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ABSTRACT

Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes
have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities.
These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as
discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault
attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D
exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input
attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering
responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip
angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By
doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum
response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and
the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the
enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault
surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips.
For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual
grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples.
We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault
surfaces and complete fault surfaces without holes.

1. Introduction Pepper, 2000; Randen et al., 2001) and gradient magnitude (Aqrawi
and Boe, 2011).
However, reflector discontinuity alone might not be sufficient to

detect faults, because incoherent noise and stratigraphic features can

Faults are one type of geologically structural surfaces that can be
extracted from a seismic volume. To extract fault surfaces from a

seismic image, we often need to first distinguish faults from the other
structures that are also present in the volume. Therefore, to extract
fault surfaces, we often first compute a fault attribute volume, in which
only the faults are most prominent.

Faults are often recognized as low continuity, or equivalently, high
discontinuity in seismic reflectors (Hale, 2013). Therefore, to auto-
matically detect faults, some methods compute fault attributes that
measure reflection continuity such as semblance (Marfurt et al., 1998)
and coherency (Marfurt et al., 1999; Bakker, 2002; Wu, 2017), or those
measure reflection discontinuity such as variance (Van Bemmel and
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also cause reflector discontinuities in a seismic volume. Moreover,
faults may not be apparent as reflector discontinuities in cases where
fault displacements are approximately equal to the dominant period (or
wavelength) of those reflectors. In these cases, reflector discontinuities
corresponding to faults can be widely separated or interrupted (Hale,
2013).

Therefore, Gersztenkorn and Marfurt (1999) suggest to measure
continuity or discontinuity using a larger vertical window for fault
detection while using a larger horizontal window for detecting strati-
graphic features. By using a window with vertically larger size, fault
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features can be enhanced and stratigraphic features can be suppressed
because faults are often more vertically aligned in a seismic volume
than the stratigraphic features. However, faults are seldom vertical. A
better way to enhance the discontinuities corresponding to faults is to
measure reflector discontinuities in planes aligned with the strikes and
dips of the faults (Neff et al., 2000; Cohen et al., 2006). However, the
computational cost of these methods can be high because the fault
strikes and dips are often unknown. For each sample, they need to
measure reflector discontinuities over all possible combinations of fault
strikes and dips to find the largest discontinuity. Hale (2013) proposes
an efficient implementation of such a scanning processing to compute a
fault-oriented semblance or fault likelihood volume to highlight fault
positions from a seismic volume.

Constructing fault surfaces from fault attribute volumes often
requires additional processing. Pedersen et al., (2002, 2003) propose
to use the ant tracking method to merge small fault segments together
to form larger fault surfaces. Similarly, some other methods (Gibson
et al., 2005; Admasu et al., 2006; Kadlec et al., 2008) also try to grow
larger fault surfaces from smaller patches. Hale (2013) uses a method,
similar to the one developed by Schultz et al. (2010), to construct fault
surfaces that coincide with ridges of a fault likelihood volume. Hough
transform is an alternative way to construct fault surfaces from seismic
fault attributes (Wang and AlRegib, 2014; Wang and AlRegib et al.,
2014). Wu and Hale (2016) compute fault surfaces by linking oriented
fault samples constructed from attributes of fault likelihoods, strikes,
and dips.

In more general context, numerous methods have been proposed to
construct surfaces from a given set of oriented or unoriented points
(Guy and Medioni, 1993; Tang, 2000; Kazhdan et al., 2006;
Lipman et al., 2007; Kazhdan and Hoppe, 2013; Berger et al., 2014;
Wu, 2016).

Some of these methods are limited to extract closed and single
surfaces, and therefore are not applicable to construct fault surfaces.
However, the tensor-voting method (Guy and Medioni, 1993; Tang,
2000) has been used in computer graphics to construct multiple open
surfaces and intersecting surfaces. Giving oriented fault samples
estimated at fault positions, this method can effectively construct fault
surfaces which may intersect with each other.

In this paper, we apply a matched filtering algorithm to enhance a
precomputed fault attribute volume while at the same time estimating
fault strikes and dips. Using the enhanced fault attribute volume
together with the estimated fault strike and dip volumes, we then
construct fault samples on the ridges of the enhanced fault attribute
volume. Each fault sample corresponds to one and only one seismic
sample, and is oriented by the corresponding fault strike and dip. Fault
surfaces can be constructed by directly linking nearby fault samples
with consistent strikes and dips in cases where fault geometry is simple
(no intersecting faults) and fault samples are consistently aligned. In
more complicated cases with noisy fault samples and missing samples,
we propose to use a tensor-voting method (Guy and Medioni, 1993;
Tang, 2000; Moreno et al., 2011) to construct fault surfaces that
reasonably fit locations and orientations of fault samples and fill holes
due to the missing samples.

2. Fault enhancement and fault orientations

Fault surfaces are often extracted from a fault attribute volume that
measures reflection discontinuity and therefore highlights fault posi-
tions. A fault attribute volume is often sensitive to noise and strati-
graphic features that also produce reflection discontinuities in a
seismic volume. Therefore, a helpful step before fault extraction is to
smooth the fault attribute volume along fault orientations so that
features unrelated to faults are suppressed and fault features are
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Fig. 1. A 3D seismic volume (a) is displayed with a fault attribute volume (b) (1-
semblance), and a fault likelihood volume (c).

enhanced. Fault orientations such as strikes and dips are also helpful
to construct fault surfaces. We will discuss how to simultaneously
enhance fault features in a fault attribute volume and estimate fault
strikes and dips by using a matched filtering method.
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2.1. Fault attributes

We created a 3D synthetic seismic volume (Fig. 1(a)) with different
types of faults to demonstrate our methods for enhancing fault
attributes and constructing fault surfaces. As denoted by the white
lines in Fig. 1(a), this synthetic volume contains two intersecting faults
F-A and F-B, a reverse fault F-C, and a smaller normal fault F-D.

To automatically highlight fault positions from the seismic volume,
we compute a fault attribute volume (Fig. 1(b)) from a structure-
oriented semblance volume (Hale, 2009):

_ e
&M, &)
where g is a seismic volume like the one in Fig. 1(a). (-), denotes
structure-oriented smoothing of whatever is inside the angle brackets.
By applying this smoothing (-); to both the numerator (g) and
denominator (g2) in Eq. (2), the semblance measures reflection
continuity within the planes that align with seismic reflection.

As semblance is a measure of reflection continuity, we compute the
fault attribute volume (Fig. 1(b)) by 1 — p to highlight faults which are
indicated by reflection discontinuity. In this volume (Fig. 1(b)), some
features with relatively high values (denoted by red) indicate positions
of the faults. However, the fault features in the attribute volumes are
inconsistent and interrupted, as in Fig. 1(b). In addition, incoherent
noise unrelated to faults is also highlighted in this attribute volume
(Fig. 1(b)).

To suppress features corresponding to noise and enhance fault
features, Hale (2013) proposes to compute a fault-oriented semblance:

«8)%),
pP=—5"
(g, s

e

where (), denotes an additional smoothing in fault strike and dip
directions. This smoothing (-), can improve the stability of the
semblance computation because the semblance ratios can vary wildly
where the numerators and denominators are small. This smoothing (-) ,
can also link together fault features which might be interrupted or
widely separated as shown in Fig. 1(b).

A fault likelihood volume, like the one in Fig. 1(c), is then computed
from the fault-oriented semblance by 1 — p®. We observe that the fault
features in this fault likelihood volume are much more consistent and
continuous than those in Fig. 1(b) which is computed from a conver-
sional semblance volume.

One problem for computing such a fault-oriented semblance is that
the fault locations and orientations are unknown. To solve this
problem, Hale (2013) smoothes the semblance numerator and denomi-
nator over a range of possible combinations of strike and dip to find the
one orientation that maximizes the fault likelihood (or minimizes the
semblance) for each sample. This maximum value for each sample is
recorded in the fault likelihood volume as shown in Fig. 1(c). The strike
and dip angles that yield the maximum likelihood are recorded as an
estimation of the fault orientations. Neff et al. (2000) and Cohen et al.
(2006) also perform a similar scanning processing to compute fault
attributes.

One advantage of these methods is that they compute better fault
attribute volumes with more consistent fault features, like those in
Fig. 1(c), compared to those in Fig. 1(b). Another advantage is that they
can provide an estimation of fault orientations at the same time as
computing a fault attribute volume. However, the computational cost of
these methods can be high because of the scanning over a lot of
orientations for each sample. Hale (2013) reduces the computational
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cost by implementing this fault-oriented smoothing with recursive
smoothing filters whose costs are independent on the extent of
smoothing.

2.2. Matched filtering to enhance faults and estimate fault
orientations

To enhance a fault attribute volume like the one in Fig. 1(b), we
expect to smooth the volume along fault orientations, so that the fault
features in the enhanced volume are more continuous and prominent,
as shown in Fig. 2(a). To smooth along fault orientations, a traditional
structure-oriented smoothing method requires first estimating the fault
orientations. However, general orientation estimation techniques such
as structure-tensor methods (Van Vliet and Verbeek, 1995; Fehmers
and Hocker, 2003) and the plane-wave destruction method (Fomel,
2002) have difficulties in estimating fault orientations from a fault
attribute volume (Fig. 1(b)) because the attribute features are dis-
continuous and most attribute values are nearly zero. The method
described by Marfurt (2006) might be better to estimate the fault
orientations by scanning over all possible orientations for each point to
find the one orientation that produces the maximum coherency.
However, this scanning method can be computationally expensive to
estimate orientations of these discontinuous fault features (Fig. 1(b)),
which often requires large scanning windows.

Here we use an efficient matched filtering method, similar to the
one described by Hale (2013), to simultaneously estimate fault strikes
and dips, and obtain an enhanced fault attribute volume from an input
fault attribute volume (Fig. 1(b)). In this method, we smooth the input
volume f(x) in different planes defined by all possible combinations of
fault strike and dip angles, and record the maximum smoothing values
and the corresponding strike and dip angles in the three volumes of
enhanced fault attribute, fault strikes and fault dips. By doing this, we
assume that a fault surface is locally planar and the 2D smoothing filter
(oriented by a combination of strike and dip angles) will yield the
maximum smoothing response if the smoothing plane coincides with a
local fault plane. For each sample x, we accumulate all smoothed values
(in different directions) in a volume c(x):

c@= D X (g g

Py Edg Or€bs

3

where ¢ = {0°, dy, 2d, ..., 360°}, and s = {Gin. Omin + dos Onin + 2 - O}
d, and d, are user defined parameters and often are bigger than one.
Oin and 6., define the range of the fault dip angles apparent in a 3D
seismic volume. (f (X)>¢kﬁk represents smoothing the volume f(x) along
a plane defined by the strike (¢x) and dip (6;) angles.

We also record the maximum smoothed value in a volume
m(x) = max((f(x)),, g,: P € . 6, € 65) and record the corresponding
strike and dip that generate this maximum value in volumes ¢(x) and
0(x), respectively. These volumes ¢(x) and 6(x) represent estimations of
fault strikes and dips, because the fault attribute features are most
consistent in directions defined by these strikes and dips. An enhanced
fault attribute volume A(x) can be computed by

h(x) = m(x) — c(x),
m(x) 4)
where ¢(x) = ‘%‘), and N represents the number of combinations of

strikes and dips that are scanned in the matched filtering method.

In this method, most of the computational time is spent on the
smoothing ((f (X)>4’kv9k) along planes oriented by all possible combina-
tions of the fault strike (¢;) and dip (6;) angles. We use the strategy
discussed by Hale (2013) to perform this oriented smoothing effi-
ciently. In this strategy, for each fault strike angle ¢y, we rotate the
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Fig. 2. The matched filtering method is applied to the fault attribute volume (Fig. 1(b))
to simultaneously compute an enhanced fault attribute volume (a), a fault strike volume
(b), and a fault dip volume (c).

volume f(x) to align the fault strike direction with the crossline axis.
We then apply a highly efficient recursive two-side-exponential filter to
smooth the rotated volume horizontally in the crossline direction
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Fig. 3. Three thinned volumes of enhanced fault attribute (a), strike (b), and dip (c)
volumes are obtained by keeping only the values on the ridges of the enhanced fault
attribute volume (Fig. 2(a)).

before scanning over fault dips 6, € 6;. In scanning over fault dips,
for each dip angle 6;, we shear the rotated and smoothed volume
horizontally to make faults with that dip appear to be vertical. We then
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Enhanced fault attribute Enhanced fault attribute

Enhanced fault attribute

Fig. 4. The three thinned fault volumes (Fig. 3) are represented, all at once, as fault
samples which are displayed as small squares (a). Each square in (a) is colored by the
enhance fault attribute and oriented by fault strike and dip. Those consistent fault
samples in (a) are linked to construct fault surfaces in (b). Gaps or holes are apparent on
the two intersecting faults (c), especially at the intersection.

apply the recursive exponential filter to smooth the sheared volume
vertically, and unshear the smoothed volume.

More details of the algorithm are described in the following pseudo
codes:
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Fig. 5. A stick tensor S at the voter q propagates a voting tensor V(r, Sy) to the receiver

P

Algorithm 1. Matched filtering for fault enhancing and fault
orientation estimation.

1:  input: f(x)

2:  initial output:i(x) =0, ¢x) =0, O(x) =0

3:  initialize c¢(x) =0, m(x) =0

4:  for ¢,:=0° to 360° step d; do

5: r(x)= rotate f(x) to align strike ¢; with crossline
6: r(x)= smooth r(x) horizontally in crossline
7: initialize m,(x) = 0, 6,(x) = 0, ¢,(x) = 0

8: for 0,:=0,;, to 0, step d, do

9: s(x)= shear r(x) to align dip 6, vertically
10: s(x)= smooth s(x) vertically

11: s(x)= unshear s(x)

12: if s(x;) > m,(x;) then

13 : 0(x,) = 0,

14 : m,(x;) = s(x;)

15: c(x;) = ¢(x;) + s(x;)

16 : end if

17 : end for

18 : 6,(x)= unrotate (x) by ¢

19: m,(X)= unrotate m,(x) by ¢x

20 : ¢,(x)= unrotate c,(x) by ¢ then

21: if m,(x;)) > m(x,)

22 Px;) = ¢k

23: o(x) = G(x)

24 : m(x;) = m,(X,)

25: c(x;) = c(xy) + ¢(x;)

26 : end if

27: end for

28: ny = %’ ny = gmaxd_agmin’ o) = - ;(:Le

29: output: ¢(x), 0(x), and h(x) = "X

To demonstrate the effectiveness of the proposed method, we use the
precomputed fault attribute volume (Fig. 1(b)) as the input and obtain the
enhanced fault attribute volume (Fig. 2(a)), strike volume (Fig. 2(b)), and
dip volume (Fig. 2(c)). The fault features in the enhanced fault volume
(Fig. 2(a)) are much more consistent and continuous than those in the
original fault attribute volume (Fig. 1(b)). Compared to the fault likelihood
volume (Fig. 1(c)), the enhanced fault attribute volume (Fig. 2(a)) displays
similar but cleaner fault features. More importantly, this matched filtering
method is not limited to compute a fault likelihood (fault-oriented
semblance) volume (Hale, 2013), instead, it is applicable to enhance
any type of fault attributes or multiple types of attributes. In addition, the
cost of computing such an enhanced fault volume (Fig. 2(a)) is only half of
computing a fault likelihood volume (Fig. 1(c)).
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Surfaceness Enhanced fault attribute

Intersection

Fig. 6. Twenty five percent of fault samples (a) are randomly chosen from fault surfaces
in Fig. 4(b). These fault samples (a) are used to compute another volumes of surfaceness
(b) and fault intersection (c), which indicate the positions of faults and fault intersec-
tions, respectively.

2.3. Fault samples and surfaces

In the enhanced fault attribute volume (Fig. 2(a)), high values
(denoted by red) indicate fault positions. However, faults are generally
not apparent as thick as the features displayed in this enhanced fault
attribute volume (Fig. 2(a)). Therefore, we keep only the attribute
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Surfaceness

Surfaceness

Fig. 7. Complete fault surfaces (a) without holes are extracted from the fault surfaceness
volume (Fig. 4b). The fault intersection attribute (Fig. 4c) is also helpful to construct
intersecting fault surfaces (b) by indicating the intersection locations.

values on the ridges of the fault volume, and we set values elsewhere to
be zero to obtain the thinned fault volume shown in Fig. 3(a). We also
compute the corresponding thinned fault strike (Fig. 3(b)) and dip
(Fig. 3(b)) volumes by keeping only the strike and dip angles on the
ridges of the enhanced fault volume (Fig. 2(b))

Because most samples in the three thinned fault volumes
(Figs. 3(a), (b), and (c)) are zero, we can display these volumes, all at
once, as fault samples (Fig. 4(a)) as discussed by Wu and Hale (2016).
As shown in Fig. 4(a), each fault sample is represented as a colored and
oriented square. The color of each square denotes the enhanced fault
attribute value, and the orientation of each square represents the fault
strike and dip. As discussed by Wu and Hale (2016), fault surfaces can
be constructed from these fault samples by simply linking nearby fault
samples with consistent fault strikes and dips. As shown in Fig. 4(a),
most fault samples are aligned approximately coplanar and are linked
to form fault surfaces as shown in Fig. 4(b). Some misaligned fault
samples (often with low fault likelihoods) are also apparent in Fig. 4(a),
however, cannot be linked together to form locally planar fault surfaces
of significant size. We filter out surfaces with small sizes, and keep only
those with significant numbers of fault samples. For example, in
Fig. 4(b), we have discarded small fault surfaces and kept only the five
largest surfaces.

There are only four faults created in the synthetic seismic volume
shown in Fig. 1(a). We obtain five faults here because the fault A is
separated into two independent fault patches by a gap apparent at the
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Amplitude

Fault attribute

Fig. 8. A 3D seismic volume (a) is displayed with a fault attribute volume (b) (1-
semblance), which highlights some positions of the faults but the fault feature in this
attribute volume are discontinuous and therefore cannot be directly used to extract the
corresponding fault surfaces.

intersection shown in Fig. 4(c). This gap is generated by the missing
fault samples at the intersection. Fault samples are also missing at
some other locations where holes are observed on the constructed
faults A, B, and C. The holes or incomplete fault surfaces may cause
problems for estimating fault slips that correlate seismic reflections on
opposite sides of a fault surface (Wu et al., 2016). In the next section,
we will discuss a more robust method to construct complete fault
surfaces without holes from sparse fault samples.

3. Fault surface construction

It may be difficult to directly link the fault samples to construct fault
surfaces in complicated cases with missing fault samples and noisy
samples unrelated to faults. In these cases, we suggest to use the
tensor-voting method (Guy and Medioni, 1993; Tang, 2000; Moreno
et al., 2011), proposed in computer graphics, to infer fault surfaces that
accurately fit the positions and orientations of the samples and
reasonably fill gaps.

3.1. Tensor voting

Construction of fault surfaces from oriented fault samples
(Fig. 4(a)) is similar to the problem of surface reconstruction from
scattered points, which is well studied in computer graphics. Numerous
methods (Kazhdan et al., 2006; Lipman et al., 2007; Guennebaud and
Gross, 2007; Kazhdan and Hoppe, 2013; Berger et al., 2014) have been
proposed to compute reasonable surfaces that fit the given points. We
choose the tensor-voting method to construct fault surfaces because it
can deal with intersecting surfaces.
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0.9

Surfaceness

Surfaceness

Fig. 9. Fault samples are first computed from the matched filtering method (Algorithm
1) and then used in the tensor voting processing to compute a fault surfaceness attribute
volume (a) overlaid with the seismic volume. A conical fault surface and a low-dip reverse
fault surface (b) are finally extracted from the fault surfaceness volume (a).

3D tensor voting can infer surfaces and curves (including surface
intersections) from oriented or unoriented points through stick, plate,
and ball voting (Tang, 2000; Moreno et al., 2011). In this paper, we use
the stick-tensor voting to infer fault surfaces and surface intersections
from fault samples which are oriented by fault strikes and dips. In the
tensor-voting method, we first represent each oriented fault sample q
as a stick tensor S, weighted by its fault attribute value /,:

llllT

Sq = hququg,

(5)
where the unit vector u, = [u; u, u;] is the fault normal vector
computed from the strike and dip angles of the fault sample q. We
then apply the stick tensor-voting process to propagate the tensor of a
fault sample to its nearby samples by assuming the tensors of
neighboring samples vary smoothly. By doing this, we are able to
enhance consistent tensors corresponding to fault samples that are
aligned in local planes while suppressing noisy tensors corresponding
to noisy samples.

Fig. 5 shows an example of the stick tensor-voting process, in
which the voter sample q propagates a voting tensor V(r, S,) to a
nearby receiver sample p. This voting tensor V(r, S,) is inferred by
tracking the change of the normal on a smooth curve connecting the
voter and receiver. Although the connection can be any smooth curve,
a circular arc, as denoted by s in Fig. 5, is commonly used to infer a
voting tensor. Using a circular arc, we compute a voting tensor
V(r, S,) that is aligned with the radius vector defined by the receiver
p and the center of the circular arc s, as shown in Fig. 5. This voting
tensor is often weighted by a function that decays with the length and
curvature of the circular arc s.

From the geometry shown in Fig. 5, it is not difficult to prove that
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Enhanced fault attribute Fault attribute

Enhanced fault attribute

Fig. 12. Fault samples (a) are directly linked to form fault surfaces (b).

the voting tensor V(r, S,) is rotated by 2a comparing to the known
tensor S,. Therefore, we are able to compute the voting tensor V(r, Sy
at a receiver p by simply rotating and scaling the known tensor S at the
corresponding voter q:

V(r. 8p) = w(r, SYR,, SRy, (©

where a is the angle shown in Fig. 5, and R,, represents a rotation
matrix.

The weighting function in Eq. (6) can be defined as a Gaussian
function with length and curvature of the circular arc s (Tang, 2000;
Mordohai and Medioni, 2006):

_52+cr<2

2, ifa< /4,
otherwise

w(r, Sq) =3e

0, (7)

44

where c and o are parameters can be defined by users. The arc length s
and its curvature x are given by

o= r|l _ 2sina
sina i’ ®
respectively.

To improve computational efficiency, we use a similar but simpler
weighting function suggested by Franken et al. (2006):

_lirl?
w(r, S = 1€ 2 cosa®, if a < /4,
0, otherwise

C))

In this weighting function, we choose a Gaussian that decays with the
distance between the voter and receiver. We use cosa®, a function
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Amplitude

Fault attribute

Fig. 13. A 3D seismic volume (a) is displayed with a fault attribute volume (b), which is
computed from a seismic semblance volume.

decays with a, to penalize high-curvature arcs connecting the voters
and receivers. n is a constant number (z > 1), and bigger n results in
faster decay with a.

Using the voting function defined in Eq. (6), we compute an output
tensor U(x) at each sample x by accumulating voting tensors from all
fault samples in its neighborhood Q(x):

Ux) = Y V(. 8).
qEQ(x)
r=x—q

(10

The neighborhood Q2(x) of a sample x is defined by a 3D box window
centered at x, and the angle a (Fig. 5) should be smaller than % because
the weighting function w(r, Sy =0 for a > % as defined in Eq. (9). In
our examples, fault samples are sparsely scattered in a 3D volume, we
use the KD-tree method (Friedman et al., 1977) to efficiently search for
nearby fault samples in the neighborhood of a sample x.

3.2. Surfaceness and fault intersection

After computing a voted tensor U(x) for each sample x, we are able
to estimate degrees of surfaceness and curveness at the sample x by
computing saliency measurements from the tensor. High surfaceness
values indicate fault positions, while high curveness values indicate
fault intersections.

The tensor U, computed from the tensor voting (Eq. (10)), is a 3x3
symmetric, non-negative definite matrix with eigen-decomposition:
U= leel +e.e; + Azees, (11
where e, e,, and e; are eigenvectors and A;, Ay, and A; are the
corresponding eigenvalues (4, > 4, > ;). This eigen-decomposition
can be rewritten as
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Fig. 14. An enhanced fault attribute volume (a) and fault strike and dip volumes (not
shown) are first computed from the input attribute volume (Fig. 13(b)) by using the
matched filtering method. Fault samples (b) are colored by enhanced fault attribute and
oriented by fault strikes and dips.

Ux) = (4, — )ee] + (4, — A)(ee] + ee))

T T T
+ As(ee; + eje, + ezez).

As discussed in Tang (2000), the first term means that the fault
samples near the sample x infer a single surface passing through x. The
scalar A, — 4, indicates certainty of such a single surface and therefore
is defined as surfaceness. The vector e, in the first term indicates
orientation (normal direction) of the single surface. The second term
describes that nearby fault samples infer two surfaces intersecting at
the sample x. The corresponding scalar 1, — 4, indicates certainty of
surface intersection, and therefore is defined as curveness. The third
term describes that nearby fault samples infer multiple surfaces
intersecting at the sample. The corresponding scalar A3 is defined as
ballness because it indicates certainty of a case where surfaces with all
orientations are equally probable at the sample.

To illustrate the tensor-voting method for fault surface construc-
tion, we apply the method to the fault samples on the incomplete fault
surfaces with holes (Fig. 4(b)) to reconstruct more complete fault
surfaces. As the computational cost of tensor-voting processing in Eq.
(10) is dependent of the number of fault samples, we randomly choose
only twenty five percent of the fault samples on the fault surfaces
(Fig. 4(b)). From these sparsely chosen fault samples (Fig. 6(a)), we
then construct a tensor S, for each oriented sample using Eq. (5). Next,
we apply the tensor-voting processing to the constructed tensors and
obtain a voted tensor field U(x) using Eq. (10). We finally apply eigen-
decomposition to the voted tensor field and obtain a surfaceness
volume 4, -4, (Fig. 6(b)) and a intersection volume 1, — 1,
(Fig. 6(c)). Relatively high values in the surfaceness volume indicate
locations of the fault surfaces, while those high values in the intersec-
tion volume indicate the locations of the surface intersection.

We observe that the fault features in this surfaceness volume
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Fig. 15. Twenty five percent of fault samples (a) are randomly chosen from Fig. 14(b).
These fault samples (a) are used to compute another volumes of surfaceness (b) and fault
intersection (c).

(Fig. 6(b)) are much cleaner and more consistent than those in the
original fault attribute volume (Fig. 1(b)), the fault likelihood volume
(Fig. 1(c)), and the enhanced fault attribute volume (Fig. 2(a)). From
this surfaceness volume (Fig. 6(b)), we are able to extract more
complete fault surfaces without holes as shown in Fig. 7(a). The
intersection volume is also important to construct complete intersect-
ing fault surfaces (Fig. 7(b)) without gaps at the intersection because it
tells us the locations (areas with high values in Fig. 7(c)) where we
should attempt to construct multiple surfaces.

The 3D synthetic example in Fig. 7 shows that our methods are
applicable to extract planar and high-dip fault surfaces. To demon-
strate that our methods also work well to extract curved and low-dip
fault surfaces, we created another 3D synthetic seismic volume
(Fig. 8a) with a low-dip reverse fault and a cone-shaped normal fault
as denoted by the white dashed curves in Fig. 8(b). A conical fault
appears a specially curved cone-shaped surface with the full range of
fault strike angles from 0° to 360°. Such specially shaped fault surfaces
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Intersection

Fig. 16. A close view of the fault intersection volume in the magenta box in Fig. 15(c).

are demonstrated to be apparent in real 3D seismic volumes as
discussed by Hale and Groshong (2014). Fig. 8(b) shows a fault
attribute volume (1-semblance) computed from the synthetic seismic
amplitude volume (Fig. 8a). Relatively high values in this fault attribute
volume highlight some positions of the faults. These fault features (with
relatively high fault attribute values), however, are discontinuous and
widely separated or interrupted. Fault surfaces are difficult to be
extracted directly from such discontinuous fault features.

With this fault attribute volume (Fig. 8b), we first apply the
matched filtering method (Algorithm 1) to compute three volumes of
enhanced fault attribute, fault strikes and dips. From these three
computed volumes, we then construct oriented fault samples, which
are further used to compute a fault surfaceness volume shown in
Fig. 9a. The fault features in this surfaceness volume (Fig. 8a) are much
more obvious and continuous than those in the fault attribute volume
in Fig. 8(b). From such a surfaceness volume, we are able to extract the
low-dip reverse fault surface and the curved conical fault surface shown
in Fig. 9(b).

4. Application

We have used a 3D synthetic example (Fig. 1(a)) to illustrate the
whole processing for enhancing fault attributes, estimating fault
orientations, and extracting fault surfaces. To further demonstrate
the whole processing, we apply the methods discussed above to two 3D
examples with and without intersecting faults.

The first 3D seismic volume shown in Fig. 10(a) is from offshore
Indonesia. From this seismic volume, we first compute a structure-
oriented semblance volume p(x) and obtain the fault attribute volume
shown in Fig. 10(b) by 1 — p(x). Relatively high values in this fault
attribute volume indicate positions of faults. However, some of these
high values, especially those horizontally aligned, are caused by noise
or other reflector discontinuities unrelated to faults. In addition, the
fault features are widely separated and discontinuous.

We then apply the fault-oriented smoothing method to compute an
enhanced fault attribute volume (Fig. 11(a)) and at the same time
obtaining fault strike and dip volumes (not shown). In this enhanced
volume (Fig. 11(a)), horizontally aligned noisy features are suppressed
comparing to those in the original fault attribute volume (Fig. 10(b)).
The fault features in this enhanced volume (Fig. 11(a)) are cleaner and
more continuous than those in Fig. 10(b). The thinned fault attribute
volume in Fig. 11(b) is obtained by keeping only the values on the
ridges of the enhanced fault attribute volume in Fig. 11(a). We also
compute the corresponding thinned fault strike and dip volumes which
are not shown in this paper.

From the three thinned volumes of enhanced fault attribute, fault
strike, and fault dip, we then construct the fault samples shown in
Fig. 12(a). These fault samples are oriented by fault strikes and dips,
and are colored by the enhanced fault attribute values. Most samples
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Surfaceness

Surfaceness

Fig. 17. Fault surfaces (a) are constructed using the surfaceness (Fig. 15(b)) and fault
intersection (Fig. 15(c)) volumes. These surfaces, colored by surfaceness, are displayed as
a volume of surfaceness overlaid with the seismic volume in (b).

with relatively high values (colored by red) are aligned approximate
planes, consistent with locally planar fault surfaces. Noisy fault
samples, often with low fault attribute values, are also observed in
Fig. 12(a). However, these samples are misaligned and often cannot be
linked together to form locally planer fault surfaces with significant
sizes.

Our final step for this example is to directly link nearby fault
samples with consistent fault strikes and dips to construct fault
surfaces in Fig. 12(b). We display only the surfaces with significant
sizes in Fig. 12(b) while discard those with small numbers of linked
fault samples. As the fault geometry is simple in this example, the fault
surfaces, extracted by directly linking nearby fault samples, are
continuous and complete as shown in Fig. 12(b). Therefore, the
tensor-voting processing is not necessary in this example to construct
fault surfaces, which requires extra time to compute a voted tensor
field.

Compared to the first example, the fault geometry in the second
example (Fig. 13(a)) is more complicated because a lot of intersecting
faults are apparent in this example. Similar to the processing applied to
the first example, we first compute a structure-oriented semblance
volume and a fault attribute volume (1-semblance) as shown in
Fig. 13(b). Fault surfaces are difficult to extract from this fault attribute
volume because the fault features are inconsistent and disconnected as
shown in Fig. 13(b).

We then apply the fault-oriented smoothing method to compute an
enhanced fault attribute volume (Fig. 14(a)) and corresponding fault
strike and dip volumes (not shown). The fault features in this enhanced
volume are more continuous and consistent than those in the original
fault attribute volume (Fig. 13(b)). However, it is still difficult to
construct complete fault surfaces from this enhanced fault volume
because the corresponding fault samples (Fig. 14(b)) are noisy and
fault samples may be missing at the fault intersections.
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We then apply the tensor-voting processing to the oriented fault
samples to better construct fault surfaces. To improve computational
efficiency, we randomly choose only twenty five percent of the fault
samples (Fig. 14(b)). In the tensor-voting processing, tensors are con-
structed for all the sparse fault samples (Fig. 15(a)) using the strikes and
dips of the samples. These tensors are then used to compute a voted tensor
U(x) for each sample x. Eigen-decomposition is then applied to the tensor
field U(x) to compute a surfaceness volume (Fig. 15(b)) and an intersection
volume (Fig. 15(c)). The fault features (colored by red) in this surfaceness
volume are much cleaner and more consistent than those in the enhanced
fault volume. A lot of red squares are observed on the horizontal slice of the
intersection volume (Fig. 15(c)) and the close view of the volume in Fig. 16.
These red squares indicate locations of fault intersections.

Using the surfaceness and intersection volumes, we finally con-
struct complete fault surfaces without holes as shown in Fig. 17(a).
Many of the constructed fault surfaces intersect with each other as
shown on the horizontal slice in Fig. 17(b), where the fault surfaces are
displayed as a surfaceness volume overlaid with the seismic volume.

5. Conclusion

We first discussed a matched filtering method to enhance an input
fault attribute volume while at the same time computing volumes of
fault strikes and dips. We then discussed methods to construct fault
surfaces from the three volumes of enhanced fault attribute, fault
strikes, and fault dips.

In the matched filtering method, any fault attribute or multiple
attributes can be used to compute the three fault volumes, from which
we can construct oriented fault samples on the ridges of the enhanced fault
attribute volume. For most cases with simple fault geometry (without
intersecting faults), fault surfaces can be constructed by directly linking the
nearby fault samples with consistent fault strikes and dips. For more
complicated cases with multiple intersecting fault surfaces and noisy fault
samples, we suggest to use the tensor-voting method to more accurately
construct complete fault surfaces without holes.

The computational cost of the matched filtering method is dependent
on the scanning ranges of the fault strikes and dips. In our definitions, the
strike range is from 0° to 360° and the dip range is theoretically from 0° to
90°. In most cases, we use a smaller range of dips because faults are often
more vertical than horizontal. If priori knowledge of the strike ranges is
available, we should apply the fault-oriented scanning and smoothing only
in the known strike range to reduce the computational cost. In constructing
fault surfaces using tensor voting, the cost is dependent on the number of
fault samples obtained from the fault-oriented smoothing. These fault
samples are often densely aligned on potential fault planes. We suggest to
randomly and sparsely choose only a subset of the samples for the tensor-
voting processing. In most of our tests, twenty five percent of randomly
selected fault samples are enough for the tensor voting to reasonably infer
fault surfaces.
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