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In recent years GPU computing has gained wide acceptance as a simple low-cost solution for
speeding up computationally expensive processing in many scientific and engineering applications.
However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task
that requires a thorough refactorization of the code and specific optimizations that depend on the
architecture of the device. OpenACC is a promising technology that aims at reducing the effort re-
quired to accelerate C/Cþþ/Fortran code on an attached multicore device. Virtually with this tech-
nology the CPU code only has to be augmented with a few compiler directives to identify the areas to
be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential
benefits are multiple: better code readability, less development time, lower risk of errors and less
dependency on the underlying architecture and future evolution of the GPU technology. Our aim with
this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in
computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan
and Mark for river network extraction as case-study. We implemented the flow accumulation step of
this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and
complexity of the code and its performance with different datasets. We advance that although
OpenACC can not match the performance of a CUDA optimized implementation (�3.5 slower in
average), it provides a significant performance improvement against a CPU implementation (�2–6)
with by far a simpler code and less implementation effort.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The efficient management of the vast volume of data generated by earth observation sensors, and the execution of complex numerical
simulations that allows us to understand and predict the processes within the Earth are major challenges for the geoscience disciplines.
Since the early 80s, high-performance computing techniques have been extensively used by geoscientist to address these important tasks.
Concepts like distributed computing, clustering or parallel programming, and APIs like MPI or OpenMP have become popular among the
community.

More recently GPU (Graphics Processing Unit) computing (Owens et al., 2008) has also been introduced as a simple low-cost solution
for speeding up computationally expensive processing with successful applications in fields such as Hydrology, Atmospheric Physics or
Seismology. GPU computing and traditional parallel distributed systems can be complementary and work together: coarse-grained tasks
can be assigned to each computer, where they are decomposed into fine-grained subtasks that are executed in one or several GPUs.

Although CUDA and OpenCL technologies have greatly simplified GPU computing since the old GPGPU era (Owens et al., 2007), im-
plementing and tuning an algorithm for the GPU remains being a non-trivial task with sometimes a good dose of trial and error. Errors are
common and occur even in applications that have been extensively tested or reviewed by third-party experts (see Mielikainen et al., 2014
for an illustrative example). But probably the main problem is that a particular implementation can become outdated very quickly when a
new generation of GPUs comes out. For instance the release of CUDA in 2007 was a revolution that led hundreds of existing GPGPU
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applications and libraries based on shader programming to obsolescence. In a smaller scale, each new generation of CUDA-enabled GPUs
brings new features that can simplify or provide more efficient solutions than those previously existing. For instance, the support of
atomic operations, a basic feature to guarantee a safe access to memory from several concurrent threads, was not available until the
second generation of CUDA (compute capability 1.1) was released. Before this many algorithms could only be implemented in an in-
efficient or cumbersome way.

For all the above ideas an ideal GPU programming interface for developing applications in Hydrology and other geosciences should
have the following two basic characteristics:

1. Should be minimally intrusive: programming for the GPU should be close to programming to the CPU. This would reduce the im-
plementation effort and accelerate the entire development cycle: implementing different GPU-accelerated approaches, testing, com-
parison against CPU versions, etc. Use of specific GPU-oriented languages (e.g. Cg and GLSL) is discouraged.

2. Should be a high-level interface providing an abstraction of the underlying GPU hardware. Ideally it should also take advantage of the
new features of upcoming GPU generations in a transparent way. Focus should be on task decomposition and parallelism issues, not on
subtle technical details.

OpenACC (OpenACC.org, 2013) is an API for GPU computing that appears to meet the previous requirements. It defines a set of compiler
directives that allows the execution of certain parts of a C/Cþþ/Fortran program on a GPU in a straightforward way. OpenACC has a high-
level interface that automatically handles tasks such as GPU initialization and shutdown, data transfer between the host and the GPU or
thread execution. Despite being a relatively recent specification, there are several commercial and free implementations already available.

Our aim with this work is to contrast the benefits and drawbacks of using OpenACC versus native GPU programming with CUDA in
hydrological applications. Although development using OpenACC should be apparently simpler, faster and less error-prone than using
CUDA, as any high-level API it incurs a performance loss. Our case-study for this comparison is the classic algorithm of O'Callaghan and
Mark (1984) for the extraction of drainage networks from digital elevation models that has already been partially (Ortega and Rueda,
2010) or fully implemented in GPU (Eränen et al., 2014) using CUDA. We conclude that the benefits of using OpenACC in this kind of
applications offset the moderate loss of performance.
2. Background

2.1. GPU computing technologies

NVIDIA released CUDA in 2007 as a new technology that enabled programming GPUs for general purpose problems without any
knowledge of the rendering pipeline (NVIDIA Corporation, 2015). Therefore, in CUDA the GPU is not seen as a 3D graphics processor but as
a shared-memory parallel multiprocessor. Each multiprocessor is, in turn, composed of several SIMD (Single Instruction Multiple Data)
streaming processors. A program has to define the thread code that is going to be executed by the processors and launch a computation
with a given number of these threads, depending on the nature of the problem to solve. CUDA groups the threads into warps that are
executed in parallel in a multiprocessor. During the computation the threads can access the device memory for the input data and also for
storing the results.

OpenCL (Stone et al., 2010; Khronos OpenCL Working Group, 2014) aims at establishing a portable vendor-independent platform for
implementing algorithms in any heterogeneous multi-core system, including CPUs, GPUs, and FPGAs. A key advantage of OpenCL is its
abstract memory and execution model that avoids the need to know or use any device specific low-level feature. But like CUDA, translating
a CPU implementation of an algorithm to OpenCL requires a thorough rewrite, including coding the threads in the OpenCL C language. The
performance compared to a native API like CUDA is also lower.

OpenACC (OpenACC.org, 2013) is an API developed by Cray, CAPS, Nvidia and PGI targeted at programming CPU/GPU systems. OpenACC
uses a simple method based on compiler directives to specify which parts of the C/Cþþ/Fortran code should be GPU-accelerated.
Therefore, compared to CUDA or OpenCL, the effort required to translate serial to parallel CPU/GPU code is much smaller, and in most cases
original code statements does not need to be modified. Moreover a single code can be used for serial/parallel implementations, as ordinary
Cþþ compilers ignore OpenACC pragma directives. OpenACC is inspired in a OpenMP, a previous programming standard for parallel
shared-memory multiprocessing (OpenMP Architecture Review Board, 2013). Although OpenMP was designed for parallel programming
in systems with multicore CPUs, beginning with version 4.0 it has started to support GPU accelerators. Therefore, it is likely that both
standards will converge into a single/combined specification in the near future.

The OpenACC standard is currently supported by three commercial compilers from PGI, CAPS and Cray. These three companies, along
with nVidia, were the initial developers of the standard. The support from the open source community has recently begun with the accULL
compiler (Reyes et al., 2012), OpenUH (Tian et al., 2014), and OpenARC (Lee and Vetter, 2014). The 5.x.x series of the GNU GCC compiler has
also started to support OpenACC as an experimental feature. Unfortunately these open source implementations are research compilers
and/or are still at an early development stage, therefore only the commercial alternatives can be considered production ready.

2.2. GPU computing in geoscience applications

Parallel and distributed computing have been extensively used in the geosciences due to the need to manipulate large-scale data and
the complexity of the numerical models used in the analysis, simulation and prediction of the Earth processes. However, GPU computing
has been introduced only recently, when modern general purpose GPU programming frameworks have been made available. Prior to this,
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some related work as implementing lattice-Boltzmann methods (Li et al., 2003) or solving the Navier–Stokes equations for incompressible
fluid flow (Krüger and Westermann, 2003; Harris et al., 2003; Goodnight et al., 2003; Bolz et al., 2003) was done using GPGPU based on
shader programming. However, the limitations and complexities of this programming model prevented the widespread adoption of GPU
computing for geoscience applications. The survey of Owens et al. (2007) provides an excellent overview of the first GPGPU era.

Michalakes and Vachharajani (2008) were probably the first to show the possibilities of modern GPUs in geoscience applications, using
CUDA for accelerating weather numerical algorithms. Shortly later Walsh et al. (2009) used the same technology for simulating geofluid
dynamics and seismic wave propagation. Since then many more applications have been reported, as 3D visualization of geomorphologic
processes (Clark et al., 2012; Mateo-Lázaro et al., 2014), ice-flow modeling (Braedstrup et al., 2014), calculation of surface roughness
parameters (Li et al., 2015), solar irradiance estimation (Lukač and Žalik, 2013), and further work on seismic wave modeling (Abdelkhalek
et al., 2009; Okamoto et al., 2010; Komatitsch et al., 2010) and acceleration of weather numerical algorithms (Zhang and Garcia, 2012;
Mielikainen et al., 2012).

For the particular problem of drainage network extraction from digital elevation models (DEMs), Ortega and Rueda (2010) were the
first to propose a CPU/GPU implementation of the classic algorithm of O'Callaghan and Mark (1984). In this work they used CUDA to
accelerate the flow accumulation phase, which is by far the most computationally expensive. Later, Qin and Zhan (2012) accelerated the
DEM preprocessing (removing depressions and flat areas) and flow accumulation considering multiple instead of single flow directions.
Finally Eränen et al. (2014) successfully implemented in the GPU all the steps of the drainage network extraction algorithm for single flow
directions considering also uncertainty in the input elevation model.

2.3. Drainage network extraction

The extraction of the river networks from a DEM can be done using different strategies but the most widely used is based on the work
of O'Callaghan and Mark (1984), that simulates the water flow over the terrain to extract drainage information. The basic implementation
of this approach has three stages. In the first stage, one or more drainage directions are assigned from each DEM cell to its eight
neighbours following the line of steepest slope. In the second stage, a unit of flow is set to each cell, and the DEM is repeatedly scanned
row by. During each iteration, the flow of the cells containing a non-zero flow is transferred to their neighbours following the drainage
directions computed before. In the final stage a threshold is chosen and all cells with an accumulated transferred flow greater than this
threshold are identified as part of the drainage network.

In the first stage the original work of O'Callaghan and Mark (1984) assigned only one flow direction to each cell chosen from 8 pos-
sibilities, but since then more sophisticated multiple flow models have been proposed (Freeman, 1991). Ideally the algorithm should
always find the corresponding drainage directions for each cell but several factors including measure errors or lack of accuracy in the
remote sensors lead to DEMs with pits or flat areas that cannot be processed. This problem is solved by fixing the DEM using different
strategies (Rieger, 1998; Jones, 2002). For a general introduction on the vast existing literature on drainage network extraction, including
descriptions of the different flow models and pit and flat removing approaches we refer the reader to the excellent survey of Barták
(2009).
3. OpenACC

While relatively simple compared with CUDA or OpenCL, a full description of OpenACC is beyond the scope of this paper. Therefore, we
only outline here its main features and most important directives, inviting the reader to look further in the OpenACC specification
(OpenACC.org, 2013). In the next section, during the discussion of the algorithm implementation we present a few more advanced di-
rectives. We focus on C/Cþþ code although the OpenACC directives for Fortran are basically the same.

OpenACC follows a host-directed execution where some parts of the program are redirected to an accelerator device, usually a GPU,
looking for a performance gain. In order to execute the assigned task the accelerator launches several threads grouped into three levels of
parallelism granularity: gangs, workers and vectors. Gangs correspond to independent execution units (e.g. different multiprocessors).
There is limited support for communication or synchronization between threads from different gangs. A gang has a number of workers
that implement fine-grained parallelism with efficient communication mechanisms. Finally a worker can have a number of vectors that
correspond with fast SIMD or vector operations. These vectors are roughly equivalent to the threads running in a SIMD processor in a
CUDA-enabled GPU. In the memory model of OpenACC the accelerator has its own memory, and data has to be transferred from host to
device before starting any computation. In most cases OpenACC transfers data to and from the device transparently.

All OpenACC directives have the form:

# pragma acc directive−name [additional clauses]

The effect of an OpenACC directive applies to the following statement, structured block or loop. There are two directives to indicate to
OpenACC that a portion of code should be executed in the accelerator: parallel and kernels. Both are essentially equivalent; the main
difference is that in a parallel region the programmer explicitly indicates that it must be run in the accelerator while with kernels the
compilers decide whether it will be executed in the accelerator and how (e.g. dividing the code into several different executions). We focus
here on the parallel directive although what follows is also valid for kernels.

Listing 1 shows a simple Cþþ code that implements a parallel vector sum accelerated with OpenACC directives. The loop directive
instructs the OpenACC compiler to execute the loop iterations in parallel in the GPU. The OpenACC compiler automatically generates the
required code to copy the vectors v1 and v2 to the device memory and the res vector back to the host memory. However, the
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programmer can explicitly indicate the way in which data moves to and from the device to avoid any undesired transfer with the resulting
performance penalty. This can be done with the data directive, specifying the operations to perform with the following clauses:

� copyin(var): Creates a variable in the device memory copying its value from the host.
� copyout(var): Creates a variable in the device memory which value is copied to the host after the computation in the parallel region

has finished.
� copy(var): Equivalent to using both previous clauses on a variable.
� create(var): Creates a temporal variable in the device memory which is not required in the host.
� present(var): Indicates that a variable is already on the device memory after being created in a previous parallel region.

Listing 1. Sample OpenACC-accelerated code.
Table
Execu

Dat

N36

N36

N37

N37

Gra

Afri
It is possible to transfer only part of an array indicating the start and the size of the interval using brackets. When working with
dynamically allocated arrays, this notation must also be used to tell the OpenACC compiler the dimensions of the array, as it cannot be
inferred during the code compilation. This is shown in Listing 1: the dimensions of the arrays pointed by v1, v2 and res are given; the two
first are copied to the device and the former is only copied back to the host at the end of the loop.

Finally it is very common to combine several directives into one. For instance parallel and loop directives are usually combined when
they annotate the same fragment of code:

# pragma acc parallel loop
4. Flow accumulation implementation

As we explained in Sections 2.2 and 2.3, the flow accumulation (or flow routing) is the most time consuming step of the drainage
delineation process, particularly if a multiple direction flow model is chosen. Therefore, most efforts to accelerate drainage network
identification have focused on here, using traditional parallel hardware (Mower, 1994) or modern GPUs (Ortega and Rueda, 2010; Qin and
Zhan, 2012). Flow accumulation exhibits a fine-grained parallelism that can be accelerated by GPUs in a straightforward way. Un-
fortunately, as the flow is being accumulated in certain cells and is drained away from the DEM, more and more cells get empty and each
subsequent iteration requires less processing. Anyway, GPU implementations usually run 6–8 times faster than a single core CPU im-
plementation using a single direction flow and 10 times faster for a multiple direction flow model (Qin and Zhan, 2012).

4.1. CPU implementation

Listing 2 shows a simple non-optimized single core CPU implementation of the flow accumulation (single flow direction model). The
OpenACC pragma directives should be ignored by now; we describe their meaning in the next section. The function flowRoutingStep

implements a single flow transfer step on the entire DEM. The main function flowRouting iteratively calls flowRoutingStep until there is
1
tion times (in seconds) of the single-core CPU, OpenACC and the naive and optimized CUDA versions for several datasets.

aset Size CPU OACC CUDA (naive) CUDA (opt.)

W004 12012 1.55 0.79 0.42 0.23

W005 12012 1.78 0.82 0.50 0.25

W004 12012 5.14 1.28 0.93 0.46

W005 12012 6.97 1.52 1.31 0.64

nada 24012 38.66 6.36 5.68 1.29

ca 48012 233.69 44.99 46.07 10.55
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no flow transfer on the DEM. The inputs are the accumFlow array, that stores the number of flow units that have been drained through
each cell and the lowestNeighbour array, which value for a single cell represents the position of the lowest of its eight adjacent
neighbours (i.e. the neighbour that drains the flow of the cell). A special position OUTSIDE_DEM is used when the cell is at the border of
the DEM and all their neighbours have a higher elevation, that is, we can assume that the cell flow is drained outside the DEM. A third
array flow is created in flowRouting and initialized with a unit of flow per cell. In each iteration in the flowRoutingStep function, the
current flow of each cell is examined; if this is greater than 0 it is transferred to its lowest neighbour, also updating its accumulated flow.

Listing 2. CPU/OpenACC implementation of flow accumulation.
4.2. OpenACC implementation

The pragma directives in Listing 2 illustrate the simple changes needed to enable GPU computing for accelerating the implementation.
The data directives in flowRouting instruct OpenACC how to proceed with the data arrays. The flow array is directly created in the GPU

memory and filled with one flow unit per cell. The accumFlow array is also created in the GPU and filled with zero values but it is copied
to the host memory when the computation finishes. Finally lowestNeighbour array is a read-only array that is required during the
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computation, and therefore is annotated with the copyin clause. All these data directives are optional: if not given, the arrays are copied
to the GPU memory before starting the computation and back to the host at the end. However, they make the implementation faster by
avoiding multiple or undesired data movements.

The flowRoutingStep function starts with another data directive indicating OpenACC that all the needed data are present in the GPU
memory, and therefore everything is ready for launching the kernels. This is done with the next parallel loop directive. The OpenACC
compiler runs this loop in parallel launching several gangs of vector computations. The number of gangs and vectors is decided by the
compiler after presumably analyzing the code and considering the number of processing units available in the GPU. However, it can also be
given by the programmer using the clauses (〈 〉)gang num and (〈 〉)vector num to fine-tune the implementation for a particular platform (at
the cost of making it less portable). For instance gang(64) and vector(192) gives the best performance for our testing GPU. Arrays flow
and accumFlow are now updated in parallel by several threads, and therefore these accesses have to be atomic to avoid a corrupted result
after a simultaneous flow update in the same cell from two or more threads. Annotating the three writing accesses with atomic solves the
problem. The transfer variable seems to be a similar case but as it accumulates a global result from all the threads it can be solved much
more efficiently by using a parallel reduction operation (Martin et al., 2012). The reduction directive can be used for this purpose, that
takes as arguments the operation to perform during the reduction (þ) and the variable to get the result.

Apart from adding an extra block for the data directives, the original Cþþ code does not need any modification to be GPU-accelerated
with OpenACC. The only required directive is parallel loop before the for-loop in flowRoutingStep. The rest, particularly the data
directives, are advisable for improving the performance.

4.3. CUDA implementation

Listings 3 and 4 show a naive CUDA reimplementation of the code in Listing 2. Even a simple example like this requires a thorough
refactorization. Most of the code in the counterpart of the flowRouting function in Listing 4 is now dedicated to creating and copying the
data arrays to the GPUmemory. For the sake of simplicity we omitted creating and initializing the flow array in the GPU as it would require
defining and calling a new kernel. A key aspect in a CUDA is setting the number of blocks and threads per block that are launched in the
computation, which has a direct impact on its performance. In a CUDA-enabled system the OpenACC compiler usually maps gangs and
vectors in blocks and threads per block respectively.

Listing 3. Kernel of the naive CUDA implementation of flow accumulation.
Table
Speed

Dat

N36

N36

N37

N37

Gra

Afri
2
ups in execution times of the OpenACC and CUDA (optimized) versions compared to the single-core CPU version, and CUDA compared to OpenACC.

aset Size OACC vs CPU CUDA vs CPU CUDA vs OACC

W004 12012 �1.97 �6.87 �3.50

W005 12012 �2.18 �7.21 �3.33

W004 12012 �4.01 �11.25 �2.81

W005 12012 �4.59 �10.88 �2.37

nada 24012 �6.08 �29.88 �4.92

ca 48012 �5.19 �22.15 �4.26
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Listing 4. Naive CUDA implementation of flow accumulation.
The flowRoutingStepKernel shown in Listing 3 is the kernel that is executed in parallel by the CUDA processors. It is quite similar to
the code of the flowRoutingStep function, with a couple of main differences. First, there is no loop as each thread running a kernel
processes a different cell. The index of the cell to process is computed in the usual way in CUDA, using the block size, block identifier and
thread local identifier. And second, the global flow transfer is implemented as an array of size 1 in the GPU memory, and is not computed
through a parallel reduction but using atomics sums.

In our previous work (Ortega and Rueda, 2010) we showed how in order to have a significant performance gain against a CPU im-
plementation each thread has to compute the flow accumulation for several cells (e.g. 64 cells per thread). We have implemented an
additional optimized version that works in this way by adding a loop in the kernel to process a different set of cells in each thread. The
number of blocks defined in flowRoutingCUDA also needs to be recomputed, as less threads are required to process the DEM cells.

Our optimized CUDA version, apart from implementing the one-thread/multiple-cells scheme described above, also avoids the use of
atomic operations. To achieve this goal, it uses two sets of the flow and accumFlow buffers, and uses alternatively one set for reading and
another for writing. The details can be found in Ortega and Rueda (2010). Another improvement is the use of an array of per-block
booleans encoding if all the cells assigned to the threads of each block are empty. A property verified during the flow accumulation is that
if a cell does not receive flow from its neighbours, and therefore remains with zero flow during one iteration, then it has not to be
reconsidered in the next iterations (O'Callaghan and Mark, 1984). Consequently, if a true value is found, all the threads of the block end
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immediately as no further processing is required. Conversely if the value is false, it is set to true and the threads of the block proceed as
usual. If any of the cells processed by the thread have a flow different from zero, the boolean is updated to false to ensure that the cell is
processed again in the next iteration.

There is more room for optimization in CUDA: a careful choice of the number of blocks and threads per block to launch in the
computation, a coalesced access to data in global memory and an effective use of shared memory in the SIMD processors can speed up a
CPU sequential version several orders of magnitude. However this comes with the cost of a considerable refactorization of the original
implementation and some trial and error with sometimes unexpected results. Simpler optimizations can also be implemented in OpenACC
although our aim with this paper has always been to keep it as close to the original CPU version as possible.

Another advantage of CUDA, due to being a widely adopted technology, is the number of available high-quality APIs that can sig-
nificantly accelerate the development of certain common tasks in many applications (e.g. cuBLAS for linear algebra or cuFFT for fast Fourier
transform computation). It is reasonable to think that as OpenACC gains acceptance, more libraries will also be available to help
developers.

4.4. Performance evaluation

The proposed implementations were tested on several real life datasets to evaluate their efficiency depending on the DEM size. Our
experimentation was carried out on a PC equipped with a dual Intel Xeon E5620 processor running at 2.4 GHz with 12 GB of RAM, an
NVIDIA Tesla C2050 and Windows 7 64 bits. The algorithms were directly implemented in Cþþ and compiled with Visual Studio 2012.
We used the PGI x64þAccelerator Compiler v. 14.7 for the OpenACC implementations and the NVIDIA CUDA Toolkit 6.

The source of the DEMs used in this study was the widespread 3 arcsec resolution (90 m) SRTM3 DEM v2.1 provided by the NASA Jet
Propulsion Laboratory. We selected several regions with distinct terrain features and resolution size (ranging from 10212 to 48012 cells).
These DEMs were preprocessed as described by Jenson and Domingue(1988) to fill the depressions that could hinder flow routing.
5. Results and discussion

Table 1 reports the time in seconds required to calculate the drainage network for the different datasets using the proposed im-
plementations. From left to right, Table 1 provides the name and dimensions of the datasets and the total running time required by the
single-core CPU implementation (baseline time), the OpenACC version (described in Section 4.2), the naive CUDA version and the opti-
mized CUDA version (described in Section 4.3).

Table 2, on the other hand, shows the speedup achieved by our two GPU implementations over the single-core CPU version, and
compares the OpenACC implementation with the optimized CUDA alternative.

Fig. 1 depicts the datasets used in our experimentation, as well as the drainage networks extracted by the evaluated implementations.
Note that all versions obtained the same networks, as they were based on the same algorithm and were initialized with the same
parameters (only the implementation varied).

When comparing the performance of the CPU and the OpenACC implementations (see Tables 1 and 2) we observe that the performance
gain of OpenACC is somewhat limited (around �2) for the N36W004 and N36W005 datasets. This stems from the fact that these datasets
were almost covered by sea, as shown in Figs. 1a and b. Therefore, the performance gain on processing a relatively small number of cells in
parallel barely compensate for the cost of the data movements between CPU and GPU. However, as we increased the DEM size, the
OpenACC implementation quickly leaves the CPU version behind. For example, OpenACC outperformed the CPU by a factor of around �5–
6 for the two largest datasets evaluated. We consider that this performance improvement is very satisfactory considering the small
investment in coding time we had to put on the OpenACC implementation.

Regarding the CUDA implementations, our experiments showed that the performance of the naive version was roughly similar to the
OpenACC alternative. Unsurprisingly, a simple porting from CPU to CUDA does not fully exploit the computing power of the GPU. A real
performance gain of CUDA over OpenACC can only be achieved with more involved implementations including specific GPU optimizations
(Ortega and Rueda, 2010) as we showed in Section 4.3. Conversely, this also suggests that the OpenACC compiler did a good job at
parallelizing and optimizing the CPU code on its own.

Nevertheless, the optimized CUDA implementation managed to outperform the OpenACC version with a factor ranging from �2.4 to
�4.9 for all datasets. Therefore, we can affirm that CUDA is still the fastest alternative if the programmer has the technical skills and is
willing to invest a certain amount of time on refactoring, parallelizing and tuning the algorithm.

If we compare the three implementations in terms of simplicity of code we observe that the OpenACC implementation has 42 lines of
code, whereas the CUDA versions required 49 and 72 lines respectively, that is, 16% and 72% more. But it is even more important to
highlight that the OpenACC version reuses 100% of the code of the CPU version adding a 40% extra for the directives. In contrast both CUDA
versions require an implementation from scratch.

At the light of these results, when choosing between these two technologies we have to consider how critical the performance is, how
much time we are willing to invest into the implementation, and the availability of existing GPU-accelerated libraries that can accelerate
and simplify our development. Nevertheless, it is also possible that both approaches benefit from each other. For example, OpenACC could
be helpful as a general solution when the developing times are important and there is only non-parallel code available. CUDA, on the other
hand, could be used to fine-tune only the most specifically computer-intensive kernels.

We have chosen the D8 algorithm for this study because it can be parallelized in an illustrative, straightforward manner. However, we
should keep in mind that there exists cases where an effective parallelization requires a complete redesign with a different structure than
the sequential solution, e.g., when the response of a node depends on the response of neighbouring nodes in a branching network. Under
these circumstances, OpenACC would lose some of its advantage, as a reimplementation of the algorithm is unavoidable. Still, if an
OpenACC version is possible, it would probably be simpler and more legible than any CUDA equivalent version.



Fig. 1. Datasets used in our experiments.
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6. Concluding remarks

This paper aims at geoscientists (particularly in the field of Hydrology) who are interested in developing computationally expensive
applications but lack the time or technical knowledge for manually parallelizing the algorithms with CUDA or any other specific GPU-
oriented technology. In this context, we have presented OpenACC as a valid and high level API that provides an easy access to the GPU
power by delegating most of the subtle technical details on the compiler.

As a case study we have chosen the classic D8 algorithm for extracting drainage networks proposed by O'Callaghan and Mark (1984).
Through our paper we have described the baseline CPU-version of this algorithm, and explained how it can be parallelized with OpenACC
and CUDA. Both GPU-based implementations have been fully described and compared in terms of complexity and coding effort. Finally,
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their performance has been evaluated with some real-world datasets.
Our paper has showed that only half a dozen of pragma directives were required to parallelize an existing C/Cþþ implementation of

the D8 algorithm in a straightforward manner. This suggests that OpenACC is particularly interesting for accelerating legacy Fortran or C/
Cþþ code or as a way to quickly have an accelerated implementation of an algorithm under development. Unfortunately, our compar-
isons have also proved that this flexibility comes with a performance cost. That is, the low-level programming model of CUDA allows the
programmer to manually tune the implementation in many ways, which results in a superior performance to OpenACC. Nonetheless, it is
expected that the natural evolution of the OpenACC compilers would reduce the performance gap between both technologies during the
next years.

As future work we plan to do a comparison between different OpenACC implementations when more mature commercial and open
source compilers will be available, using this or a similar case study. The OpenACC standard directives and each particular implementation
have clauses and options for tuning and optimizing the GPU code generated; the question of how close we can get to a CUDA im-
plementation could be answered in a future study. In addition, throughout this work we have used small to moderate sized DEMs,
therefore we have planned to extend our evaluation to larger or even offline datasets. Finally we believe that our results can be extra-
polated to other geosciences, but this assumption has to be confirmed with new case studies in other fields besides Hydrology.
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