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A B S T R A C T

The computer-based modeling of geological and geophysical data allows the construction of 3D geological
models that can predict the location of differing lithologies, intrusive units and orebodies. This 3D modeling
allows the identification and quantification of the 3D controls on the location and grade and tonnage of mi-
neralization in a given mineral deposit. These controls include factors such as the spatial relationship between
mineralization and distinct geological units or features and the record of tectonic movements in an area such as
the uplifting or subsidence of individual rock masses during faulting or intrusion. These controls on miner-
alization can then be combined with the location of areas of known mineralization in an approach termed
characteristic analysis, which allows the identification of areas that are prospective for previously unknown
mineralization as well as the 3D targeting of areas for future mineral exploration. Here, we present a case study
that focuses on the Yangzhuang deposit within the Zhonggu orefield of the southern Ningwu volcanic basin, an
important mineral deposit within the middle-lower Yangtze River Metallogenic Belt, China. This case study uses
the 3D metallogenic prospectivity modeling approach outlined above. Our research indicates that areas of
known mineralization (i.e., already identified orebodies) can be used to train 3D datasets to identify areas that
are highly prospective for future exploration, in this case a highly prospective region to the north-northeast of
the known mineralization in this area. This region is coincident with a distinct magnetic anomaly, suggesting
that this area is likely to host significant mineralization, a hypothesis that will be tested during future ex-
ploration. This study outlines an approach to 3D prospectivity modeling that can be used in both greenfield and
brownfield exploration and provides a new method for the exploration targeting of concealed or deep miner-
alization, representing a significant advance over the more widely used 2D prospectivity modeling techniques.

1. Introduction

Mineral exploration has become more difficult over time, primarily
as outcropping and near-surface mineralization is more easily identified
and exploited than concealed or deep-seated and unexposed miner-
alization. This in turn means that identifying prospective areas during
exploration targeting has also become more difficult over time. As such,
mineral exploration is generally facing a situation where mineralization
is hard to recognize, hard to discover, hard to exploit, a dilemma that
can be overcome by targeting deep and peripheral but unexposed

sections of existing deposits during brownfield exploration and the re-
quired expansion of the resources and reserves of existing mines. This
type of approach is vital in order to keep operations running and to
extend the life span of individual mines (e.g., Zhao and Chen, 2000). A
subset of recent exploration targeting research has focused on the de-
velopment of mathematical geological approaches (Zhao, 2003; Mao
et al., 2011; Chen et al., 2007, 2009; Li et al., 2014; Porwal and
Carranza, 2015), although deep-seated and unexposed mineralization is
usually associated with very weak or negligible surface anomalies and
may be associated with areas of mining activity that have disturbed the
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natural geological, geophysical and geochemical anomalies that are
associated with mineralization. This in turn means that the areas
around known orebodies may be lacking in precise and accurate geo-
logical and geophysical data that reflects the natural geology of the area
but instead may have been anthropogenically disturbed or may be oc-
cluded by barren units within the same area. One solution to this issue
is 3D prospectivity modeling, a rapidly developing sector of pro-
spectivity modeling that provides new ideas and approaches to the
problems encountered during mineral exploration (Zhao, 2003; Mao
et al., 2011, 2016; Chen et al., 2007, 2009; Li et al., 2014; Yuan et al.,
2014a, b; Zhang, 2014). Traditional approaches typically use various
mathematical methods during resource assessment and prospectivity
modeling, including prospectivity content modeling (Zhao, 1983; Chen
et al., 2008), Boolean logic and index superposition based methods
(Bonham-Carter, 1994), weight of evidence-based methods (Bonham-
Carter et al., 1989; Agterberg et al., 1993; Zhang et al., 2009; Wang,
2012), logistic regression based methods (Agterberg et al., 1993;
Porwal et al., 2010), artificial neural network based methods (Li et al.,
2014; Brown et al., 2000), fuzzy logic based and fuzzy inference system
based models (Joly et al., 2012; Porwal et al., 2015) and characteristic
analysis methods (Ni and Xue, 2007; Zhang et al., 2012; Wu et al.,
2015). The latter has been extensively used for 2D surficial pro-
spectivity modeling where the characteristics of known mineralization
are used to train data to identify prospective areas for future mineral
exploration. The characteristics analysis methodology is designed to
deal with geochemical variables at the beginning and focuses on mea-
sured values that differ locally from neighboring locations and on
correlations between variables based on a small number of observations
(Botbol et al., 1977). It also requires minimal calculations, which makes
the method easy to implement. However, this approach has not been
used in 3D prospectivity modeling before this study. This study re-
presents an attempt to apply characteristics analysis method to our
study area, the Yangzhuang deposit, and compares the results obtained
using this method and the more traditional weights of evidence ap-
proach to test the effectiveness of the former. We use a significant
amount of data obtained for the research area, making this an ideal
location with sufficient specific characteristics for the application of the
characteristics analysis method, assuming that areas with similar geo-
logical characteristics contain similar amounts of mineralization. All of
this means that characteristics analysis is ideally suited for use in the
generation of a 3D prospectivity model for this region.

Here, we present a case study of 3D characteristic analysis-based
prospectivity modeling for the targeting of mineralization associated
with the Kiruna-type iron oxide-apatite type Yangzhuang iron deposit
within the Zhonggu orefield of in the southern Ningwu volcanic basin

(Jin, 2014; Ningwu Research Group, 1978). This area is well char-
acterized, primarily as a result of the significant amount of legacy
geological data generated during previous exploration in this region
(Ningwu Research Group, 1978; East China Mineral Exploration and
Development Bureau, 2011; Li et al., 2015). The proliferation of ex-
isting data for this area allows the construction of prospectivity models
for the deeper and peripheral portions of the main Yangzhuang ore-
body, an approach that then allows this 3D modeling to be linked with
regional geological structures and features to identify deep-seated or
distal areas that are prospective for future exploration. As such, this
combination of 3D geological modeling, 3D spatial analysis and 3D
characteristics analysis allows the generation of a 3D prospectivity
model for the deep and peripheral regions of the main Yangzhuang
orebody. The results of this approach were verified by comparison to
areas of known mineralization, ensuring that this approach to ex-
ploration for deep and concealed mineralization yields the best chance
of exploration success both in the study area and elsewhere where this
technique could be applied. We also used the same 3D geological model
and the data obtained from the 3D spatial analysis to run a weights of
evidence model, allowing the direct comparison of these two methods.
Our results indicate that the characteristics analysis based approach is
more effective for guiding future exploration around the Yangzhuang
iron deposit than the more commonly used weights of evidence method.

2. Geology of the study area

2.1. Regional geology

The middle and lower Yangtze River Metallogenic Belt (MLYRMB;
Fig. 1) hosts world-class Cu–Fe polymetallic mineralization and is one
of the most important areas of mineralization in China (Ningwu
Research Group, 1978; Tang, 1998; Chang, 1991; Zhai, 1992). The area
is cross-cut by a series of major faults and hosts seven large mining
camps, namely the southeast Hubei, Jiurui, Anqing–Guichi, Luzong,
Tongling, Ningwu, and Ningzhen mining districts (all the mining camps
are listed from west to east according to the location in Fig. 1) (Chang,
1991; Yuan etal., 2011; Zhai, 1992; Zhao and Tu, 2003; Zhou et al.,
2011). These areas contain mineralization that is generally hosted by
the Ningwu and Luzong volcanic basins, the two largest volcanic basins
in this region (Zhou et al., 2011). The majority of the basins in the
MLYRMB are pull-apart basins that trend N–S to NE–SW, host a series of
intrusive and extrusive olivine–latite units and are associated with
volcanic–subvolcanic hydrothermal–sedimentary polymetallic iron de-
posits that are similar to the Kiruna-type Fe oxide–apatite deposits of
northern Sweden, in addition to numerous other non-metallic mineral

Fig. 1. Map showing the location of major volcanic basins
within the middle and lower Yangtze River valley. Modified
after Zhai (1992).
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deposits (Ningwu Research Group, 1978).
The Ningwu basin is located within the eastern MLYRMB and is

controlled by two groups of faults that form the tectonic framework of
this area, one trending NNE–SSW and the other trending NW–SE. The
NNE–SSW trending faults consist of the Yangtze and Fangshan–Nanling
faults, whereas the NW–SE trending faults are dominated by the
Nanjing–Hushu fault. The basin hosts a series of volcanic units, in-
cluding the Triassic Zhouchongcun (T2z) and Huangmaqing (T3h)
groups and the Jurassic Xiangshan Group (J1-2xn1). These units are
overlain by Mesozoic olivinelatite volcanics associated with the
Yanshanian magmatic event that are split into four cycles of volcanism,
namely (from oldest to youngest) the Longwangshan, Dawangshan,
Gushan and Niangniangshan volcanic cycles (Ningwu Research Group,
1978). The Ningwu basin in this area hosts significant iron miner-
alization, with individual deposits clustered in (from north to south) the

Meishan, Aoshan–Taocun and Zhonggu orefields (Fig. 2).

2.2. Geology of the Zhonggu orefield

The Zhonggu orefield is located in the southern Ningwu basin in an
area that records folding and faulting that was contemporaneous with
the voluminous magmatism recorded in this region. Both the intrusive
and extrusive magmatism and the mineralization in this area were
controlled by two basement-penetrating faults, one trending NNE–SSW
and the other trending NNW–SSE (Fig. 3). The area is dominated by
units of the Triassic Zhouchongcun (T2z), Triassic Huangmaqing (T3h)
and Jurassic Xiangshan (J1-2xn1) groups, with the former two units
closely associated with the iron mineralization in this region. All of the
iron-dominated mineral deposits in this area are associated with small
hypabyssal to superhypabyssal intrusions, including the

Fig. 2. Map showing the geology and main mineral deposits
of the Ningwu Basin Ningwu Research Group (1978).
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Yunlou–Hemushan porphyritic diorite, the Zhongjiu porphyritic diorite,
the Qingjieshan–Baixiangshan porphyritic diorite, the Gushan–Caogang
porphyritic diorite and the Yangzhuang porphyritic diorite (Hou et al.,
2010).

2.3. Deposit geology

The Yangzhuang iron deposit is located in the southern part of the
Zhonggu orefield and is a Kiruna-type Fe oxide-apatite deposit that was
formed as a result of magmato-hydrothermal fluid circulation asso-
ciated with a porphyritic magmatic intrusion in this area (East China
Mineral Exploration and Development Bureau, 2011; Jin, 2014). This
area contains Triassic to Quaternary sediments, with the latter covering
a significant portion of the region (Fig. 4). Drillholes in this area in-
dicate that the Quaternary sediments in this region cover units that
include the Triassic Huangmaqing (T2h) and Xujiashan (T2x) and the
Jurassic Xiangshan (J1-2xn) groups, with the Xujiashan Group split into
the Huangmaqing (T2h1) and Zhouchongcun (T2z) formations. The in-
trusive unit in this area is controlled by two small domes that together
define a large domal structure. One of these small domes is in the
southwestern part of the mining area and records uplift to the south-
west and subsidence to the northeast, whereas the other dome is in the
northeastern part of this area and contains a central portion of uplift
that is surrounded by a region that has been downthrown. The vast
majority of the mineralization in this area is hosted by a porphyritic

diorite that is entirely concealed (i.e., does not crop out at the surface)
and formed from mantle-derived magmas (Wang et al., 2001). The
contact between this intrusion and the surrounding country rocks
(especially the Triassic Huangmaqing Formation) is a key area for mi-
neralization, with areas associated with uplift associated with the in-
trusion also important hosts for mineralization in this region along with
interformational fractures within the Zhouchongcun Formation, and
within the intrusion itself (Li et al., 2015). The locations of all of the
intrusions in this area are controlled by folding and faulting that formed
the conduits for the magmas, generating the cupolas and stocks ob-
served in this region. The doming of units associated with folding in the
study area is an important control on mineralization with the main
faults located along the SW and NE edges of the deposit (Fig. 3),
meaning that they are peripheral to the mineralization in this area and
were not directly involved in metallogenesis. The main mineralization-
related intrusion is dominated by a porphyritic diorite phase and is
associated with more silica-rich porphyritic diorite, porphyritic felsite,
spessartine-bearing and gabbroic dikes in the surrounding area. The
iron ore within the deposit is dominated by magnetite with minor
amounts of hematite, with the individual orebodies that have been
identified by drilling and geophysical detection (magnetic anomalies)
generally located along the contact between the porphyritic diorite and
the Xujiashan Group, within the Xujiashan Group itself, and within the
porphyritic diorite.

Fig. 3. Map showing the geology and mineral deposits of the Zhonggu orefield adapted from data obtained from the East China Mineral Exploration and Development Bureau.
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2.4. Dataset and methodology

The structures and contacts within the study area and the 3D models
constructed during this study were based on 81 drillhole logs and 10
geological cross-sections (Table 1; Fig. 5).

3. 3D modeling processes and analytical methods

This study uses an approach that combines knowledge of the con-
trols on mineralization in an area with characteristics analysis to gen-
erate a 3D prospectivity model for the study area utilizing a .NET based
coding approach (Yuan et al., 2014a, b). This approach involves con-
struction of 3D geological models using data obtained from mapping,
drillholes, cross-sections and other sources of geological information
(e.g., Table 1; Fig. 1). This information is then combined using the
above code to enable 3D spatial analysis and the extraction of the
controls on mineralization in 3D (i.e., the 3D identification of areas that
are prospective for mineralization within individual datasets). These
individual datasets are then combined to create a prospectivity model
that incorporates all of the factors related to mineralization in the study
area using a characteristic analysis method; this workflow is outlined in
Fig. 6.

3.1. 3D geological modelling

The 3D approach to geological modelling outlined by Houlding
(1994) and used during this study has a general form as follows: a
computer generated 3D model is constructed using appropriate soft-
ware and mathematical modeling to describe geological bodies, struc-
tures or some particular characteristics based on geological data. This
enables the realization of the 3D positioning and displaying of these
bodies, structures or other characteristics from data management,
geological interpretation, spatial analysis, geological statistics, pro-
spectivity modeling and 3D visualization (Houlding, 1994; Lv et al.,
2011a, b). Current approaches to outline the location and nature of

Fig. 4. Map showing the geology of the area around the Yangzhuang iron ore deposit based on data from the East China Nonferrous Geological and Mineral Exploration Development
Institute. Modified from East China Mineral Exploration and Development Bureau (2011).

Table 1
Data used during 3D model construction.

Data category Data size Data sources

Drillhole logs 81 drillholes transferred
into a drillhole database
using Surpac™

808 geological team of the East
China Mineral Exploration and
Development Bureau

Geological cross-
sections

10 cross-sections
transferred as vector files
into Surpac™

808 geological team of the East
China Mineral Exploration and
Development Bureau

Fig. 5. Map showing the location of data used in the construction of 3D models.
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geological bodies at depth in 3D use mine scale geological data, drill-
hole-derived data and cross-sections (e.g., Fig. 1; Table 1), 3D inver-
sions generated from gravity and magnetic (Deng et al., 2012) and re-
flected seismic (Lv et al., 2011a, b) data and synthetic interpreted
sections derived from geophysical data (Qi et al., 2012). These 3D
models can qualitatively or quantitatively reveal the relationship be-
tween adjacent geological bodies, including the volumes of these
bodies, the controls on their shapes and forms, and the tectonic history
of an area. Further spatial analysis can be used to indirectly obtain
information on the controls on mineralization in an area, meaning that
these 3D models can be used to identify areas that may host concealed
mineralization in areas deeper or peripheral to known mineralization, a
key factor in increasing the potential success of mineral exploration.

3.2.1. 3D spatial analysis
The spatial distribution and morphological characteristics of geo-

logical bodies and local structures are often controlling factors in the
formation and distribution of mineralization in a given area (e.g.,
Huang, 2013; Jowitt et al., 2014; Mao et al., 2011). Here, we use ex-
isting geological data and block models for the Yangzhuang area to
undertake Euclidean distance calculations and the analysis of uplift and
subsidence associated with both faulting and the intrusion of the por-
phyritic diorite in the study area.

3.2.2. Euclidean distance calculation
The mineralization within the Yangzhuang deposit is closely asso-

ciated with the location of key sedimentary units (namely the Xujiashan
Group) and the porphyritic diorite in the study area, with this study
focusing on these units and the porphyritic diorite itself. The spatial
relationships between individual geological bodies and the known vo-
lume of mineralization can be determined using Euclidean distance
calculations. Correlating the distances between these geological bodies
and the location of known mineralization enables the determining of
optimal distances (i.e., the distance where the spatial relationship be-
tween a given geological unit and known mineralization breaks down)
and the construction of 3D volumes that delineate prospective areas
relating to the location of individual geological units or bodies. This is
undertaken by determining the Euclidean distance between all the
blocks within a given model and voxels of known mineralization using
the following formula:

= − + − + −D A A x x y y z z( , ) min { ( ) ( ) ( ) }1 2 1 2
2

1 2
2

1 2
2 (1)

where A1 (x1, y1, z1) and A2 (x2, y2, z2) are both voxels that have 3D
coordinates in the form x, y, z and D is the Euclidean distance between
A1 and A2 (x, y, z are the coordinates of the center of the voxels). In our
calculation process, A1 (x1, y1, z1) is within the set of known miner-
alization whereas A2 (x2, y2, z2) is among the rest of the potentially
unmineralized voxels in the 3D model.

3.2.3. 3D uplift and subsidence analysis
Tectonic factors are frequently related to the formation of ore de-

posits and structures can often control the location of individual volume

of mineralization in a given area. Folding can control the location of
mineralization with anticlines that formed before or during miner-
alizing events often hosting mineralization in the form of stratabound
or stratiform orebodies or saddle orebodies associated with crush zones
on both limbs of a fold (e.g., Chai et al., 2014; Peterson et al., 1976;
Song et al., 2015). Folds can also act as conduits or traps for magmatism
and hydrothermal fluids, again potentially increasing the likelihood of
mineralization being associated with this type of folding (e.g., Vollgger
et al., 2015). Faulting can also create conduits for hydrothermal fluids
and magmas, and the density of folding and faulting within an in-
dividual unit can be analyzed by determining the uplift or subsidence of
a given point compared to a stated datum (Yoshinobu et al., 1998; Gall
et al., 2000). As such, quantitatively analyzing and extracting the uplift
or subsidence of a given geological unit may provide insight into the 3D
prospectivity of a given area (we can treat uplift and subsidence as parts
of folds or domes; in an area uplift, it's surroundings or two sides must
be relatively subsidence, vice versa). The 3D uplift or subsidence of a
given voxel of a specific geologic surface (e.g., the contact between the
Xujiashan Group and the porphyritic diorite) can be defined by com-
paring its elevation from the average elevation of the voxel on the
surface (Li et al., 2014) using the following formula:

= −L z zi i m (2)

where Li is the height of uplift or subsidence of Ai (xi, yi, zi), zi is the
elevation of voxel Ai, and zm is the average elevation of Ai which is
calculated by equalizing elevation of a 5×5 matrix centered on Ai

(Fig. 7), with Li values> 0 indicative of the uplift of Ai and Li va-
lues< 0 indicative of subsidence of the same voxel.

The average elevation (zm) of A13 in Fig. 7 is calculated using the
following formula where zi is the elevation of voxel Ai:

Fig. 6. Workflow used during the 3D prospectivity modeling undertaken during this study.

Fig. 7. A 5×5 matrix centered on A13.
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3.3. 3D prospectivity modeling using characteristic analysis

Characteristic analysis was first proposed as an approach that could
effectively interpret regional multivariate geological, geochemical, and
geophysical data (Botbol, 1971; Botbol et al., 1977). This approach has
been widely using for 2D prospectivity modeling at multiple scales
since the 1970s (Botbol, 1971; Botbol et al., 1977; Mccammon et al.,
1983; Ni and Xue, 2007; Zhang et al., 2012; Wu et al., 2015) using a
method called quantitative similarity analysis. Current prospectivity
modeling research through characteristic analysis has generally been
focused on 2D surfaces, with comparatively little undertaken in 3D
space (e.g., Li et al., 2015). The basic theory of characteristic analysis
involves the extraction of one or several characteristics (e.g., faults,
geological contacts) from a 3D block model of a given mineral deposit
and the analysis of the spatial relationship (positive or negative) be-
tween these characteristics and the location of areas of known miner-
alization. This enables voxels within the model that host mineralization
to be given a value that combines these relationships between these
characteristics and volume of known mineralization (here termed the
value of degree of connection). These values can then be applied to
voxels away from areas of known mineralization to identify regions
with similar characteristics to those containing known mineralization
(i.e., have similar structures, lithologies, or other characteristics that
are known to be spatially related to mineralization) that should be
considered prospective for future mineral exploration. The pro-
spectivity of all of the voxels within the model is determined using
weightings that reflect the differing characteristics of the voxel and the
relationships of these characteristics to known mineralization, with
these weightings then combined to quantitatively identify areas and
delineate targets that are highly prospective for future exploration. The
following matrices and formulas are used in this process. Provided that
there are m variables xj (j=1, 2, …, m) and n voxels the xj value in
voxel i is calculated using xij (i=1, 2, …, n; j=1, 2, …, m), with the
original data matrix outlined as follows:

=
⎡

⎣

⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋮
⋯

⎤

⎦

⎥
⎥
⎥

X

x x x
x x x

x x x

m
m

n n nm

11 12 1
21 22 2

1 2 (4)

where each xij is a binary value of either 1 or 0 depending on whether
the variable is present or absent in the given voxel.

The key to building a characteristics analysis model is calculating
the weight coefficients of the individual variables in the model. Here we
define aj as the weight coefficient of xj (as outlined above, with j the
same in both equations). The coefficient aj is then calculated using a
quadratic sum method based on the assumption that the closer a con-
nection between a given variable (e.g., the voxels of Euclidean distance
from the porphyritic diorite in our research area) and another variable
(e.g., the voxels of known mineralization in our research area), the
more important this first variable is. This means that aj can be used to
measure the relevancy between two variables, here defined as two
variables k and j (Zhou and Wang, 2012) as follows:

A. Single matching coefficients are calculated as follows:

∑= = …
=

r x x k j m( , 1, 2, )kj
i

n

ik ij
1 (5)

where rkj is the matching coefficient between variables k and j. A
matching matrix R is then obtained as follows:

= ′ = = …×R x x r k j m( ) ( , 1, 2, )kj m m (6)

B. The next step is to assign values to each variable using aj (j=1, 2,
…, m) to express the relative significance of j in a process that yields
a weight coefficient value aj:

∑

∑ ∑
= = …=

= =

a

r

r

j m( 1, 2, , )j
k

m

jk

j

m

k

m

jk

1

2

1 1

2

(7)

The value of aj indicates the degree of matching between j and k, a
value that can be used as the weight coefficient of j.

C. The final step is to calculate connection degree values that reflect
the relationship between a given geological body and the area of
known mineralization (i.e., training points) within a 3D block
model. Here we define “connection degree values” as follows: if we
assume that Xujiashan Group contains n voxels: xi (i=1, 2, …, n),
this means that the connection degree value for the Xujiashan Group
is the sum of aXujiashan× xi. It is generally acknowledged that higher
connection degree values reflect more prospective areas, meaning
that areas that are highly prospective for mineral exploration can be
assessed using these values (Despres, 2004). The connection degree
value yi for n voxels is given using the following formula:

∑= = … = …
=

y a x i u j m( 1, 2, , ; 1, 2, , )i
j

m

j ij
1 (8)

In a general way, the characteristics analysis method treats geolo-
gical variables in binary form where “1” indicates the variable is con-
sidered highly prospective and “0” means highly unprospective (Botbol
et al., 1977; Zhou et al., 2012). This makes characteristics analysis an
effective method for prospectivity modeling as it can quantify the re-
levancy between two geological variables, meaning in turn that the
quantitative relevancy of all variables can be normalized with one of
these variables assigned a fixed value (e.g., the location of known mi-
neralization – or training points) allowing the calculation of “connec-
tion degree values” between this fixed variable and all other variables
within the model. The final model superimposes and sums the values of
all variables, allowing the identification of highly prospective areas for
future exploration (Zhou et al., 2012).

4. Prospectivity modeling and results

The processes outlined above enables the modeling of the 3D pro-
spectivity of areas outside of the known distribution of mineralization
within the Yangzhuang deposit. This approach combines 3D geological
modeling, 3D spatial analysis, the extraction of factors known to be
associated with mineralization, and the construction of a final 3D
prospectivity model.

4.1. 3D geological modeling

The Yangzhuang area has sufficient data such as topography, drill-
hole, cross-section and other geological data to allow the construction
of a 3D geological model using GeoVia Surpac™ software. This involved
the construction of a drillhole database using the data outlined in
Table 1 and the interpretation and extraction of vector files re-
presenting geological cross-sections. This was followed by the con-
struction of a 3D contact or boundary model that defines the extent of
the research area, the construction of various spatial cross-sections
according to the exploration undertaken in the area, and the final re-
striction and extrapolation of the information within these cross-section
using information present within the cross-sections and the drillhole
database (Table 1). This then enables the entire study volume to be
populated with geological information, the construction of a surface

X. Hu et al. Ore Geology Reviews 92 (2018) 240–256

246



model using the built cross-sections and the restriction of these surface
models at the top surface of the model using 2D geological modeling.
The final step was to combine this surface model with a Boolean op-
eration to construct a final 3D boundary model that includes single
geological bodies based on the geological data available from the study
area, including sedimentary and intrusive units and the location of
known iron mineralization (Fig. 8).

4.2. Extraction of 3D controls on mineralization

The 3D geological model outlined above was used for the 3D spatial
analysis and extraction of the key factors associated with mineralization
in the study area. This approach used a 3D block model based on the 3D
geological model, using a 30×30×30m voxel size based on the
parameters within the 3D geological model, the known accuracy and
precision of the data within the model, and the limitations of the
computing system available for this study. This 3D block model con-
tains 337,896 voxels, and solid models were used to restrict the range of
the built block model and to populate all of these voxels with values
derived from drillhole data. These values were subsequently used for
the 3D spatial analysis of the presence or absence of mineralization-
related factors within the block model.

The Yangzhuang deposit has been the subject of a significant
amount of research during the 1950s, yielding a large volume of geo-
logical and geophysical data for this area, as well as identifying the key
controls on mineralization in this area (Table 2). These data suggest
that the Euclidean distance between key geological units, the uplift and
subsidence of the upper surface of the porphyritic diorite and the uplift
and subsidence of the upper surface of the Xujiashan Group are all
potentially useful guides to mineralization; these 6 predictive variables
were extracted from the block models as shown in Fig. 9.

4.3. Characteristic analysis-based 3D prospectivity modeling

The factors extracted above were combined with characteristic
analysis to generate a 3D prospectivity model for the study area. This
model contains areas of known mineralization and areas that are con-
sidered prospective for mineralization, with the former being well
characterized and the latter remaining relatively unknown and to be
tested during future exploration. This analysis used coding undertaken
using Visual Studio 2010 and .NET, yielding a software module that
enabled the calculation of weighting coefficients and the computation
and visualization of connection degree value with the final output
being∗.csv property files for each individual block voxel within the
model. Areas of known mineralization (i.e., training voxels; Fig. 10)

were combined with the 6 variables outlined above to determine the
relative importance of these variables in controlling the spatial location
of mineralization (i.e., the weighting of these variables). These vari-
ables were then used to assess the prospectivity of areas below and
peripheral to known areas of mineralization in the study area and to
outline key target areas for future exploration.

We statistically analyzed the variables outlined in Table 2 and
generated threshold values that delineated the distances where the re-
lationships between these variables and the location of known miner-
alization broke down. This enabled the identification of prospective and
unprospective voxels within our model as follows:

(1) Euclidean distance from the porphyritic diorite and the Xujiashan
Group contact: increasing distance from the location of the intru-
sion is related to a decrease in the spatial relationship between this
unit and mineralization (defined using a volume ratio of voxels of
known mineralization contained by Euclidean distance from the
porphyritic diorite and the Xujiashan Group contact). We assume
that prospective voxels are located close to the porphyritic diorite
and the Xujiashan Group contact and have a close relationship with
known mineralization, so we choose the Euclidean distance
whereby the modified porphyritic diorite and the Xujiashan Group
contact completely encloses all areas of known mineralization. All
voxels of known mineralization are completely contained at a dis-
tance of 270m from the porphyritic diorite and 210m from the
Xujiashan Group (Fig. 11). In addition, we maximized the number
of voxels that could be located within this distance to be less than
20% (not including porphyritic diorite and the Xujiashan Group
voxels themselves) of the total of 337,896 voxels within the model.
We then used the shortest of these distances as the threshold value.
Considering 20% of the voxels within the model (with the caveat
that the porphyritic diorite contains some 52.4% of the total
number of the voxels within the model, meaning that some 72.4%
of voxels lie within this threshold) yields a Euclidean distance
threshold of 262m. Combining this with a cell size of 30m and the
fact that 262m is closer to the original 270m threshold than 240m
means we choose a value of 270m as the threshold value (less
voxels remain can suppress the interference from the majority of
voxels within our model that we consider unprospective), where
voxels at distances less than this value are considered prospective in
the binary 3D model. In comparison, some 20% of voxels (noting
that the Xujiashan Group forms some 21.5% of the voxels within
the model, yielding a total amount of 41.5% of the total voxels) lie
within a Euclidean distance of 180m from the Xujiashan Group,
with this value used as the threshold during our modeling.

Fig. 8. 3D model of the sedimentary and intrusive units and mineralization within the Yangzhuang area.
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(2) Uplift/subsidence of the porphyritic diorite and the Xujiashan
Group, where the Feoxide–apatite orebodies in the study area are
located in areas that were either uplifted or underwent subsidence
during the intrusion of the porphyritic diorite (Fig. 4). Here we
present a statistical diagram showing the number of voxels of the
porphyritic diorite and the Xujiashan Group that have undergone
uplift or subsidence (Fig. 12). This diagram yields inflection points
at values of 30m of uplift and subsidence, separating a small group
of voxels with either> 30m of uplift or<−30m of subsidence
that we consider prospective in our model, suppressing any inter-
ference from the majority of voxels within our model that we
consider unprospective (Fig. 12).

These binary maps were then combined with connection degree
values to compute weight coefficients (Table 3) before these weightings
were combined in a 3D model to generate individual weightings for
each of the 337,896 voxels in our model, yielding an overall voxel
connection degree value. These values range between 0 and 1, with
values closer to 1 indicating areas with higher prospectivities; in
comparison, values closer to 0 are highly unprospective and should not
be considered for future exploration.

We set 99% to be the expected ratio of the total of the 337,896
voxels that should be considered unprospective and a cumulative fre-
quency distribution diagram showing these data is given in Fig. 13. The
line y= 334,517 (99% of the total) intersects the original curve at an x
value of 0.732. However, the values along X axis are not continuous and
the nearest point to 0.6 is actually at 0.742, with this value set to be the
threshold for the connection degree value (i.e., the point that dis-
criminates between prospective an unprospective voxels; Fig. 13). We
then generated 4 classification diagrams with threshold values of 0,
0.684, 0.724 and 0.742 (each value is an actual connection degree
value by calculation rather than a set value or an intersection value),
each of which overlap a 2D magnetic anomaly map (Fig. 14). The fact
that this magnetic anomaly map is in 2D and cannot be robustly con-
verted to a 3D model means that it is not possible to use these data as a
predictive variable and give it a weighting coefficient. However, com-
paring the 2D magnetic data with the results of our 3D modeling clearly
demonstrates that voxels hosting mineralization are associated with 2D
mapped areas with magnetic anomaly values> 300 nT, meaning that
we use this value as a threshold to discriminate between prospective
and unprospective areas (Fig. 14). The areas considered prospective
using this magnetic anomaly threshold were combined with their con-
nection degree values to delineate prospective areas in our model. Here,
we use Fig. 14D because this model contains sufficient prospective
voxels for us to delineate high prospectivity areas and this model
contains the least interference from low prospectivity voxels. This
modeling outlines three distinct areas of high prospectivity outside of
areas of known mineralization that are located to the west (target I),
north (target II) and east (target III) of the known mineralization in this
region (Fig. 15).

4.4. Results comparison between characteristics analysis and weights of
evidence methods

We also generated a weights of evidence model during this study
using the same data used for the characteristic analysis approach out-
lined above in order to cross-compare the results from the two methods.
The weights of evidence approach has been successfully used in a range
of generally 2D resource assessments and prospectivity modeling pro-
jects (Bonham-Carter et al., 1989; Agterberg et al., 1993; Zhang et al.,
2009; Wang, 2012; Mao et al., 2013). Here, we outline the basic ap-
proach used, which involves the calculation of posterior probabilities
based on weights of evidence as follows:

A. The weights of evidence approach uses W+, W− and C values,
where W+ is the positive weighting of a given voxel, W− is theTa
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negative weighting of a given voxel, assuming that several binary
patterns can be combined together to predict another binary pattern
with W+ and W− representing the pair of weights for one single
predictor that represent the positive and negative spatial associa-
tions between this given predictor and areas of known mineraliza-
tion. Taking a single predictor pattern, A, the positive weight, W+

can be expressed as the difference between the unconditional or
prior logit of A and the conditional or posterior logit of A, with W−

representing the difference between the prior logit of A and the
posterior logit of A, given the absence of another pattern, B
(Bonham-Carter, 1994). In addition, C is a contrast coefficient,
where positive values indicate voxels that are likely to be pro-
spective for mineralization. We assume that the study area contains t
voxels and s of these voxels are associated with known mineraliza-
tion (i.e., training points), with variable k containing i voxels and n
representing the number of intersecting voxels between k and the
training points within the model (i.e., areas containing known mi-
neralization), and m indicating the rest of the voxels within the
model (m= i− n). W+, W− and C values that for variable k are
indicated by Wk

+, Wk
− and Ck are all calculated using the following

formulas (Results are in Table 4):

=
−

= −
− −

+ −W n t
m t s

W n t
m t s

ln /
/( )

ln 1 /
1 /( )k k (9)

= −+ −C W Wk k k (10)

B. Posterior probabilities, or essentially how likely a given voxel is to
contain mineralization, were calculated by determining Wkq values
relating to a given variable k in a given voxel q as follows, assuming
that Jq is a Boolean type attribute value of q that has a value of 1 if q
is located within k or has a value of 0 if it is located within the subset
k:

= ⎧
⎨⎩

=
=

+

−W
W J
W J

,( 1)
,( 0)kq

k q

k q (11)

The sum of weights of all variables (F) for a given voxel q assuming
there are i variables is calculated as follows:

Fig. 9. Block model showing the distribution of the key factors used in the 3D prospectivity modeling undertaken during this study. A=Euclidean distance from the porphyritic diorite,
B=Euclidean distance from the Xujiashan Group, C=Uplift of top surface of the diorite intrusion, D= Subsidence of top surface of the diorite intrusion, E=Uplift of top surface of the
Xujiashan Group, F= Subsidence of the top surface of the Xujiashan Group.

Fig. 10. Block model showing the area of known miner-
alization (all red voxels in Fig. 10). A=Block model of
known mineralization at a dip of 21° and an azimuth of 36°.
B=Vertical view of the block model of known miner-
alization. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version
of this article.)

X. Hu et al. Ore Geology Reviews 92 (2018) 240–256

249



∑= = …
=

F W k i( 1, 2, 3 )
k

i

kq
1 (12)

Finally, the posterior probability of voxel q (here defined as Pq) is
calculated using the following formula using the value of F defined in
formula (12):

=
+

P e
e1q

F

F (13)

The weights of evidence derived coefficients suggests that the 3D

Euclidean distance from the porphyritic diorite is the most important of
the prospectivity factors used during this study in that it is the most
closely spatially linked to the known locations of mineralization (with a
very high C value of 4.611, where the higher the C value the more
closely spatially linked a variable is to the training point dataset). In
terms of the other variables, the Euclidean distance from the Xujiashan
Group yielded the second highest C value (1.932), and with all other
variables having lower values (Table 4). This weights of evidence
analysis indicates that the Euclidean distance from the porphyritic
diorite is the most important spatial variable in terms of identifying

Fig. 11. Cumulative frequency diagrams showing threshold values. A=Cumulative frequency diagram showing the threshold value of the Euclidean distance from the porphyritic diorite
(270m). B=Cumulative frequency diagram showing the threshold value of the Euclidean distance from the Xujiashan Group (180m).

Fig. 12. Cumulative distribution diagram showing the threshold values for uplift and subsidence of the porphyritic diorite and Xujiashan Group surfaces in the study area. A= uplift of
the porphyritic diorite, B= subsidence of the porphyritic diorite, C=uplift of the Xujiashan Group, D= subsidence of the Xujiashan Group.
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areas prospective for mineral exploration, matching the calculated
prediction variant weighting coefficients determined using the char-
acteristics analysis method (Tables 3 and 4). Overall, considering both
approaches use the exploration model and variables outlined in Section
2.4 and Table 2, these results indicate that a) the variables we have
used are associated with the mineralization in the study area and b) that
the location of the porphyritic diorite contact is the most important of
the mineralization-related variables outlined above.

The weights of evidence coefficients given in Table 4 were used to
calculate posterior probabilities and a weights of evidence model. The
resulting prospective voxels were then superimposed on the magnetic
anomaly data for this area and targets were again identified, yielding a
high prospectivity target that is in almost the same location as target I,
which was outlined using characteristics analysis and is located to the
west of the known area of mineralization. Comparing these results with
the results of the characteristics analysis outlined above indicates that
the weights of evidence approach did not identify the prospective area
to the north (target II of the characteristics analysis approach) and the
east (target III of the characteristics analysis approach), both of which
are also associated with potentially prospective magnetic anomalies
(that were not used during this modeling) within the superimposed
magnetic anomaly map. This suggests that although the weights of
evidence method can effectively identify some areas that are pro-
spective for exploration outside of the known extent of the Kiruna-type
Yangzhuang iron oxide-apatite deposit, the characteristics analysis ap-
proach outlined in this study is probably a more effective method for
target identification, potentially as this approach can deal more

effectively with interdependent data.
We also set 99% to be the expected ratio of the total of the 337,896

voxels that should be considered unprospective and a cumulative fre-
quency distribution diagram showing these data is given in Fig. 16. The
line y= 334,517 (99% of the total) intersects the original curve at an x
value of 0.051. However, the values along X axis are not continuous and
the nearest point to 0.051 is actually at 0.067, with this value set to be
the threshold for the posterior probability (i.e., the point that dis-
criminates between prospective an unprospective voxels; Fig. 13). We
then generated 4 classification diagrams with threshold values of 0,
0.067, 0.074 and 1 (each value is an actual posterior probability value
by calculation rather than a set value or an intersection value), each of
which overlaps a 2D magnetic anomaly map (Fig. 17).

The voxels with posterior probability values> 0.067 cover the en-
tirety of the research area, which makes it nearly impossible to de-
lineate targets. As such, we used a value of 0.074 as the threshold value
(i.e., Fig. 17C), with the final results shown in Fig. 18.

5. Discussion

Our prospectivity modeling has combined 3D geological informa-
tion with the location of known mineralization to identify areas that are
highly prospective for future mineral exploration around the
Yangzhuang deposit in the Zhonggu orefield of the Ningwu Basin of the
MLYRMB. Unlike other 3D prospectivity modeling to date, our ap-
proach has focused on characteristics analysis (Houlding, 1994; Chen
et al., 2007, 2009; Qi et al., 2012; Wang, 2012; Huang, 2013; Li et al.,
2014; Yuan et al., 2014a, b;Vollgger et al., 2015; Zhang, 2014) and
demonstrates the usefulness of this approach for 3D prospectivity
modeling. In terms of targets outside the areas of known mineralization,
our targets I and II are associated with the contact between the Xujia-
shan and Huangmaqing groups at average depths of −390 and
−360m, both of which are coincident with a ≥400 nT geomagnetic
anomaly at the surface (Figs. 13 and 14). This target represents the
largest high prospectivity region in the study area and as such should be
considered the highest priority exploration target in this region
(Fig. 14). Target III is associated within the Xujiashan Group, is located
at an average depth of −540m, and is associated with a weaker sur-
ficial magnetic anomaly (> 400 nT) that only covers a small area and
decreases sharply at the eastern edge of this target area). As such, al-
though all three targets are highly prospective, target III should be
considered subsidiary to targets I and II.

The analysis undertaken during this study yielded a series of weight
coefficients that enable the statistical identification of the most

Table 3
Results of the calculation of prediction variant weighting coefficients undertaken during
this study.

Rank Name Prospective range
(m)

Weighting
coefficient

1 Euclidean distance from the
porphyritic diorite

0–270 0.315

2 Euclidean distance from the
Xujiashan Group

0–180 0.291

3 Uplift of the porphyritic
diorite

> 30 0.136

4 Subsidence of the porphyritic
diorite

<−30 0.118

5 Uplift of the Xujiashan Group >30 0.079
6 Subsidence of the Xujiashan

Group
<−30 0.061

Fig. 13. Cumulative frequency diagram showing variations
in connection degree values for all voxels within our pro-
spectivity model.
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Fig. 14. Classification diagram showing the relationship between voxels carrying prospectivity weightings and a 2D magnetic anomaly map, where voxels are shown in connection degree
value terms where values closer to 1 are indicative of areas with higher prospectivities. A=Map showing the distribution of voxels with connection degree values> 0 (i.e., all voxels).
B=Map showing the distribution of voxels with connection degree values> 0.684. C=Map showing the distribution of voxels with connection degree values>0.724. D=Map
showing the distribution of voxels with connection degree values> 0.742 (i.e., only voxels that are considered very high prospectivity).

Fig. 15. Results of the 3D prospectivity modeling around the Yangzhuang deposit undertaken during this study shown in terms of connection degree values. These data indicate a good
relationship between areas of known mineralization and highly prospective areas but also between highly prospective areas with no currently known mineralization and the extension of
the magnetic anomaly associated with the deposit; this is especially clear in the area to the east of the deposit around target III.
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important controls on mineralization in the study area, a key factor in
mineral exploration (Buccianti and Esposito, 2004; Table 2). These
weighting coefficients indicate that the 3D Euclidean distance from the
porphyritic diorite appears to be the most important factor in control-
ling the location of mineralization (with a weighting of 31.5%), with
the Euclidean distance from the Xujiashan Group a close second
(29.1%), and with all other variables having lower values (Table 3).
This suggests that the porphyritic diorite is the most important control
in the location of mineralization in the study area, followed by proxi-
mity to the Xujiashan Group. This is unsurprising given the fact that the
fluids and metals within the deposits in this area were most likely
sourced from the intrusion (Zhou et al., 2008, 2011, 2012) and are
concentrated within the intrusion and the Xujiashan Group, with the
contact surfaces between these two geological bodies representing a
reaction zone that caused the precipitation of ore minerals. This is
commonly the case in systems like the one that formed the Yangzhuang
deposit as well as others within the MLYRMB and in numerous other
magmato-hydrothermal systems such as skarns (e.g., Meinert et al.,
2005; Keays and Jowitt, 2013). This clearly demonstrates that (1) the
magmatic activity in this area (i.e., the intrusion of the porphyritic
diorite) was the key factor in the formation of the mineralization in this
area and was most likely the source of the metals and fluids that formed
the deposit; (2) the sedimentary unit of the Xujiashan Group are also
significant, as they acted as a barrier to the upward ascent of the in-
trusion, allowing the intrusion to pond and cool down, releasing the
fluids that formed the deposit; (3) fractures and contacts between

geological bodies (i.e., the contact between the porphyritic diorite and
the Xujiashan Group and the contact between Xujiashan and Huang-
maqing groups) are also important as these contacts not only may be
preferentially fractured, generating space for ore minerals to be de-
posited, but act as physical and chemical reaction zones that induce the
precipitation of ore minerals and the genesis of mineralization. The
folded form of the sediments also controlled both the location of the
intrusion as well as the deposition of mineralization. All of these factors
are known to be important in a wide variety of mineralizing systems as
well as the Kiruna-type deposits of the MLYRMB, although the approach
here allows the quantification of the relative importance of these factors
(as well as the identification of potentially erroneous or misleading
parts of exploration models). It appears that the main driving factor of
the mineralization in the study area, and maybe mineralization else-
where in the MLYRMB, is the intrusion of a porphyritic diorite magma.
This hypothesis can be tested by using the same approach on similar
deposits in the MLYRMB and elsewhere; if this analysis yields very si-
milar results, then it is likely that the main (and only?) control on this
type of mineralization may be the presence and potentially the nature
(e.g., oxidation state and melt magma composition) of an intrusion.
This in turn indicates that future greenfield exploration for this type of
mineralization should focus on intrusions, with future brownfield ex-
ploration targeting key areas around the intrusion rather than further
afield, potentially improving the results of future exploration in this
region. These hypotheses need to be tested in future research, although
the results presented here clearly demonstrate the value of this type of
statistical analysis, not only in terms of exploration targeting but also in
terms of furthering our understanding of metallogenic systems. It is also
likely that the key relationships identified here may be applicable to
other similar mineral systems within the MLYRMB. In addition, the
approach used here may create more than just exploration targets if
applied to other mineral deposit systems, with the statistical insights
associated with the spatial weightings generated using this approach
having the potential to identify previously unknown relationships that
are key to successful exploration in other areas.

6. Conclusions

(1) This study presents the results of 3D prospectivity modelling for
exploration within the area around the Kiruna-type Yangzhuang
iron oxide-apatite deposit of the Zhonggu orefield of the Ningwu
Basin of the middle-lower Yangtze River Metallogenic Belt using a
characteristic analysis based approach. This research suggests that
this approach can be used to delineate areas around the

Table 4
Weights of evidence based prediction coefficients for the mineralization-related variables
used during this study.

Rank Name Prospective range
(m)

W+ W− C

1 Euclidean distance from
the porphyritic diorite

0–270 0.52 −4.09 4.611

2 Euclidean distance from
the Xujiashan Group

0–180 0.632 −1.3 1.932

3 Uplift of the porphyritic
diorite

> 30 0.955 −0.053 1.008

4 Subsidence of the
porphyritic diorite

<−30 0.925 −0.062 0.987

5 Uplift of the Xujiashan
Group

>30 0.498 −0.028 0.525

6 Subsidence of the
Xujiashan Group

<−30 0.491 −0.026 0.516

Fig. 16. Cumulative frequency diagram showing variations
in posterior probability values for all voxels within our
prospectivity model.
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Yangzhuang iron deposit that should be considered highly pro-
spective for future exploration. Of the three delineated targets,
targets I and II have the highest prospectivities and are associated
with distinct magnetic anomalies, suggesting that they should be

considered the highest priority for mineral exploration in the
Yangzhuang area.

(2) Our research shows that characteristic analysis can be used to
generate 3D prospectivity models, and this technique should be

Fig. 17. Classification diagram showing the relationship between voxels carrying posterior probability and a 2D magnetic anomaly map, where voxels are shown in connection degree
value terms where values closer to 1 are indicative of areas with higher prospectivities. A=Map showing the distribution of voxels with posterior probability values> 0 (i.e., all voxels).
B=Map showing the distribution of voxels with posterior probability values>0.067. C=Map showing the distribution of voxels with posterior probability values> 0.074. D=Map
showing the distribution of voxels with posterior probability values= 1 (i.e., mineralization facts).

Fig. 18. Results of the 3D prospectivity modeling around the Yangzhuang deposit using weights of evidence method.
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considered for application to other deposit types and other Kiruna-
type iron oxide-apatite deposit.

(3) The location of intrusions and the interaction between intrusions
and nearby sedimentary unit along contacts between the two (ra-
ther than between the sediments themselves) appear to be the main
controls on the Kiruna-type Fe mineralization within the study area,
a relationship that should be used for exploration both in this area
and in other parts of the MLYRMB.
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