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A B S T R A C T

Numerical simulations using the 3D discrete element method can yield mechanical and dynamic behaviors
similar to rocks and grains. In the model, rock is represented by bonded elements, which are arranged on a
tetrahedral lattice. The conversion formulas between inter-element parameters and rock mechanical properties
were derived. By using the formulas, inter-element parameters can be determined according to mechanical
properties of model, including Young's modulus, Poisson's ratio, tensile strength (Tu), compressive strength (Cu)
and coefficient of internal friction. The energy conversion rules of the model are proposed. Based on the
methods, a Matlab code “MatDEM” was developed. Numerical models of quartzite were used to validate the
formulas. The tested mechanical properties of a single unit correspond reasonably well with the values of
quartzite. Tested Tu and Cu with multiple elements are lower than the values predicted by the formulas. In the
simulation of rock failure processes, mechanical energy conversed between different forms and heat is
generated, but the mechanical energy plus heat always remains constant. Variations of breaking heat and
frictional heat provide clues of the fracturing and slipping behaviors of the Tu and Cu tests. The model may be
applied to a wide range of geological structures that involve breakage at multiple scales, heat generation and
dynamic processes.

1. Introduction

The discrete element method (DEM) was first introduced by
Cundall and Strack (1979) to study the behavior of granular assem-
blies. The method was improved to a close-packed lattice solid model
that has been used in the numerical simulation of the dynamical
processes associated with earthquakes (Mora and Place, 1993, 1994).
And a bonded discrete element model was proposed to simulate the
behaviors of cohesive material (Mora and Place, 1998; Potyondy et al.,
1996). The method permits large relative motion inside the model,
non-linear behaviors and dynamic evolution (Hazzard et al., 2000).
Therefore, it has been widely used in the simulation and interpretation
of various geological phenomenon that involve breakage and disconti-
nuities, such as earthquake faults with gouge (Guo and Morgan, 2007,
2008; Mora and Place, 1998), fault-propagation folding (Hardy and
Finch, 2006), structural evolution of calderas (Hardy, 2008), faulting
over active salt diapir (Yin et al., 2009), compaction bands (Dattola
et al., 2014), growth fault (Chu et al., 2015), and extension fracture
propagation in rocks with veins (Virgo et al., 2013).

In the DEM, rock is represented by an assemblage of a series of
bonded discrete elements. Generally, the modeling method relies on
troublesome calibration processes to determine the correct inter-
element parameters (Boutt and McPherson, 2002; Cho et al., 2007;
Kazerani and Zhao, 2010; Potyondy and Cundall, 2004; Schopfer et al.,
2009). Tavarez and Plesha (2007) investigate the Young's modulus and
Poisson's ratio of the 2D close-packed model. And Asahina et al. (2015)
simulate the deformation of lattice model with arbitrary Poisson's ratio.
The model has analytical elastic solutions (Griffiths and Mustoe, 2001;
Hoover et al., 1974; Liu et al., 2013; Wang et al., 2000), which may
provide a theoretical basis for calibration of inter-element parameters.
The elastic properties of close-packed 3D lattice model have been
investigated by Wang and Mora (2008). However, relations that specify
bond strengths in terms of macroscopic strengths have not been
reported (Ergenzinger et al., 2011). The relationship between micro
inter-element properties and macro mechanical properties of 3D lattice
model is not necessarily clear.

Failure processes of rock, such as faulting and earthquake dy-
namics, involve complicated friction, fracture, granular flow, wave
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propagation and energy conversion. Discrete element models have
been applied to simulate faulting and earthquake phenomena (Abe and
Mair, 2009; Fournier and Morgan, 2012; Latham et al., 2006; Mora
and Place, 1993, 1994). Elastic potential energy is stored as tectonics
stress when Earth's crust deforms. When a fault slips, the stored energy
is suddenly released as seismic waves and heat (Mora and Place, 1993).
The energy released may trigger other events and therefore have an
effect on the damage incurred by the rock (Hazzard and Young, 2004;
Hazzard et al., 2000; Michlmayr et al., 2013). The calculation of energy
of the model provides an alternative way to study the causes of seismic
wave attenuation, frictional heat generation, and failure zone evolution
(Mora and Place, 1998; Place et al., 2002). Kinetic energy and elastic
potential energy have been used to realize the process of faulting and
induced seismicity (Latham et al., 2006), such as the stick-slip
frictional behavior (Mora and Place, 1993). Place and Mora (1999)
model the generation of frictional heat during faulting. However, the
accuracy of the heat calculation is influenced by internal friction, and
the calculated heat may be up to 10 times less than the theoretical value
(Mora and Place, 1998; Place and Mora, 1999).

In this 3D discrete element model, rock is represented by bonded
elements, which are arranged on a tetrahedral lattice packing. A
tetrahedral unit with four elements was used to derive the conversion
formulas between inter-element parameters and mechanical properties
of the model. The energy conversion rules of the model are proposed, in
order to simulate the energy conversion and heat generation during
failure and dynamic processes of rocks. A Matlab code "MatDEM3D"
has been developed and numerical models of quartzite were used to
validate the formulas and the model. The energy conversion and heat
generation were simulated during the failure of the model. Note that,
we do not stipulate a discrete element to represent a single rock grain
in this paper, but rather, the assemblage of discrete elements repre-
sents a collection of spatially averaged grains (Boutt and McPherson,
2002).

2. The 3D close-packed model

The 3D discrete element model used in this study is based on the
lattice solid model (Mora and Place, 1993, 1994). As shown in Fig. 1a,
the elements used in the model are identical, which are hexagonal close
packing (HCP). The elements interact through a spring force (Fig. 1b),
in which the normal force (Fn) between two elements is defined as the
product of normal stiffness (Kn) and normal relative displacement (Xn)
(Hardy and Finch, 2006; Yin et al., 2009). The spring bond between
two elements is originally intact, until Xn between the element pair
exceeds the breaking displacement (Xb), whereupon the bond breaks,
and the tensile force ceases to exist between them. However, the
repulsive force still acts between the two elements when they return to
a compressive contact.

As shown in Fig. 1c, two elements are assumed to be bonded by
breakable elastic springs along the tangential direction, to simulate
shear deformation and shear force. The shear relative displacement is
the relative displacement of two elements along the plane perpendi-
cular to the connection line of their centers. Similarly, the inter-
element shear force (FS) is defined as the product of shear stiffness (Ks)
and shear relative displacement (Xs) (Cundall and Strack, 1979; Hardy
et al., 2009). For cohesive materials, such as soil and rock, there is a
cohesion between units, which is independent of the normal effective
stress. Therefore, the maximum shear force (FSmax) of an intact bond
allowed by Coulomb friction is:

F Fs μ F= − ⋅S p nmax 0 (1)

where Fs0 is the inter-element initial shear resistance; μp is the inter-
element coefficient of friction; Fn is the normal force (compressive force
is negative). The Fs0 is the maximum shear force, when the normal
force (Fn) is zero. The shear relative displacement and shear force
increase with increasing external shear force. The intact bond between
two elements will break when the external force exceeds the FSmax of
Eq. (1). Then, the magnitude of the shear force (FS) is limited to be less
than or equal to the maximum shear force (FSmax') of the broken bond,
-μp·Fn. When the bond is broken and the magnitude of external shear
force exceeds the limit FSmax', two elements begin slipping, and the
slipping friction between the element pair is FSmax'.

3. Mechanical properties of the 3D model

3.1. Deformation of basic tetrahedral unit

The basic tetrahedral unit shown in Fig. 2a is used to investigate the
mechanical properties of the model. In the unit, four identical elements
are bonded to each other. The centers of the elements 1–4 are
originally located at points A~D, respectively. In Fig. 2b, the z-
coordinate of elements 2, 3 and 4 is fixed to simulate rigid smooth
boundary. An external force, Fz acts on the element 1, which moves
upward by a very small displacement dz to point A’. In response to the
tensile force, the centers of the elements 2, 3 and 4 move toward the
center point (O) of the equilateral triangle BCD to points B’, C’ and D’,
respectively. When the displacements are very small, the deformation
of the tetrahedral unit has analytical solutions, and dz, Xn1, Xs1 and Xn2

can be expressed as (details in Appendix A):
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3.2. Young's modulus and Poisson's ratio

By using Eqs. (2d) and (2a), the normal strains of the unit along the
x-direction (εxx) and z-direction (εzz) are defined by:
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where d is the edge length for the tetrahedral lattice unit, i.e. the
diameter of element; XBO is the displacement of element 2 along line

Fig. 1. (a) A 3D close-packed lattice model (hexagonal close packing). (b) Two elements
are bonded by a breakable elastic spring and interact through a spring force. (c) Two
elements also are bonded by a spring along the tangential direction to simulate the shear
deformation and shear force.
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BO; lBO, lBC and lAO are the lengths of segments BO, BC and AO,
respectively. Therefore, the vertical Poisson's ratio (v) can be calculated
by:

v
ε
ε

K K
K K

γ
γ

= − =
−

5 +
= 1 −

5 +
xx

zz

n s

n s (4)

where γ is the ratio of shear stiffness to normal stiffness. The equation
indicates that v decreases with increasing γ. Since the stiffness is
always positive, the maximum v of the 3D model is 0.2 when γ is 0.
When γ=1, it corresponds to a material with zero Poisson's ratio.

Let SBCD represents the area of the triangle BCD. In the xy plane,
each unit occupies an area of 2·SBCD, and the vertical stress (σzz) is
defined by:

σ Fz S Fz d= /(2⋅ ) = 2 3 /(3 )zz BCD
2

(5)

With Eqs. (3b) and (5), the vertical Young's modulus (E) can be
expressed as:

E σ ε
K K K

d K K
= / =

6 2 ( + )
(5 + )zz zz

n n s

n s (6)

Eqs. (4) and (6) are consistent with the simulated results of
previous works (Boutt and McPherson, 2002; Hazzard et al., 2000;
Neveu et al., 2016), that Young's modulus increases with increasing
normal stiffness and the ratio of the shear to normal stiffness (γ)
influences Poisson's ratio (Potyondy and Cundall, 2004). The two
equations also were obtained by Wang and Mora (2008) using a
different approach based on strain energy density. However, the new
method based on the small deformation assumption has inherent
advantages in the investigation of the failure modes of the close-packed
model, which is more important in applications.

3.3. Tensile strength

In the basic unit of Fig. 2b, with increasing tensile force Fz, the
normal relative displacements of inclined bonds (e.g. Xn1) increase,
until the bonds break in opening mode (when Xn1 >Xb). Substituting
Eq. (2b) into Eq. (5), and let Xn1=Xb, the tensile strength (Tu) of the
unit can be expressed as:

T
K K K
K K
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n s
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3.4. Compressive strength

Microscopic observation of laboratory rock and crystal samples has
shown that most cracks that form during uniaxial compressive tests are
tensile and sub-parallel to the maximum compressive stress (Hallbaue
et al., 1973). The eventual failure of the sample must occur by linking
up of the tensile cracks to form a macroscopic shear facture (Horii and
Nematnasser, 1985). In the model, the appearance of tensile cracks
corresponds to the breakage of horizontal bonds (Hazzard et al., 2000).

3.4.1. Opening mode of microcracks
As shown in Fig. 2c, the unit is subjected to a compressive force Fz.

Horizontal bonds (such as bond 2) break in opening mode when the
relative displacement between bottom elements (Xn2) exceeds the
breaking displacement (Xb). Let Copen represents the magnitude of
the vertical stress when the horizontal bonds break, which is compar-
able to the stress when micro-cracks formed in rock. Substituting Eq.
(2d) into Eq. (5), Copen can be expressed as:

C
K K K
K K
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d
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6 2 ( + )

−
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n n s

n s

b
2 (8)

3.4.2. Sliding mode of fracture plane
The failure of inclined bonds (such as bond 1) corresponds to the

macroscopic shear fracture plane of laboratory specimens. In Fig. 2c,
when bond 2 has broken, a vertical compressive force Fz acts on
element 1, and horizontal compressive forces (such as Fx) act on
bottom elements and toward the center point O. The force balance of
element 2 requires that:

F Fz Fx
F Fz Fx

= 6 /9⋅ + 3 /3⋅
= 3 /9⋅ − 6 /3⋅

n

S

1

1
⎪

⎪⎧⎨
⎩ (9)

With increasing vertical compressive force, inclined bonds will
break when the magnitude of FS1 is equal to the maximum shear force
allowed by Coulomb friction (Eq. (1)). Substituting Eq. (9) into Eq. (1)
gives the following expression between Fz and Fx:

Fig. 2. (a) In a tetrahedral unit, four elements are bonded to each other. (b) A vertical
force Fz acts on the unit, which is stretched in the vertical direction and shrinks laterally.
(c) Horizontal bonds (e.g. bond 2), break when the relative displacement (Xn2) between
bottom elements exceeds the breaking displacement. A vertical compressive force Fz and
horizontal compressive forces (e.g. Fx) act on the unit.
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where μp and Fs0 are inter-element coefficient of friction and shear
resistance, respectively. The normal stresses along the x-direction (σxx)
and z-direction (σzz) are determined by:
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where d is the edge length for the tetrahedral lattice unit. With Eq.
(10), the relationship between σxx and σzz is:
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According to the Coulomb criterion, the stress state on the failure
surface meets the following condition (Pollard and Fletcher, 2005,
p.363):

σ C μ μ σ= − + [(1 + ) + ]zz u i i xx
2 1/2 2

(13)

where Cu is the uniaxial compressive strength; μi is the coefficient of
internal friction. It is assumed that the Coulomb criterion is valid
throughout the model. Then, the first- and second terms of Eq. (13) are
equal to those of Eq. (12), and the Cu and μi can be defined by:
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The conversion formulas of element parameters to material proper-
ties are given in Eqs. (4), (6), (7) and (14), (15). By using the equations,
the conversion formulas of material mechanical properties to element
parameters can be derived, which are provided in Appendix B.

4. Energy conversion and energy conservation

4.1. Mechanical energy of model

Elastic potential energy (Ee) is the sum of the strain energy of
normal- and shear springs of bonds (Mora and Place, 1998; Place and
Mora, 1999):

E K X K X= 0.5⋅ + 0.5⋅e n n s s
2 2 (16)

where Kn and Ks are the inter-element normal stiffness and shear
stiffness, respectively; and Xn and Xs are the corresponding relative
displacements. The gravitational potential energy (Eg) of an element is:

E mgh=g (17)

where m is element mass, g is the acceleration of gravity, and h is the
height above the reference level. Kinetic energy (Ek) of an element can
be expressed as:

E mv= 0.5⋅k
2 (18)

where m is element mass, v is element velocity.

4.2. Calculation of heat

4.2.1. Viscous heat
Seismic waves are always attenuated by friction, scattering etc., as

they travel through rocks, and mechanical energy dissipates into heat
(Hazzard et al., 2000). In the discrete element method, viscosity is used
to damp the waves in the model, and to avoid buildup of kinetic energy
in the isolated system (Finch et al., 2003; Mora and Place, 1993, 1994;

Place et al., 2002). The viscous force (Fv) is given by:

F η x=− ∙ ′v (19)

where η is viscosity and x′ is element velocity. As the time step of the
simulation is very small, element velocity is assumed to be constant in a
step. Viscous heat (Qv) is generated during viscous damping, which can
be calculated by:

F dLQ =− ∙vv (20)

where dL is the displacement of the element during current step.

4.2.2. Breaking heat
When an intact bond breaks, the spring force of the bond reduces,

and elastic potential energy (Ee) of the inter-element normal spring
and/or shear spring will dissipate into heat. If the inter-element
normal force is tensile, the Ee of both normal and shear springs reduce
to zero, and the reduced Ee can be calculated according to Eq. (16).

If the inter-element normal force is compressive, the intact bond
will break in sliding mode, when the inter-element shear force tends to
exceed the maximum shear force of the intact bond (FSmax). Then, two
elements will slip past each other, and the shear force reduces to the
maximum shear force of the broken bond (FSmax'). The elastic potential
energy of the normal spring is unchanged when the intact bond breaks.
Therefore, the reduced Ee is determined by shear force as:

E F F K= 0.5⋅( − ′ )/e S S smax
2

max
2 (21)

where Ks is inter-element shear stiffness. The total breaking heat (Qb) is
the sum of the reduced elastic potential energy during the failure of
bonds.

4.2.3. Frictional heat
Two elements begin sliding when the bond is broken and the

magnitude of external force exceeds the maximum shear force of the
broken bond. Frictional heat (Qf) is generated during this process.
When the time step of numerical simulation is very small, the variation
of inter-element friction is linear. And Qf can be defined as the product
of average sliding friction and effective sliding distance (dS):

Q F F dS= 0.5⋅( + )⋅f s s1 2 (22)

where Fs1 and Fs2 are inter-element shear force (i.e. sliding frictions)
respectively at the beginning and end of the current step, i.e. the
maximum shear forces of the broken bond (FSmax' of Eq. (4)); and dS is
the effective sliding distance.

As shown in Fig. 3a, the element with broken bond is locked by
static friction at point P. The center of the element is originally located
at point O′ (corresponds to dashed circle), when the shear spring is free
and shear force (FS) is zero. If an external tangential force (f) acts on
the element, the shear spring will be compressed and the element
center will move to point O (corresponds to solid line circle). However,
the contact point is still locked at point P, when FS < FSmax'. Therefore,
both the effective sliding distance (dS) and frictional heat are zero
during elastic deformation.

Fig. 3b shows the schematic of the effective sliding distance, when
the element slips on a frictional surface (surface of another element).
The element is originally located at point O1, which slides to point O2

after a time step. As inter-element normal force increases, the shear
force (i.e. frictional force) increases from FS1 to FS2, and the inter-
element shear relative displacement increases from Xs1 to Xs2. The
effective sliding distance on the frictional surface equals the length of
P1P2, which can be calculated by:

dS dS F F K= ′ − ( − )/s s s2 1 (23)

where dS' is the relative displacement of two elements along the
shearing direction, i.e. O1O2 in Fig. 3b; Ks is the inter-element shear
stiffness. Therefore, the effective sliding distance equals the tangential
relative displacement of the element pair minus the reduction of spring
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length.

4.3. Energy conservation and external work

The heat in the model is the sum of viscous heat (Qv), breaking heat
(Qb) and frictional heat (Qf), which can be expressed as:

Q Q Q Q= + +v b f (24)

The total energy of a discrete element model is the sum of all
mechanical energy and heat (Q):

E E E E Q= + + +total e g k (25)

According to the law of conservation of energy, the total energy of
an isolated system is constant. When the model deforms under external
force. The increment of the total model energy must be equal to the
work done by the external force (We). Specifically, when a model is
compressed, the work of the external force is defined by:

W F F dL= 0.5⋅( + )⋅e b b1 2 (26)

where Fb1 and Fb2 are the force of the boundary before- and after a
compressive step; dL is the displacement of the boundary.

5. Examples and validations

5.1. Numerical tests of 3D models of quartzite

On the basis of the theoretical study in this paper, a Matlab code
"MatDEM3D" has been developed and numerical models of quartzite
were used to validate the formulas and the model. The mechanical
properties of the quartzite and corresponding inter-element para-
meters of the close-packed model are shown in Table 1. The inter-

element parameters of the models are calculated using the conversion
formulas. Note that the density of the quartzite corresponds to overall
density of the close-packed model. Therefore, similar to 2D model
(Hardy and Finch, 2006), the element mass (m) of the 3D model is
determined by:

m ρ d= ⋅( 2 /2)3 (27)

where ρ is the density of quartzite (2.650×103 kg/m3); d is the element
diameter. In the model, the element diameter (d) is 0.001 m, and the
element mass is 1.874×10−6 kg.

The element parameters were used to define a series of cubic
models, such as the model in Fig. 1a. The element numbers of the
models are respectively 4 (single unit), 82, 255, 580, 1105, 2166, 5461,
10985, 18079, 37681, i.e. the element numbers along y-direction are 2,
4, 6, 8, 10, 12, 16, 20, 24, and 30, respectively. The cubic models are
bounded by two smooth planes (no shear force) respectively on the top-
and bottom sides (e.g. Fig. 1a). The viscosity (η) used in the numerical
simulation is determined by the following semi-empirical equation:

η d
V

m K= ∙(8 ∙ )n1/3
1/2

(28)

where d is the element diameter; V is the volume of model; and
m K(8 ∙ )n

1/2 is the critical viscosity when an element is fixed on a rigid
boundary. According to a series numerical tests, the kinetic energy of
the model reduces at high rate by using the viscosity.

The resultant force acting on an element is the summation of the
normal forces, shear forces, viscous force and gravity on the element.
The dynamic evolution of the model is simulated by integrating their
equation of motion using Newtonian physics and a time-stepping
algorithm (Cundall and Strack, 1979; Potyondy and Cundall, 2004).
As the time step is very small (1×10−8 s), the velocity and acceleration
of an element are assumed to be constant within a time step, which
allows the calculation of displacement, viscous force and heat of each
element, etc.

In the numerical tests, the models were compressed or stretched
step by step to detect the effective elastic modulus and strengths. The
boundary displacement is very small to ensure high accuracy. In the
tests of Young's modulus and Poisson's ratio, the inter-element break-
ing displacement and shear resistance are increased by 100 times to
avoid the breakage of intact bonds, and the displacement of the
boundary is 1.70×10−10 m in each compressive step. The values are
respectively 1.70×10−10 m and 1.70×10−9 m for tests of tensile
strength and compressive strength. After each compressive (or tensile)
step, the model is run for 100 time steps to damp reflected waves from
the two edges.

Fig. 3. Schematic of sliding distance used in the calculation of frictional heat. (a) The bond is broken and element is locked by static friction (i.e. FS < FSmax'). Although element center is
moved to point O due to external force f, sliding distance along the contact surface is zero. (b) When the element slides, the effective sliding distance is the length of P1P2, which equals
the tangential relative displacement (O1O2) of element pair minus the reduction of spring length (Xs2-Xs1).

Table 1
Quartzite mechanical properties (Pollard and Fletcher, 2005, pp. 321, 343 and 361) and
corresponding inter-element parameters (element diameter is 0.001 m).

Mechanical properties of quartzite Inter-element parameters

Young's Modulus (E) 90 GPa Normal stiffness (Kn) 46.794×106 N/m
Poisson's ratio (v) 0.16 Shear stiffness (Ks) 8.068×106 N/m
Uniaxial tensile strength

(Tu)
25 MPa Breaking

displacement (Xb)
1.704×10−7 m

Uniaxial compressive
strength (Cu)

252 MPa Initial shear resistance
(Fs0)

18.452 N

Coefficient of intrinsic
friction (μi)

1 Friction coefficient
(μp)

0.3964
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5.2. Test results of mechanical properties

Young's modulus (E) and Poisson's ratio (v) of the models with
different element numbers and different vertical strains are plotted
respectively in Figs. 4a and b. When the compressive strain is −10−6,
the tested E and v of a single unit coincide with the values of the
quartzite, 90 GPa and 0.16. Because the derivation of the conversion
formulas is based on small deformation assumption, the errors of

elastic properties increase with increasing magnitude of strain. For
models with multiple units, the average errors of E and v from the
strain −10−6 to −10−3 are about 0.6%.

Figs. 4c and d show the tested tensile strength (Tu) and compressive
strength (Cu) of the models with different element numbers. The tested
Tu and Cu of one unit are respectively 0.011% and 1.73% lower than the
values of quartzite. The greater error of the Cu is related to the greater
compressive strain ( > 4×10−3) in the Cu test. As shown in Fig. 4a, the
error of Young's modulus also is greater when the strain exceeds
1×10−3. For models with multiple units, the average tested Tu is 8.89%
lower than corresponding theoretical value, and the average error of Cu

is 18.51%. Because the conversion formulas are derived based on a
single unit, the greater errors of multiple elements are related to the
collective effect of an assemblage. Furthermore, due to the boundary
effect, cracks are generally formed first around the boundaries in the
numerical simulations. As shown in Fig. 1a, only one element is bonded
with the boundary element P on its bottom side. The intact bond of the
element will break prior to others, when the model is subjected to
stress. Furthermore, the vertical stress is defined by the ratio of vertical
force to the area of the model cross section. Due to the reduction of the
number of effective boundary units, the tested Tu and Cu of models with
multiple units are much smaller than the theoretical values.

The stress-strain curve of a uniaxial compressive strength test is
shown in Fig. 5. In the test, the stress increases linearly from the origin
to point A1, where the microscopic opening cracks form, and as a
result, the stress decreases. With increasing strain, the stress climbs up
until reaching the uniaxial compressive strength (A2), and after that the
model fails in sliding mode. The inset figure shows the stress drops a
bit at point A3, which indicates some boundary bonds fail before the
stress reaches Copen. And a drop of stress also can be found before the
point A2.

Fig. 4. Tested mechanical properties of close-packed models with different element numbers. (a) Young's modulus; (b) Poisson's ratio; (c) Uniaxial tensile strength (Tu); (d) Uniaxial
compressive strength (Cu).

Fig. 5. Stress-strain curve of a compressive strength test of a cubic model with 2166
elements.
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5.3. Test results of energy conversion

The cubic model with 2166 elements (i.e. 12 elements along y
direction) is used as an example to show the energy conversion during
the tests of compressive strength (Cu test) and tensile strength (Tu test).
In the simulation, elastic potential energy, kinetic energy, heat and
work of external force are calculated in each compressive step or tensile
step. As the model is very small, gravitational potential energy is not
considered, i.e. the acceleration of gravity is zero.

The energy curves of the Cu test are shown in Fig. 6a. The trend of
the elastic potential energy (Ee) is similar to the stress-strain curve of
Fig. 5. The Ee drops a bit at point A1, where opening microcracks form
and heat is generated. The whole model fails in sliding mode at point
A2, and Ee declines to almost zero at point A3. The original energy of
the model is zero. Therefore, the sum of mechanical energy and heat is
always equal to external work (dashed line) during the simulation. The
inset figure shows the variation of kinetic energy during the failure
process, which takes about 1×10−4 s (second). As the elements are still
compacted and inactive when the model fails, the kinetic energy is
much smaller in comparison with the Ee and heat.

Fig. 6b shows the energy conversion of the Tu test. The model is
stretched step by step until the model breaks into two halves at
1.072×10−2 s, where the stress is suddenly released and stored elastic
potential energy (Ee) is converted into kinetic energy and heat. The
inset figure shows the energy conversion curves for the failure process.
When the model breaks at time B1, Ee drops dramatically almost to
zero. Part of the Ee is converted into breaking heat directly. The rest Ee

is converted into kinetic energy, and elastic waves are generated in the
model. As the failure surface is free in the Tu test, the model is more
dynamic, and the ratio of maximum kinetic energy to total energy
(16.2%) is greater than that of the Cu test (Fig. 6a). Finally, kinetic
energy is converted into viscous heat at time B2. However, the sum of
the mechanical energy and heat is always equal to the external work.

Fig. 6c illustrates the variation of heat when the model fails in the
Cu test (at point A2 of Fig. 6a). The failure process starts at time C1,
when the element bonds break and the elements begin slipping toward
each other. Elastic wave is generated in the model, and as a result
viscous heat increases. The total breaking heat is the sum of breaking
heat of normal spring (Qb,n) and shear spring (Qb,s). As the elements
are compacted, the Qb,n is unchanged during the failure process, while
the Qb,s increases when element bonds break step by step. As a result,
the total breaking heat increases dramatically, until the whole model
fails in sliding mode at time C2. Beyond the time C2, the breaking heat
remains constant. However, the frictional heat still increases, which
indicates element slipping along shear direction.

The heat variation of failure process of the Tu test is shown in
Fig. 6d. The failure process of the model starts at time D1 when the
breaking heat increases from zero, and ends at time D2 when the
breaking heat stops increasing. The time difference between D1 and D2

is 2.83×10−6 s, and the model is 1.2 cm in width, therefore the
propagation speed of the opening crack is about 4240 m/s. As the
model is more dynamic in the Tu test, and the ratio of viscous heat to
total heat is greater than that of Cu test. In Fig. 6d, the viscous heat still
increases quickly after the model is completely broken at time D2,

Fig. 6. (a) Energy curves of compressive strength (Cu) test. Inset figure shows variation of kinetic energy when the model fails. (b) Energy curves of tensile strength (Tu) test. Inset figure
shows energy conversion when the model fails. (c) Heat curves when the model fails at point A2 in Fig. 6a. (d) Heat curves when the model fails at point B1 in Fig. 6b.
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which indicates the strong elastic wave propagation in the model. There
is no slipping when the model is split into two halves in the Tu test, so
the frictional heat is always zero.

6. Discussion and conclusions

This paper gives the conversion formulas between the inter-element
parameters and mechanical properties of 3D close-packed lattice
model. The models of quartzite were used as an example to validate
the conversion formulas and test the errors. The tested elastic proper-
ties and strengths of one unit correspond reasonably well with the
values of quartzite. For models with multiple units, the average errors
of E and v are about 0.6%. However, tested Tu and Cu are lower than
the values predicted by the formulas. Therefore, greater Tu and Cu can
be used in the conversion formulas to counteract this effect. For
example, the tested Tu is about 8.89% lower than the theoretical value,
so the input Tu can be increased by 9.76% in the conversion formulas
(Eq. (B3)), i.e. the Xb is increased by 9.76%. According to Eq. (14), Cu

increases with increasing Fs0 and μp, however, μi also is related to μp
(Eq. (15)). Therefore, we can increase Fs0 to get a greater Cu, and
without influencing μi.

In the model, a discrete element does not represent a grain of rock,
but the assemblage of the close-packed lattice has similar mechanical
and dynamic behaviors as a rock block or a grain. If each grain of rock
is represented by a close-packed lattice model, the deformation and
failure of grains can be simulated (Cho et al., 2007; Mora and Place,
1998; Potyondy and Cundall, 2004). In order to simplify the model and
reduce the computational cost, the shear force of the model is not
applied at the surface, but at the center of each element. When a rock
grain is represented by an element cluster, the grain can be rotated, and
torque due to forces on surface elements will be modeled (Mora and
Place, 1998). With the application of the conversion formulas intro-
duced in this study, grains with specified mechanical properties can be
used to construct rock models via sedimentation or other processes. As
a result, the model also can be used to simulate the different packing,
grain sorting, porosity of rock, and to investigate complicated struc-
tures that involve deformation and failure at both grain- and macro-
scopic scales. How the element clustering attributes and distributions
influence the failure behaviors is an interesting future research topic.

The analytical solutions are applicable to a regular close-packed
model. However, the disadvantage of the model is anisotropy (Place

and Mora, 1999), and fracturing tends to occur along the planes of the
unit (Fig. 2). In Fig. 2, the vertical force acts on the vertex A of the unit
to test mechanical properties. As the unit is centrosymmetric, the
mechanical properties of the unit along the directions from the unit
center to the other three vertices also follow the formulas. Although we
do not have analytical solutions of all the directions, some numerical
tests indicate that the Young's modulus (E) and tensile strength (Tu)
are a bit lower along other directions. Recently, Asahina et al. (2015)
compare the result of the lattice model with the Finite Element
Method. The lattice model can produce similar result as the traditional
method (Fig. 8 of Asahina et al., 2015), which indicates the influence of
anisotropy is not significant.

The rules of energy calculation and energy conversion are proposed
to investigate the nonlinear dynamic process of rock. In the numerical
tests, with the increasing boundary displacement, the total energy of
the model increases step by step and always is equal to the work of
external forces. When the model fails, stored stress energy is released
and is converted into kinetic energy and heat. However, the sum of the
mechanical energy and heat always remains constant. Variation of heat
provides clues of failure processes, such as the speed of fracture
propagation, and slipping behavior when the model breaks.

The model has been used to investigate the formation of wiggly
compaction bands in porous sandstone (Liu et al., 2015). Further, the
model can be used to investigate the dynamic processes, non-linear
behaviors and heat generation during the evolution of structures, in
particular, failure process of rock, faulting, earthquakes phenomena
and dynamics, etc.
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Appendix A. Deformation of a single unit

In Fig. 2b, as the unit has a lateral triagonal symmetry, the normal- and shear relative displacements (Xn1 and Xs1) between element 1 and the
bottom elements are identical, and the normal relative displacements between the bottom elements (Xn2) also are the same. The inter-element
normal- and shear spring forces of the unit can be defined as:

F K X
F K X
F K X

= ⋅
= ⋅
= ⋅

n n n

S s s

n n n

1 1

1 1

2 2

⎧
⎨⎪
⎩⎪ (A1)

where Fn1, FS1 are the normal- and shear forces between elements 1 and 2; Fn2 is the normal force between elements 2 and 3. The right sides of the
equations are corresponding stiffness and relative displacements. The force balance equations of the elements 1 (along z-axis) and 2 (along x-axis)
are:

Fz F α F α
F F α F α

= 3⋅( ⋅ cos + ⋅ sin )
− = ⋅ sin − ⋅ cos

n S

BO n S

1 1

1 1

⎧⎨⎩ (A2)

where Fz is the vertical tensile force acted on the element 1 (Fig. 2b); FBO is the resultant force of elements 3 and 4 on the element 2, therefore
F F= 3 ⋅BO n2; αcos = 6 /3 and αsin = 3 /3. The normal- and shear displacements between elements 1 and 2 are related to dz and Xn2 as:

X dz α X α
X dz α X α

= ⋅ cos + ⋅ sin
= ⋅ sin − ⋅ cos

n BO

s BO

1

1

⎧⎨⎩ (A3)

where the displacement of element 2 along BO direction is X X= 3 /3⋅BO n2. There are seven independent variables (Fn1, Fn2, FS1, Xn1, Xn2, XS1, dz)
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in the above seven linear equations. The equations can be solved using the regular linear algebraic method, and the solutions of dz, Xn1, Xs1 and Xn2

are provided in Eq. (2a-d). According to Eq. (A1), the Fn1, Fn2 and FS1 can be calculated from Xn1, Xs1 and Xn2.

Appendix B. Conversion formulas of material mechanical properties to inter-element parameters

Inter-element normal stiffness (Kn), shear stiffness (Ks), breaking displacement (Xb), shear resistance (Fs0), coefficient of friction (μp) can be
defined by Young's modulus (E), Poisson's ratio (v), tensile strength (Tu), compressive strength (Cu) and coefficient of intrinsic friction (μi):

K Ed
v

= 2
4(1 − 2 )n (B1)

K v Ed
v v

= 2 (1 − 5 )
4(1 + )(1 − 2 )s (B2)

X
K K
K K K

T d=
3 +

6 2 ( + )
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n s

n n s
u

2

(B3)
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μ

C d=
1 − 2

6
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u0
2

(B4)

μ I
I

I μ μ= −2 2 + 2
2 + 2

, = [(1 + ) + ]p i i
2 1/2 2

(B5)

Appendix C. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.cageo.2017.03.003.
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