is cp. These detected pixels are considered as new seeds
of contour-line layer.

∈ ⇐ ∀ ( = ) ( ∃ ¯ ¯ ∈ ) ( )k S k ps cp and k k S, 13cp k cp

Step 3 Repeat Step 1 and Step 2 until there is no change in Scp.
Most similar prototype information will guide the region

growing process in Step 1. This step allows the pixels with high
similarity to contour-line prototype to become a part of contour-



Fig. 7. (a) The initial seeds. (b) The iteration number equals 3. (c) The iteration number equals 6. (d) The final result of region growing and the iteration number equals 12.
The middle column enlarges the same part of contour-line layer in different iteration.

1 http://nationalmap.gov/historical/.

T. Liu et al. / Computers & Geosciences 88 (2016) 41–5348
line layer. With a broad neighbor size m, almost all the pixels have
high similarity to contour-line prototype could be contained except
false color pixels and noise pixels which are far away from contour-
lines in map. The second similar prototype information in Step
2 makes the pixels with lower similarity have the opportunity to
become a part of contour-line layer. Meanwhile, small neighbor size
in Step 2 ensure the grown pixels are surrounding the seeds, which
can get missed mixed color pixels and color aliasing pixels back to
contour-line layer without bringing in other layers’ pixels. In order to
explain the growing process more clearly, we use the intersection
region of contour-line and river as an example. This intersecting
patch contains mixed color and color aliasing pixels. As previous
analysis, the mixed color and color aliasing will show similarities to
both contour-line and river but in different degrees. If a pixel in this
patch shows the most similarity to contour-line, it will grow into
contour-line layer in Step 1. Otherwise, its second-similar prototype
should be contour-line, which will cause it grow into contour-line
layer in Step 2. Thus, this growing method can successfully solve the
mixed color and color aliasing problem even in intersection region
and regardless of the size of intersecting patches.

Illustration of the SRGCL is shown in Fig. 7. Fig. 7(a) shows the
initial seeds come from Fig. 5(c). Starting with these seeds, the
iteration of growing method continues until the whole growing
process finishes. As the enlarged portion shown, contour-lines are
growing step by step.

a) Post processing
The region growing is specific to contour-line and it makes the

contour-line layer complete. Thus, the unlabeled pixels, with the
most similar prototype is cp, can be regarded as incorrect classified
pixels in the fuzzy clustering. Therefore, these pixels can be ig-
nored in this step. For the size of neighborhoods in region growing
set by prior knowledge, some noise could emerge because of the
false growing which resulting from a big neighborhood size m. So
in the post processing, small connected regions are removed from
the contour-line layer to fix this problem. The way to judge whe-
ther a region is a small connected region is counting its pixel
amount Sn. According to our experiments, an over large threshold
could cause missing information of the contour-line and a small
one could not fix the noise problem in most cases. Thus, we set it
as 5 in our method.

Finally, the final result of contour-line layer is obtained as
shown in Fig. 5(d). It can be seen that after several iterations, most
contour-lines are growing to complete lines.
4. Experimental results and analysis

In this Section, 5 different pages of topographic maps from
USGS historical maps1 are used to examine the proposed method.
We use G–K method and Leyk's method as benchmarks to ex-
amine how much the new method could gain in accuracy of
contour-line extracted through specializing on the contour-line
layer. Both basic methods apply the same post processing algo-
rithm to improve their results.

4.1. Measurement

In these experiments, we adopt the classic evaluation metrics,
precision-recall and F1-measure (Martin et al., 2004), to measure
the separated contour-line layer quality. Precision is the fraction of
segmented results that are true positives rather than false posi-
tives, while recall is the fraction of true positives that are obtained
by segmented results rather than missed. In other word, precision
is the percent of valid pixels in segmented layers, and recall is the

http://nationalmap.gov/historical/


Table 1
Iteration number and evaluated results of different majority thresholds.

Majority threshold 5 6 7 8
Iteration number 13 14 15 15
F1-measure 0.8153 0.8153 0.8153 0.8153
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percent of detected ground truth pixels in all ground truth pixels.
F1-measure is a harmonic mean of precision and recall which
could comprehensively assesses the segmentation quality of each
method. The definition of F1-measure is shown in formula (14).

− = ⋅ ⋅
+ ( )

F1 measure 2
precision recall

precision recall 14

4.2. Parameters

In the fuzzy clustering step of SRGCL, all the parameters are set
as default introduced in Section 3.2. In the seed initialization, the
majority threshold δ is set as 5. To varify the good robustness of this
parameter visualized, several values are tested on Fig. 5(a). Iteration
number and evaluated results are shown in Table 1. It can be seen
that F1-measure has no changes with different δ from 5 to 8.

In the region growing process, the neighborhood size m needs
to be adjusted which will be indicated in each experimental group.
And in the post processing, the noise size Sn is set as 5. The sen-
sibility of the above two parameters will be discussed later.

4.3. Experiments

Continuation is a very important request in contour-line ex-
traction. Gaps that exist in contour-line layer after segmentation
Fig. 8. (a) Original image of a map form 1995. (b) Ground truth of contour-line layer. (
contour-lines segmentation results achieved by the SRG algorithm based on homogeneit
(For interpretation of the references to color in this figure legend, the reader is referred
will bring huge difficulties to contour-line extraction. Taking full
account of relationships in color space and plane space among
pixels, the contour-line color layer obtained by SRGCL has good
performance in continuation, which can be verified in Fig. 8. As a
result of the color aliasing and mixed color, parts of pixels on
contour-line are lost in the result of G–K method. But after adding
the special region growing procedure in the SRGCL algorithm,
most of them grow back thus to insure the continuation of con-
tour-lines, which is indicated in red rectangles in Fig. 8(c) and (e).
In addition, SRGCL has big improvements in continuation relative
to the SRG algorithm based on homogeneity, which is indicated
with red rectangles in Fig. 8(d) and (e). In Fig. 8(d), huge gaps
appear in contour-lines which almost lead to some of the contour-
lines disappearing. This is caused by inaccuracy initial seeds and
growing order dependencies problem. However, through using
fuzzy clustering to initial seeds and focus on contour-line layer,
these problems are overcome in SRGCL.

Besides gaps, noise is another serious difficulty for the extrac-
tion of contour-lines. The SRG algorithm based on homogeneity
gets initial seeds by peak finding, which can consider all layers but
is highly depended on the threshold. Meanwhile, the sphere shape
of initial seeds in color space could easily cause the inaccuracy of
prototype. So, some noise exists in the contour-line layer as in-
dicated with blue ellipses in Fig. 8(d). SRGCL changes the way of
initializing seeds by using fuzzy clustering result, which can fully
consider all pixels in topographic map. In addition, ellipsoidal
shape of initial seeds in color space could achieve accurate pro-
totype. Thus, the results of SRGCL have less noise which can be
seen from the corresponding area surrounded by blue ellipses in
Fig. 8(e). In order to quantitatively evaluate the improvement of
SRGCL relative to G–K method and Leyk's method, we used these
basic methods as benchmark to show the increase of SRGCL in
c) The contour-lines segmentation results achieved by the G–K algorithm. (d) The
y. (e) The contour-lines segmentation results achieved by SRGCL which set m as 11.
to the web version of this article.)



Fig. 9. (a) Original image of a map form 1997. (b) Ground truth of contour-line layer. (c) The contour-lines segmentation results achieved by the G–K algorithm. (d) The
contour-lines segmentation results achieved by the SRG algorithm based on homogeneity. (e) The contour-lines segmentation results achieved by SRGCL which set m as 11.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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precision, recall and F1-measure. The quantified improvements of
separated results are shown in Table 2.

These four groups of experiments (Figs. 9–12) above further
show the improvements of SRGCL in continuation (red rectangles)
and with freedom from noise (blue ellipses). The quantified im-
provements of separated results are shown in Table 2. Although
SRGCL does not improve all precisions and recalls in all cases, it
shows obvious improvement in F1-measures.

Since SRGCL uses the G–K results as the basis of initial seeds, it
has stable improvement in recall relative to G–K method. This is
because the growing process could keep causing the boundary
pixels into contour-line layer. Thus the results of SRGCL have
higher degree in completeness and continuity. Since the contour-
line layers of SRGCL have more true positive pixels than that of G–
K method, the ratio of true positive pixels is increased which leads
to SRGCL improvement in precision. In some cases, the boundary
pixels of other geographic elements happen to have high levels of
Table 2
Quantified improvements of SRGCL relative to basic methods relative to the contour-lin

Fig. 8 (%) Fig.

G–K Precision 3.6 47.
Recall 88.2 157.
F1-measure 62.2 106.

Leyk's method Precision 205.9 8.
Recall 49.3 24.
F1-measure 97.3% 17.
similarity contour-line layer. As in Fig. 10, the background has very
similar color to contour-line. Meanwhile the rivers are drawn in
dark blue, which leads to the mixed color and color aliasing pixels
of these two elements have high similarity to contour-lines. The
boundary pixels adjacent to contour-lines are falsely segmented
into contour-line layer and the precision of SRGCL is decreased
relative to G–K algorithm. However, the amount of falsely seg-
mented pixels is very small, which barely influence the separated
results of SRGCL. This point can be seen from both the image and
F1-measure of Fig. 10 in Table 2. In Figs. 8 and 9, the mixed color
and color aliasing problem are serious because of low map quality
and close space between elements. This makes the G–K clustering
results miss lots of contour-line pixels, consequently the im-
provement in recall of SRGCL appears a lot in these two figures.

SRGCL has stable improvement in precision relative to Leyk's
method, which can be seen from the images and Table 2. This
improvement demonstrates further significant in Fig. 8. The color
e portion produced by the two basic methods.

9 (%) Fig. 10 (%) Fig. 11 (%) Fig. 12 (%)

3 �4.5 183.6 0.2
1 46.6 69.3 25.8
6 21.7 123.3 14.5
7 9.0 9.7 16.5
1 27.5 �7.5 12.9
0 18.5 0.6 14.5



Fig. 10. (a) Original image of a map form 1897. (b) Ground truth of contour-line layer. (c) The contour-lines segmentation results achieved by the G–K algorithm. (d) The
contour-lines segmentation results achieved by the SRG algorithm based on homogeneity. (e) The contour-lines segmentation results achieved by SRGCL which set m as 5.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (a) Original image of a map form 1983. (b) Ground truth of contour-line layer. (c) The contour-lines segmentation results achieved by the G–K algorithm. (d) The
contour-lines segmentation results achieved by the SRG algorithm based on homogeneity. (e) The contour-lines segmentation results achieved by SRGCL which set m as 7.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. (a) Original image of a map form 1969. (b) Ground truth of contour-line layer. (c) The contour-lines segmentation results achieved by the G–K algorithm. (d) The
contour-lines segmentation results achieved by the SRG algorithm based on homogeneity. (e) The contour-lines segmentation results achieved by SRGCL which set m as 11.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Evaluation on different neighborhood sizes.

m 1 3 5 7 9 11 13 15 17 19
Precision 0.9773 0.9758 0.9753 0.9748 0.9738 0.9738 0.9736 0.9734 0.9734 0.9734
Recall 0.7392 0.7573 0.7628 0.7629 0.7639 0.7639 0.7639 0.7639 0.7639 0.7639
F1-measure 0.8417 0.8528 0.8560 0.8559 0.8562 0.8562 0.8561 0.8560 0.8560 0.8560

Table 4
Evaluation on different noise sizes.

Sn 1 2 3 4 5 6 7 8 9 10
Precision 0.9726 0.9733 0.9734 0.9737 0.9738 0.9738 0.9742 0.9749 0.9754 0.9764
Recall 0.7645 0.7643 0.7642 0.7641 0.7639 0.7639 0.7638 0.7631 0.7628 0.7622
F1-measure 0.8561 0.8563 0.8562 0.8563 0.8562 0.8562 0.8562 0.8561 0.8561 0.8561
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distribution of Fig. 8 in color space is rather uniform, thus it is very
difficult to select an ideal threshold for initializing seeds of all color
layers in Leyk's method. This is the reason that large redundancy
appears in its contour-line layer. In SRGCL, the initial seeds are se-
lected based on the clustering results, which are determined by the
data itself and show the essence of the data. Additionally, SRGCL
focus on only contour-line layer, which could guarantee the accuracy
of the separation results. All of the above lead to significant im-
provement in precision. Meanwhile, other figures can verify this
improvement in the same way. SRGCL not only increases the ratio
but also increases the amount of true positive pixels, which result in
the increasing recall of contour-line layer separation results. It is
worth of being noticed that the recall in Fig. 11 is decreased which is
because Leyk's method indeed has good performance in this type of
good quality maps. The color distribution of different layers in color
space is well separated, which make it easy to select threshold.
However, the image shows some texts of other layers are also in-
cluded in the contour-line layer of Leyk's result, which can be re-
flected through precision and F1-measure as well.
From the evaluations in both visualization and quantification
we can see, SRGCL will significantly improve the continuation of
lines and the ability of lessening noise in contour-line layer se-
paration relative to the other two basic CIS methods.

In order to test the sensibility of neighborhood size m and noise
size Sn, various values of these parameters are applied in SRGCL.
The examined map is Fig. 9 and the resulting evaluations are
shown in Tables 3 and 4. To test m as well as Sn, we fix other
parameters as the default values. It can be seen from these tables
that there are very small changes through very wide ranges in
both m and Sn, which indicate the strong robustness of these
parameters.

There also exist some shortages in our method. For instance,
when some features are represented by the color which is similar
to the color of contour-line, it is hard to separate these feature
from contour-line in fuzzy clustering, and it will result in false
segmentation just like ‘30’ in Fig. 8 and ‘148T’ in Fig. 11. Besides,
the cost of achieving good contour-line extraction results in our
method is, losing the ability of extracting other layers in a
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topographic map. In addition, in this paper we only test USGS
series maps in which contour-lines are the largest proportion of
line features. Thus, other series topographic maps and the maps in
which contour-lines are not the largest proportion of line features
should be considered in the future research.
5. Conclusions

This paper presents a new algorithm SRGCL for contour-line color
layer separation in topographic maps which contain wide and dense
contour-lines. Different from general topographic map segmentation
methods, SRGCL only focus on contour-line layer extraction. How-
ever, this limitation on other layers segmentation has an exchange of
more accurate contour-line layer segmentation results. This method
possesses nice properties of fuzzy clustering and single-prototype
region growing to separate contour-line color layer specifically. By
introducing the planar spatial relationship into images, the proposed
method can solve the problem of inaccuracy raised by mixed color,
color aliasing and false color in fuzzy clustering. Moreover, by taking
advantage of unsupervised cluster and SRGCL, both problems in in-
itial seeds selection and in order dependencies of SRG are solved. The
results obtained by our method have excellent performance in con-
tinuation and with freedom of noise, which have been proven by
experiments. In addition, our method shows good robustness with
only a few parameters.
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