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A B S T R A C T

A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of
highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks
(DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh
generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on
planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and
spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density
and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs)
to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the
doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in
space. The quality of elements is compared with the results from an existing method. It is verified that the present
method can generate smoother elements and a better distribution of element aspect ratios. Two numerical sim-
ulations are implemented to demonstrate that the present method can be applied to various simulations of
complex geological media that contain a large number of discontinuities.
1. Introduction

Discrete fracture networks (DFNs) play an important role in simula-
tions and analysis of fluid flow and transport in discontinuous geological
media (Jing, 2003). They have rather complex configurations that are
mainly caused by fracture interconnections and variations in fractures'
geometries such as orientation, size, and position. The geometrical
complexities of DFNs significantly increase the difficulties of keeping
geometric consistency in the mesh generation. Developing an effective
discretization method is highly demanded for numerical analysis of fluid
flow and transport in complex discontinuous media.

1.1. Triangular and tetrahedral meshes in DFNs

Typically, there are two types of mesh typically used in simulations of
DFN problems. One is the planar mesh method using triangular elements
on fractures only. It has been widely used to simulate hydraulic flow in
fractured rocks in which the matrix has a low permeability (De Dreuzy
et al., 2012). The planar mesh requires that the elements of a fracture
conform to those of other fractures at their intersections to ensure the
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continuity of unknowns such as displacement, pressure, and fluid flux
across the intersection lines between fractures. Some researchers tried to
solve mesh issues in flow simulations by enforcing the continuity of
heads and flux at nonmatching grids (Berrone et al., 2014; Pichot et al.,
2010). However, more computations are required to implement the
calculation at fracture intersections. Conforming elements are still
preferred for accurate and efficient simulations using the finite element
method and the control volume method. The other is the matrix mesh
method, which needs to discretize the discontinuous geological media
when the influences of the matrix on the system are not negligible, such
as the simulations of coupling thermal-hydro-mechanical systems
(Zhuang et al., 2014) and fluid flow in fractured porous media (Vu et al.,
2013). The matrix elements are required to conform to the intersections
among fractures as well as to recover all planar fractures.

1.2. Developed methods of mesh generation for DFNs

Various approaches have been proposed to generate numerical
models for a rock mass with 3-D DFNs. For example, Mary�ska et al.
(2005) developed a method to geometrically simplify the fracture
rsity of Western Australia, Perth, WA, 6009, Australia.
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networks by removing or replacing the close parallel fractures; moving,
stretching, and merging intersections in the fracture planes; and then
discretizing the modified geometry using an advancing front method. As
a consequence of the geometrical simplification, the 3-D geometrical
correspondence disappears. Mustapha and Mustapha (2007) proposed
another method to reduce the highly complex geometry of fractures by
projecting the boundaries of the fractures and the intersections between
the fractures on a 3-D regular grid (3DRG). The obtained geometry is
made very regular by removing the ill-conditioned elements in the
triangulated mesh. However, Erhel et al. (2009) pointed out that each
projected node must have only two adjacent edges, and each projected
edge must have one or two neighbors based on Mustapha andMustapha's
method (2007), otherwise the mesh generation would fail. Therefore, a
local correction to modify the surface of fractures to eliminate these
abnormal configurations was introduced. The above methods based on
geometrical simplification and 3DRG changed the original geometrical
characteristics of fractures, and the generated mesh is not adaptive.
Hyman et al. (2014) introduced a feature rejection algorithm for meshing
(FRAM) to reject pathological fractures in the realization of DFNs for
avoiding undesirable configurations. In their work, adaptive and con-
forming triangular meshes with good quality were generated for the
modified DFNs based on a conforming Delaunay triangulation algorithm
(Murphy et al., 2001).

The above studies are restricted in meshes on fractures only. Many
researchers also attempted to discretize the fractures and the matrix
together. Blessent et al. (2009) developed a modeling method for frac-
tured porous media, in which fine tetrahedra are generated around the
possible position of a fracture, and some tetrahedron faces are chosen to
approximate the fracture. This method is efficient in approximating an
isolated fracture, but it becomes rather difficult in highly discrete frac-
ture networks. Mustapha et al. (2011) proposed a local transformation
method to significantly improve the quality of meshes for 3-D DFNs by
scanning the elements through a small cube and merging the vertices of
involved tetrahedra. The shape of fractures is distorted slightly after the
local transformation. It is verified that the distortion of the mesh does not
affect the fluid simulation in simple discrete fracture networks, but it may
affect the results of some simulations such as fracture propagation and
coupling systems. In recent years, based on open-source mesh software,
some methods have been developed to generate tetrahedral meshes on
more complex geological structures (Cacace and Blocher, 2015; Zehner
et al., 2015).

A constrained Delaunay discretizationmethod for adaptively meshing
highly discontinuous geological media is developed in the present study.
This method adopts Persson's algorithm (Persson and Strang, 2004;
Persson, 2005) and an explicit size function to adaptively distribute mesh
points on fractures. The size function based on a distance function en-
sures that the mesh is refined in the important and sensitive parts such as
fracture intersections and gradually coarse away from them. Then, a
constrained Delaunay triangulation (Chew, 1989) and constrained
Delaunay tetrahedralization (Si, 2015) are introduced to construct the
conforming connectivity of elements. As a result, the triangular elements
and the tetrahedral elements can exactly conform to the fracture in-
tersections and the pre-positioned fractures, respectively. In addition, the
doubly adaptive nature of the tetrahedral elements reduces the number
of elements significantly and improves efficiency in numerical simula-
tions. During the entire process, there is no local and global geometrical
transformation of DFNs for keeping the original features of DFNs. The
proposed method is applicable to a rock mass medium featured with
tunnels, shafts, slopes, boreholes, water curtains and drainage sys-
tems, etc.

2. Constrained Delaunay triangulation for DFNs

There are typically two ways to reconstruct the geological model of
fractured rocks with a complex configuration of highly discrete fracture
networks (DFNs), namely deterministic description and statistical
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realization. The deterministic description is used for the large-scale
fractures from the field surveys (Tavakkoli et al., 2009). Because of the
limitations of cost and survey techniques, not all fractures are necessary
or could be surveyed individually. Therefore, small-scale fractures under
seismic resolutions are generated stochastically based on some proba-
bility distribution functions (PDFs) relating to the properties of DFNs (Xu
and Dowd, 2010). In this study, 3-D discrete fracture networks are
generated stochastically to represent the discontinuities in a gen-
eral form.

2.1. Projecting each fracture on a 2-D plane

Fractures in three-dimensional DNFs are usually equivalent to convex
polygons. But if the artificial structures are involved, such as caverns or
tunnels as shown in Fig. 1(a), they can be possibly cut into any shapes.
For simplifying the triangulation of fractures, the mesh process is
implemented on each planar fracture individually rather than meshing
them all in space. During mesh generation, the intersecting segments and
points on each fracture are pre-positioned without translation during the
convergence iterations.

Taking Fig. 1(a) as an example, two rock caverns and two water
curtain tunnels are intersected with fractures and boreholes. The geom-
etry of a fracture shown in Fig. 1(b) becomes very irregular because of the
intersection with a cavern (Ω1), a tunnel (Ω2), two fractures (Γ1, Γ2, and
Γ3), and boreholes (Γ4 and Γ5). The cavern and tunnel boundaries and
intersections between fractures create discontinuous segments, and the
vertices of the polygons, endpoints of the fracture intersections, and the
crossover points of the boreholes create discontinuous points. Both
discontinuous segments and points are regarded as pre-positioned fea-
tures during the adaptive-mesh generation process.

2.2. Implicit geometry of the polygonal fracture

The complex geometry of objects can be described implicitly by using
signed distance functions and Boolean operations in the mesh process
(Persson and Strang, 2004; Persson, 2005). A signed distance function is
an implicit function to determine whether or not a point lies outside of a
specified domain. They also return the shortest distance from a point to
the closest boundary. In this study, each fracture is described as a planar
straight-line graph (PSLG), which includes polygons, polygons with
holes, complexes, segments, and isolated vertices. The intact-fracture
polygon, holes, and segments/vertices are represented by Ω0, Ωi, and
Γj, respectively. The signed distance function of a domain can be writ-
ten as

dΩi ðpÞ ¼ ±minp� p∂Ωi ; (1)

where dΩi ðpÞ is the signed distance from a point p to the boundary of the
domainΩi. Positive and negative signs mean that the point is outside and
inside the domain, respectively. p∂Ωi is the point on the boundary of the
domain Ωi. The general implicit description of a polygonal fracture,
including some holes, can be represented using the Boolean operation

dΩðpÞ ¼ maxðdΩ0 ðpÞ;�dΩ1 ðpÞ;…;�dΩn ðpÞÞ: (2)

2.3. Local refinement

In a wide range of numerical simulations, an adaptive mesh is
required to adapt the accuracy of solutions around the important and
sensitive parts in the domain and save computing time. In the system of
DFNs, the intersections among fractures and intersections between
fractures and other structures are usually regarded as sensitive parts in
which a fine mesh is needed. Many mesh refinement methods have been
developed to generate adaptive meshes, based on implicit- (Ruppert,
1995; Shewchuk, 2002; Erten and Üng€or, 2007; Üng€or, 2009) or explicit-
size function (Peraire et al., 1987; Blacker and Stephenson, 1991; Persson



Fig. 1. (a) A DFN model in an artificial underground structure; (b) Planar straight line graph (PLSG) of an extracted fracture; (c) Signed distance function: the boundary of the valid domain
is given by the zero level set of dΩðpÞ; (d) Unsigned distance function: the sensitive parts are given by the zero level sets of dΓðpÞ.
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and Strang, 2004; Persson, 2005; Li et al., 2014). The explicit method is
where it is easier to control the element size and size grading in different
regions than the implicit method. In the present study, an explicit func-
tion of element size is implemented to control the element size and size
grading in different regions,

hðpÞ ¼ minðlmin þ g⋅dΓðpÞ; lmaxÞ; (3)

where hðpÞ is the desired value of the element size at point p, lmin is the
lower limit of element size, lmax is the upper limit of element size, g is the
grading of the element size, and dΓðpÞ is the unsigned distance from point
p to the closest sensitive part. The unsigned distance function for a
segment or a vertex Γ can be written as

dΓi ðpÞ ¼ minp� pΓi : (4)

For the case of Fig. 1(b), if mesh refinement is required around the
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discontinuous segments and points, dΓðpÞ for arbitrary point p within the
valid domain is

dΓðpÞ ¼ minðdΓ1 ðpÞ;…; dΓ5ðpÞ; dΩ1 ðpÞ; dΩ2 ðpÞÞ: (5)

Fig. 1(c) and (d) illustrate the signed distance function dΩðpÞ to define
the valid domain and the unsigned distance function dΓðpÞ from Eq. (5) to
define the background of the adaptive mesh over the valid domain. The
desired value of element size at each point is directly proportional to
dΓðpÞ and is also dominated by lmin and lmax. As shown in Fig. 2, if lmax is
too large to work, the element size distribution will be directly propor-
tional to Eq. (5) so that they have the same trend as the distance function
dΓðpÞ. Otherwise, lmax will limit the mesh size in the far field of the
sensitive regions. Note that the desired element length l0 between two
points takes the average of h(p),

l0ðp1; p2Þ ¼ ðhðp1Þ þ hðp2ÞÞ=2: (6)
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2.4. Division of the pre-positioned segments

According to Eq. (3) and Eq. (6), the desired lengths of pre-positioned
segments are lmin because dΓðpÞ is zero. Therefore, segments that are
longer than lmin have to be divided into smaller elements to satisfy the
element size function. However, in multi-intersected fractures, the
intersection segments on a fracture may intersect with other intersection
segments. The intersection points between intersection segments should
be shared by multiple fractures. If these segments are broken into desired
elements straightly, these intersecting points may be missed, and the
mesh would not conform to these points. Therefore, the tangling seg-
ments in the model must be banished. The segments will be divided into
subsegments with regard to the intersection points. Afterwards, each
subsegment is equally partitioned into Nf elements,

Nf ¼ Li

lmin
� 1; (7)

where Nf is the number of the elements on the subsegment, and Li is the
length of the subsegment. The subsegment is not discretized further if the
length Li is smaller than the lower limit of element size.
2.5. Scattering mesh points

The algorithm of spreading mesh points is based on the analogy be-
tween triangular elements and spring networks (Persson, 2005). Like the
particle models, the forces to drive a node are assumed to be along the
springs between such node and the immediate neighbor points. The to-
pology of the lattice spring structure is created by the Delaunay trian-
gulation (Edelsbrunner, 2001). The force vector of each node is

FðpÞ ¼
�
0 p on Γ
FspringðpÞ þ Fext otherwise

: (8)

Forces applied to fixed points such as those on discontinuous seg-
ments are always zero. For other flexible points, the driving force con-
tains the internal force FspringðpÞ from springs and external forces Fext

applied normally to the boundary. The external forces just pull outside
points back to the boundary and constrain them to move along the
boundary only. The internal force is assumed to be a linear function,
which is analogous to ordinary linear springs as argued by Pers-
son (2005):

fiðli; l0;iÞ ¼
�
kiðl0;i � liÞ if li < l0;i
0 if li � l0;i

; (9)

where fiðli; l0;iÞ is the internal force in the i-th spring, li is the actual length
of the i-th element, l0;i is the desired length, and ki is the stiffness of the i-
th pseudo-spring. To drive the nodes moving to the equilibrium positions
efficiently, the pseudo-springs are changed to be nonlinear:
Fig. 2. Distributions of element size from the function of element size: (a) l
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ki ¼ 1:2� 1
l0;i � li

 
l0;i �

P
l20; iP
l2i

� li

!
: (10)

Eq. (9) indicates that the force between mesh points is only repulsive.
Therefore, the gaps between mesh points will only increase or remain
unchanged during scattering mesh points. To ensure the meshes are
refined in specified regions, mesh points initially are distributed uni-
formly with a gap of the lower limit of mesh size. Then, a rejection
strategy (Persson, 2005) is used to reject the redundant points.

The equilibrium position of mesh points is difficult to be solved
straightly from the system FðpÞ ¼ 0 because of the inconsistency in the
topology and the external force. By introducing an artificial time (Pers-
son, 2005), the position of points is assumed to be time-dependent and its
first derivative with respect to the time is

∂pðtÞ
∂t

¼ FðpÞ; t � 0: (11)

This ordinary differential equation (ODE) can be solved using a for-
ward Euler method,

pðtnÞ ¼ pðtn�1Þ þ ΔtΔFðpðtn�1ÞÞ ; tn ¼ nΔt n ¼ 1; 2; 3…; (12)

where Δt is the artificial time step, and n is the iteration step. The iter-
ation terminates when the position of points does not change further or
when the iteration reaches the maximum value.
2.6. Constrained Delaunay triangulation

After the equilibrium position of mesh points is confirmed, the final
topology must contain all preexisting points and segments. The topology
is created by the Delaunay triangulation (DT) during scattering mesh
points. The Delaunay triangulation can give well-shaped triangles by
using an empty-circle criterion to maximize the internal minimum angles
(Edelsbrunner, 2001), as shown in Fig. 3(a). However, the Delaunay
triangulation cannot guarantee that the preexisting segments are pre-
served. To recover all preexisting segments in the model, the constrained
Delaunay triangulation (CDT) (Chew, 1989) is adopted, which can keep
the properties of Delaunay triangles as many as possible but relax the
empty-circle criterion around restrained edges. This relaxation rule al-
lows the circumcircles of triangles containing the preexisting edge to
include other points as shown in Fig. 3(b), but it would sacrifice the mesh
quality to some extent.

Fig. 4 displays the final distribution of mesh points and the corre-
sponding mesh generated with the constrained Delaunay triangulation.
For a discrete fracture network model, each polygonal fracture is meshed
individually in the same way, and then they are assembled. The mesh
result for the example in Fig. 1(a) is shown in Fig. 5. It also highlights that
triangle edges and vertices from different fractures coincide at the
max does not work: max(hðpÞ) < lmax; (b) lmax works: max(hðpÞ) ¼ lmax.



Fig. 3. (a) Circle empty criterion in Delaunay triangulation (DT), (b)The circle empty criterion is relaxed in triangles around the pre-existing edge in constrained Delaunay triangula-
tion (CDT).
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intersections so that there is no tangling element in the mesh. The ca-
pacity of the proposedmethod to mesh large-scale and complex DFNs and
to build models for practical engineering projects will be demonstrated in
section 5.

3. Constrained Delaunay tetrahedralization for fractured porous
media

Besides the discrete fracture networks, the discretization of the rock
matrix is also necessary in many numerical simulations, such as the
multiphase flow in fractured porous medium, the interaction between
fractures and rock matrix, coupling hydro-thermo-mechanical modeling
in fractured rocks, and others. A major challenge to the mesh generation
of 3-D fractured porous media is the recovery of the fracture polygons. Si
(2015) proposed an algorithm of facet recovery to construct constrained
Delaunay tetrahedralization (CDT) for 3-D polyhedral domains and
developed an effective and efficient software—TetGen. In this study,
TetGen is adopted to carry out the tetrahedralization of the triangu-
lated DFNs.
3.1. Building PLC from triangulated DFN

TetGen (Si, 2015) uses a general input geometry called piecewise
linear complex (PLC), which includes a set of facets, segments, and iso-
lated vertices. By definition, any two parts in a PLC must be completely
separated or intersected only at shared facets, segments, or vertices. And
any points set which define a facet must be coplanar (Verbree, 2006).
Each facet in a PLC must be closed and is represented by a planar
straight-line graph (PSLG), which may also contain some segments,
vertices, and holes. Similar to PLC, tangling segments are not allowed,
Fig. 4. (a) Final mesh points; (b) Connecting the mesh poin
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and the points set must be coplanar in each PSLG. If each fracture is
regarded a PSLG in the input PLC, the boundary and the massive in-
tersections have to be handled carefully so the program does not crash.
With the increase of fractures, the geometrical complexity of the DFN
becomes higher so that the PLSGs of fractures are more complicated.

Adopting the triangular elements of fractures as shown in Fig. 6(a) to
construct the PSLGs over fracture polygons will simplify the construction
of the input PLC. The input geometry is classified into two parts as shown
in Fig. 6(b), that is, internal facets and boundary facets. The internal
facets are many triangular elements from the planar mesh generation. As
the vertices of any triangle must be coplanar and every triangular facet on
fractures is nontangled, the problems of tangling segments and coplanar
points are eliminated. As some fractures may intersect with boundary
facets, the PSLGs of the boundary facets must contain these intersections
and the mesh points on the boundary.
3.2. Constrained Delaunay tetrahedralization

Once the PLC of the fractured media is built properly, constrained
Delaunay tetrahedralization of the PLC is implemented totally relying on
TetGen (Si, 2015). Similar to constrained Delaunay triangulation, con-
strained Delaunay tetrahedralization relaxes the empty-sphere rule
around the prespecified constraints such as points, edges, and faces.
Therefore, the circumspheres of some tetrahedra are allowed to enclose
other vertices in the process of tetrahedralization to preserve the con-
straints. TetGen tetrahedralizes the domain by inserting Steiner points
and refines the mesh using a new constrained Delaunay refinement
method. The user can specify the quality parameters to control the
quality, grading, and size of the tetrahedra. In this study, version 1.5 of
TetGen1 is used. Only a maximum allowable radius-edge ratio and a
ts based on Constrained Delaunay Triangulation (CDT).



Fig. 5. Final planar mesh for the discrete fracture network in an artificial under-
ground structure.
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maximum volume constraint on all tetrahedra are specified in the com-
mand line for controlling the density and size of elements. For example,
the command –pq1.4a0.01 indicates that the PLC is tetrahedralized with
the maximum radius-edge ratio of 1.4 and the maximum tetrahedral
volume of 0.01 m3.

The mesh points from the planar mesh are dense around the sensitive
parts such as intersections and become coarse away from them as shown
in Fig. 6(c). The region with more initial points will be inserted with
more Steiner points incrementally for locally optimizing the quality of
elements during the tetrahedralizing of the domain (Si and Shewchuk,
2014). Therefore, the tetrahedral elements will be adaptive automati-
cally and conform to the trend of size variation of the planar mesh along
the fracture polygons and in space. This features the mesh with the
doubly adaptive capacity—along fractures and in space. For cases where
the incidence angles between fractures are very small or fractures are
very close, even if there are only sparse mesh points on the fractures, the
initial input points in that region are still many in space. As a result,
unexpected fine elements will be generated there. The quarter cutoff
graph in Fig. 6(c) demonstrates that the vertical fracture is recovered,
and the elements are conforming and doubly adaptive.

4. Performance of the method

4.1. Triangle quality

The quality of the elements is of great importance to the accuracy and
efficiency in computational analysis. Unacceptable quality of elements in
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the numerical models will result in poor performance of numerical sim-
ulations. The element quality parameter is an important indicator to
decide whether the element is acceptable or not. Many studies have been
conducted to investigate the measures to evaluate the element quality
(e.g., Parthasarathy et al., 1994; Field, 2000). In this work, the quality of
elements in the planar mesh of DFN models is compared with that in
Hyman et al. (2014), and the aspect ratio and edge ratio of triangles are

qa ¼ ððl2 þ l3 � l1Þðl1 þ l3 � l2Þðl1 þ l2 � l3ÞÞ=l1l2l3; (13)

qe ¼ lmin=lmax; (14)

where l1; l2; l3 are the length of triangle edges, qa is the aspect ratio, lmin is
the minimum edge length, and lmax is the maximum edge length. Equi-
lateral triangles have qa ¼ 1 and qe ¼ 1, and degenerated triangles have
qa ¼ 0 and qe ¼ 1.

Both Hyman et al.’s method and the present method can generate the
adaptive triangular mesh, and the mesh can gradually be coarsened away
from the intersections. Fig. 7 displays the mesh of an elliptical fracture
with multiple parallel intersecting segments. Both methods generated
adaptive and conforming meshes. In Hyman et al.’s result, the mesh is
refined around intersecting segments and rapidly becomes coarse in the
far field of intersecting segments. By comparison, the elements produced
from the present method have a gradual and smooth variation in size. A
quantitative comparison about mesh quality based on Eq. (13) will be
discussed below.

Hyman et al. (2014) investigated the statistics of triangle quality from
10 independent DFN realizations. Each realization included two fracture
sets and a total of 100 elliptic fractures in a 10-m cubic domain. In each
sample, the pathological fractures were removed to decrease the diffi-
culty of meshing and improve the quality of elements. After mesh gen-
eration, the algorithm provided byMurphy and Gable (1998) was used to
modify the boundary elements with the incident angle on the boundary
greater than 90�. As the fractures are generated stochastically, it is almost
impossible to reproduce the exact same DFNs as Hyman et al.’s. There-
fore, in our samples, the same number of realizations and fractures in a
cube with a 10-m length are generated as well. But the size, position, and
orientation of each fracture is produced based on a logarithmic distri-
bution, a uniform distribution, and a Fisher distribution, respectively (Xu
and Dowd, 2010). In addition, no fracture is modified or removed during
sampling. Almost the same number of elements is generated to compare
with the results from Hyman et al. (2014).

By studying the statistics data in Fig. 8, all the means and medians of
aspect ratio, edge ratio, minimum angle, and maximum angle of triangles
are improved significantly by the proposed method. The mean and me-
dian aspect ratios are 0.9547 and 0.9731, respectively. And it shows that
most of the triangles are nearly equilateral triangles. Moreover, the
decrease of coefficients of variation in all quality parameters indicates
that the distributions of the quality parameters have lower variances.
According to the histograms, it is obvious that the histograms of all pa-
rameters in our results are sharper and narrower than Hyman et al.’s
results. More triangles have the quality values around the average
because of lower variances. Of the triangles, 87.83% have an aspect ratio
greater than 0.9, while 89.74% have an edge ratio greater than 0.7. Both
the means of minimum angle distribution and maximum angle distri-
bution lie at almost 60�, which is the ideal angle of an equilat-
eral triangle.

4.2. Tetrahedron quality

Numerous methods have been proposed to evaluate the quality of
tetrahedral elements (Bern and Plassmann, 1999) with their own merits
and drawbacks (Parthasarathy et al., 1994). One formula for a normal-
ized aspect ratio is used to evaluate the tetrahedron,

q ¼ 2
ffiffiffi
6

p
Rin=Smax; (15)



Fig. 6. Illustration of the steps to tetrahedralize a DFN model: (a) Triangulation of DFN; (b) Building the PLC; (c) Constrained Delaunay tetrahedralization using TetGen (Si, 2015).
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where Rin is the radius of the inscribed sphere and Smax is the length of the
longest edge. The q value changes from 0 to 1. A tetrahedron without
volume is 0, and a regular tetrahedron is 1. In addition, the dihedral
angles between the faces in each tetrahedron are also used as the shape
measure of the mesh. The angle varies from 0 to 180�. All dihedral angles
in a regular tetrahedron are 70.53�.

It is difficult to find the element quality investigation for the tetra-
hedralization of DFN models from current literature. Therefore, six cases
are given to investigate the quality of tetrahedral elements in this section.
The first case is a cubic continuum, and the others are cubic blocks with
Fig. 7. Triangular mesh of an elliptical fracture with multiple parallel
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different DFNs. They are all tetrahedralized according to the same input
parameters. All the input parameters in these cases are summarized in
Supplementary Table 1. From cases 1 to 4, fractures are generated by the
same probabilistic distributions with the same parameters, but the
numbers of fractures are 50, 100, 150, and 200 respectively. The Fisher
constant k is very small for making the orientation of fractures more
random in space. In contrast, case 5 has well-orientated fractures by
using a larger Fisher constant. The maximum radius-edge ratio of 1.3 and
the maximum element volume of 1 m3 are applied in all cases.

Table 1 lists the statistics of the numbers of intersections and
intersection segments: (a) Hyman et al.’s result [12]; (b) The pr.



Fig. 8. Statistics and histograms of the aspect ratios, the edge ratios, the minimum angles and the maximum angles: (a) Hyman et al.’s result [12]: 5000355 triangles; (b) The present
method: 4926725 triangles.
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triangles, mean aspect ratio, mean dihedral angles, mean minimum, and
maximum dihedral angles of tetrahedra for all cases. By comparing case 1
to 5 with the continuum, it is demonstrated that the insertion of fractures
influences the mesh quality. The average aspect ratio and the mean
minimum dihedral angle of the continuum are slightly better than other
cases. But the mean maximum dihedral angles of the tetrahedra are
almost unchanged. Overall, the quality of tetrahedral elements is good,
and the small sacrifice of the average quality is also acceptable in the
numerical simulations. The existence of fractures dramatically decreases
the maximum and minimum volumes of the elements. As a result of
smaller elements, the number of elements increases rapidly. It is also
observed that the element quality decreases very slowly with the increase
of fractures. But in case 4 and 5, although they have the same number of
fractures, case 5 has slightly worse quality. An interesting phenomenon is
found in the number of elements shown in Table 1. Case 5 has fewer
points in the PLC but more output elements than case 4. It happens
because some unexpected fine tetrahedra are generated around the
subparallel fractures.
4.3. CPU time-cost

In this section, the computational times of the six examples in section
4.2 are presented. The technics including the geometric treatment,
141
triangulation, and building PLC had been written into the Matlab envi-
ronment. And the open-source software TetGen (Si, 2015) was developed
in Cþþ. All tests were performed on a computer having Windows 7
64-bit system, Intel Core i7-4770 CPU (3.4 GHz), and 8 GB RAM. These
six runs were carried out with the same parameters as listed in Supple-
mentary Table 2. The computing time in each step has been listed in
Table 2, and the more details of the geometry and elements can be
checked in Table 1.

TetGen took only 0.015 s to create a CDT for the continuum. How-
ever, three extra steps are required for DFN models before running Tet-
Gen. The first step (geometric treatment) is to truncate the parts of the
fractures that are outside the domain and calculate the intersections
among fractures. The time-cost in geometric treatment is directly pro-
portional to the number of fractures. However, the running time of the
second step (triangulation) not only depends on the number of fractures
but also on the complexity of the fracture network. As shown in Tables 1
and 2, although case 5 has the same number of fractures as case 4, the
larger number of intersections in case 4 took more time in the triangu-
lation. The third step is to build the input PLC using the generated tri-
angles. Therefore, it spends more time with more generated triangles.
Moreover, the computing time of TetGen increases dramatically when
the fractures are inserted into the continuum. It is found that the
complexity of the input PLC and the distribution of fractures eventually



Table 2
Summary of the CPU times of different meshing stages in the six cases.

CPU time (seconds)

Meshing Steps Continnum Case1 (50) Case2 (100) Case3 (150) Case4 (200) Case5 (200)

Geometric treatment 0 2.296 8.986 22.297 34.931 34.630
Triangulation 0 17.271 47.825 113.685 136.834 108.476
Building PLC 0 1.127 3.026 5.907 10.462 6.513
Tetgen (tetrahedralization) 0.015 1.544 7.897 27.754 63.628 87.312

Fig. 8 (continued).

Table 1
Summary of the geometry information, the triangulated fractures, the number of elements and the quality of tetrahedra in the six cases.

Continuum Case1 Case2 Case3 Case4 Case5

Fractures 0 50 100 150 200 200
Intersections 0 97 376 869 1405 884
Triangles 0 18385 52459 97652 139167 112055
Points in PLC 8 9382 25306 44824 62138 52885
Tetrahedra 3341 270060 805369 1632608 2700536 3257981
Mean aspect ratio of tetrahedra 0.6267 0.6135 0.6121 0.6095 0.6076 0.5998
Mean maximum dihedral angle [Degrees] 133.1273 133.0498 133.0915 133.2165 133.3079 133.7582
Mean minimum dihedral angle [Degrees] 47.5381 46.6458 46.4678 46.2355 46.1539 45.6704
Largest volume(m3) 0.99791 0.46721 0.15646 0.16846 0.080103 0.09216
Smallest volume(m3) 0.022904 1.2182 � 10�10 1.9863 � 10�12 2.9753 � 10�14 1.112 � 10�13 1.8222 � 10�15
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affect the time-cost in TetGen.

5. Demonstration

5.1. Complex models

The capacity of the method to discretize highly discontinuous
geological media will be presented in this section using some large-scale
DFN examples with a large number of fractures. In addition, the model of
an underground petroleum storage system is built to present its potential
on the simulation of large-scale engineering problems.

5.1.1. Highly discrete fractures models
There are six examples displayed in this section. Supplementary

Table 2 summarizes the basic information about these examples.
Example 1 has 200 uniformly distributed elliptical fractures. A smaller
Fisher constant (k ¼ 1) makes them orientate divergently. In example 2,
two sets of hexagonal fractures are generated with confined orientation
because the larger Fisher constant (k ¼ 20). The phenomenon of fracture
clustering is given in example 3. By confining the positions of fractures,
two clusters of fractures are created. Fig. 9 shows the contoured stereo-
nets and the rose diagrams of the first three examples. The corresponding
DFNs and the meshes are displayed in Fig. 10.

The shape of a domain will not always be a cuboid in geological
problems. More flexible modeling of the rock mass is necessary in many
simulations, such as slope stability analysis and underground seepage
simulations. Example 4 is an open-pit slope model with three sets of
joints. The orientations and distribution of the three sets of joints are
shown in Fig. 11(a). The grey-patched blocks in Fig. 11(b) are used to cut
the original block sequentially to form the desired shape of the model.
Fig. 11(c) displays the mesh result and the traces of the fractures on the
slope surface.
Fig. 9. Contoured stereonets and rose diagrams of fracture poles: (a) Rand
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Fig. 12 shows the tetrahedral mesh of the rest two examples. Example
5 is a large-scale model with 2000 hexagon fractures. These fractures are
relatively small and distributed sparsely in the domain. In other words,
each fracture has a small probability to intersect with others so that the
degree of the geometrical complexity of the fracture network is not high.
In contrast, example 6 has relatively complicated internal configuration
of fractures. Three sets of large elliptical fractures, a total of 450, are
confined to a small space so that each of them is more likely to intersect
with others.

5.1.2. Underground petroleum storage system
The petroleum storage example is assumed to consist of two access

tunnels, nine main storage caverns, five water curtain tunnels, and many
water injection boreholes as shown in Fig. 13(a). The width, height, and
length of each storage cavern from north to south are 20 m, 30 m, and
450–600 m, respectively. The access tunnels and water curtain tunnels
are 9 m wide and 8 m tall. The water curtain boreholes are orientated
horizontally and spaced at 50 m. The 200 in-situ fractures in the domain
are generated stochastically based on field survey results and assembled
into the geometrical model as shown in Fig. 13(b). The adaptive and
conforming mesh is displayed in Fig. 13(c). Moreover, slicing is carried
out at the middle position in south-north and east-west orientations.
Detailed information about the fractures on each slice is illustrated in
Fig. 13(d). These slices can be used to statistically analyze the fractures or
simulate the 2-D cases simplified from a 3-D model.

5.2. Numerical simulations

Two application examples of the simulations of water flow are pre-
sented for demonstrating the utility of the developed mesh method. The
first one is the simulation of water flow in a fractured rock with 1000
random fractures and two tunnels. The matrix is assumed to be
om fractures; (b) Two sets of fractures; (c) Two clusters of fractures.



Fig. 10. Illustration and planar mesh of different DFNs in cubes with 50 m sides: (a) Random fractures (200 fractures): 65466 triangles; (b) Two sets of fractures (400 fractures): 510260
triangles; (c) Two clusters of fractures (200 fractures): 280017 triangles.
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impervious, and water flows through fractures only. The steady-state free
surface and the pore pressure distribution are simulated after two tunnels
are excavated. The saturated-unsaturated water flow in the numerical
model is governed by the mass conservation law (Richards, 1931)

∂ðρSϕÞ
∂t

� ∇⋅ðρvÞ ¼ ρq (16)

where ρ and S are the water density and the water saturation,
Fig. 11. An open-pit model with three sets of fractures (600 fractures): (a) Contoured stereonets
Planar mesh of the fractures after cutting: 1279498 triangles.
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respectively; v is the average flow velocity; ϕ is the medium porosity; and
q is the source term. In the second example, example 5 in section 5.1.1 is
used to simulate the saturated flow in the highly discretely fractured
porous medium. Therefore, the governing equation can be simplified by
substituting S ¼ 1 into Eq. (16),

∂ðρϕÞ
∂t

þ ∇⋅ðρvÞ ¼ ρq (17)
and rose diagrams of the fracture poles; (b) DFN model and cutting block (grey blocks); (c)



Fig. 12. Tetrahedral mesh of two different DFN models: (a) 2000 sparse fracture and 3535498 tetrahedra; (b) 450 highly intersected fractures and 1178472 tetrahedra.
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In both examples, the water is assumed to flow in the pipe elements
and obey to Darcy's law (Darcy, 1856). The average flow velocity v in
pipes can be expressed as

v ¼ �k
μ
ð∇p� ρgÞ (18)

k ¼ ks kr(S) (19)
Fig. 13. Modeling a facility of underground petroleum storage: (a) Outline of the facility; (b) Ad
at the middle position and in East-West and South-North orientations.
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in which, p is the total pressure, μ is the dynamic viscosity of the water, g
is the gravitational acceleration, and k, ks, and kr(S) are the effective
permeability, the intrinsic permeability depending on the pore geometry,
and relative permeability depending on the saturation, respectively. For
saturated flow, k equals to ks because kr(S) ¼ 1.

5.2.1. Water flow in fractured medium
The effect of the underground excavation in a fractured rock on the
ding 200 stochastic fractures into the model; (c) Planar mesh: 148316 triangles; (d) Slices



Fig. 14. Geometrical model for excavating two tunnels in a fractured rock: (a) 1000 random fractures and two excavated tunnels; (b) Front view of the model and boundary conditions.
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water-free surface is simulated for verifying the triangular mesh. As
shown in Fig. 14 (a), the dimension of the model is 50 m � 20 m � 20 m,
and 1000 random fractures are generated in the domain. Fig. 14(b) il-
lustrates the detailed layout of the model and the boundary conditions in
the simulation. The original free surface is located at the top boundary.
Fig. 15. Numerical result of the pore pressure d
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All boundary surfaces are impervious besides the bottom. A hydrostatic
pressure of 200 kPa is imposed uniformly on the bottom boundary. Two
identical tunnels are expected to be excavated at depth of 9.5 m. Each
tunnel is 5 m wide and 3.5 m tall, and they are spaced at 21 m. The
pressures on the boundaries of the tunnels are 0 kPa, and the inrush water
istribution in the discrete fracture network.



Fig. 16. Numerical simulation of the steady-state water flow in a fractured porous medium: (a) Boundary conditions; (b) The pore pressures along the surfaces of the domain; (c) The pore
pressures on the fracture network; (d) The slices of the pressure distribution within the domain.
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is assumed to be pumped out immediately. The permeability of fractures
is 7.5 � 10�7 m2. After the two tunnels are excavated, the steady-state
pore pressure distribution is simulated, and the results are displayed in
Fig. 15. The contour of zero pore pressure is the eventual location of the
free surface. It is obvious that the free surface drops dramatically in
fractures during the excavation. In addition, the enlarged picture verifies
that the conforming meshes allow for the smooth transition of the pore
pressure on the fracture intersections.

5.2.2. Water flow in fractured porous medium
The simulation of saturated steady-state water in example 5 in section

5.1.1 is tested for demonstrating the generated tetrahedral meshes. The
permeability of fractures is assumed to be much larger than the porous
medium. Therefore, the permeability of fractures and porous medium are
7.5 � 10�7 m2 and 1 � 10�15 m2, respectively. The boundary conditions
of the simulation are illustrated in Fig. 16(a). The high-pressure bound-
ary condition of 1000 MPa is applied to the left side of the domain, and
0 MPa is applied to the right side. The rest of the surfaces in the domain
are impervious. As Fig. 16(b) and (c) show, the gradient of pore pressure
along the impervious surfaces and the fracture network are not uniform
because of randomly distributed fractures. The slices in Fig. 16(d) also
provide the sight of the pore pressure distribution within the domain.

6. Conclusion

In this study, a constrained Delaunay discretization method is
developed to discretize the highly discontinuous geological media into
adaptive triangular elements or tetrahedral elements. The high quality of
triangular elements and good quality of tetrahedral elements have been
verified in sections 4.1 and 4.2, respectively. The capacity of the pro-
posed method to create complex models with discrete fracture networks
and the utility of the generated meshes have also been demonstrated in
section 5. However, the proposed method can only control the size and
147
quality of elements, not the number of triangles and tetrahedra in the
final mesh. Moreover, the time-cost of the mesh generation method is
also not optimal. In future work, the efficiency of the method will be
improved to simulate fracture propagation, multiphase fluid, and me-
chanical fluid in highly discontinuous geological media.
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